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PROBLEM SETTING

Let Ω ⊂ R2 be a connected, bounded and open domain.
The eigenvalue problem for Laplace Operator is{

−∆u = λu in Ω,
u = 0 on ∂ Ω.

(1.1)

The eigenvalues of the self adjoint, positive operator −∆ in
Ω are denoted by

0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn · · ·

The first eigenvalue has variational form. For any open
D ⊂ Ω, the first eigenvalue λ1(D) given by

λ1(D) = min
u∈H1

0 (D)

u 6=0

∫
D |∇u(x)|2dx∫

D |u(x)|2dx
.
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PROBLEM A

• Given a bounded open set Ω ⊂ R2, a partition of Ω is a
family of disjoint, open and connected subsets {Ωi}ni=1
such that

Ω1 ∪ Ω2 ∪ · · · ∪ Ωn ⊆ Ω, Ωi ∩ Ωj = ∅ for i 6= j .

• By Dn we mean the set of all n-partition of Ω.
• We are looking for a partition which minimize

I(Ω1, · · · ,Ωn) =
1
n

n∑
i=1

λ1(Ωi), (1.2)

among all possible partitions.
• Such partition is called optimal partition.
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PROBLEM B

• Problem B: For a any arbitrary partition
D = (Ω1, ...,Ωn) ∈ Dn, we define

Λ(D) = max
i
λ1(Ωi), i = 1, · · · ,n.

• Define Ln(Ω) as follows:

Ln(Ω) = inf
D∈Dn

Λ(D)

• Known fact: L2(Ω) = λ2(Ω). This means if (Ω∗1,Ω
∗
2) be

an optimal bi-partition then

λ2(Ω) = λ1(Ω∗1) = λ1(Ω∗2).



Eigenfunctions
of the infinity

Laplacian

F. Bozorgnia

Introduction,
problems A
and B
Laplace Operator

Eigenvalues
of p-Laplace
Inverse power
Algorithm

Second Eigenvalue

Graph
p-Laplace

CONJECTURE BY CAFFARELLI AND LIN

For problem A, when n tends to infinity then for the optimal
partition {Ω∗}ni=1

1
n

n∑
i=1

λ1(Ω∗i ) ' n
λ1(H)

|Ω|
,

where H is the regular hexagon of area 1 in R2. Far from
the boundary a tiling by regular hexagons of area |Ω|n is
asymptotically close to the optimal partition.
For problem B the conjecture is

lim
n→∞

Ln(Ω)

n
=
λ1(H)

|Ω|
.
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MATHEMATICAL BACKGROUND

Problems (A) can be written as minimization of

n∑
i=1

∫
Ω |∇ui(x)|2dx∫

Ω |ui(x)|2dx
,

Over the class of

{(u1, . . . ,un) : ui ∈ H1
0 (Ω),ui(x) · uj(x) = 0, x ∈ Ω, i 6= j}.

• The functional is weakly lower semi-continuous
• The constraint is locally weakly compact
• Existence follows from direct methods in calculus of

variation.
• Letting Ωi = {x ∈ Ω : ui(x) > 0} we find a solution for

Problem (A).
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PROPERTIES OF OPTIMAL PARTITIONS

Theorem
There exists (Ω1, . . . ,Ωn) minimizing the given functional in Problem (A).
Furthermore, if φ1, · · · , φn are corresponding eigenfunctions normalized in L2,
then, there exist ai ∈ R such that the functions ui = aiφi verify in Ω the differential
inequalities (in distributional sense)
• −∆ui ≤ λ1(Ωi )ui , a.e, in Ω,

• −∆(ui −
∑

j 6=i uj ) ≥ λ1(Ωi )ui −
∑

j 6=i λ1(Ωj )uj .

Here Ωi = {x ∈ Ω : ui (x) > 0}.
Note that the same theorem is true for problem (B) where λ1(Ωi ), i = 1, · · · , n is
replaced by Ln.

L. A. Caffarelli, F.-H. Lin, An optimal partition problem for eigenvalues. J. Sci. Comput. 31 (2007), no.
1-2, pp. 5–18.

M. Conti, S. Terracini, and G. Verzini, An optimal partition problem related to nonlinear eigenvalues. J.
of Funct. Anal. 198 (2003), no.1, pp. 160–196.
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GENERAL CASE AND EXTENSION

Let

Ln,q(Ω) = inf
D∈Dn

(
1
n

n∑
i=1

λ1(Ωi)
q)

1
q ,

• q = 1;Ln,1 : Problem (A),
• q =∞;Ln,∞ = Ln : Problem (B).

Extension to other operators:

• p-Laplace operator :

inf
D∈Dn

1
n

n∑
i=1

λ1(p; Ωi),

• p = 1 : Honeycomb conjecture
• p =∞ : Spherical packing problem
• Schrödinger operator H = −∆ + V .
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EIGENVALUES OF p-LAPLACE OPERATOR

• For 1 < p <∞, the first eigenvalue of the p-Laplace operator
is given by

λ1(p; Ω) = inf
u∈W 1,p

0 (Ω)

u 6=0

∫
Ω
|∇u|pdx∫

Ω
|u|pdx

= inf
u∈W 1,p

0 (Ω)

u 6=0

‖∇u‖p
p

‖u‖p
p
.

• The corresponding Euler-Lagrange equation is given by{
−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω.

Here ∆pu = div(|∇u|p−2∇u) which for p = 2, we have
Laplace operator.

J. Benedikt, P. Girg, L. Kotrla, and P. Takác̆, Origin of the
p-Laplacian and A. Missbach. Electronic Journal of
Differential Equations, 16, (2018), 1-17.

P. Lindqvist, Notes on the p-Laplace equation. Lecture notes.
https://folk.ntnu.no/lqvist/p-laplace.pdf.
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Higher Eigenvalues

First define Krasnoselskii genus of a set A ⊆W 1,p
0 (Ω) by

γ(A) = min{k ∈ N|∃f : A→ Rk \ 0, f continuous and odd}.

For k ∈ N define

Γk := {A ⊆W 1,p
0 (Ω), symmetric, compact and γ(A) ≥ k}.

Then the eigenvalues of the p-Laplace are

λk ,p(Ω) = min
A∈Γk

sup
u∈A

∫
Ω |∇u(x)|pdx∫

Ω |u(x)|pdx
. (2.1)



Eigenfunctions
of the infinity

Laplacian

F. Bozorgnia

Introduction,
problems A
and B
Laplace Operator

Eigenvalues
of p-Laplace
Inverse power
Algorithm

Second Eigenvalue

Graph
p-Laplace

Inverse power Algorithm for first eigenvalue
• Initials : u0, λ0, ε.
• Step k : Given uk ≥ 0 and uk = 0 on ∂Ω, scale by

ũk =
uk

‖uk‖Lp

set λk =
∫

Ω |∇ũk (x)|pdx , then solve :{
−∆pu = λk ũp−1

k in Ω,
u = 0 on ∂Ω.

• Set ũk+1 = u
‖u‖Lp

and calculate
λk+1 =

∫
Ω |∇ũk+1(x)|pdx .

if |λk+1 − λk | > ε then
Set k = k + 1 and go to previous step;
end
• Result: uk , λk
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Modification of algorithm

Let u0 ∈ Lp(Ω) be as the first step in Algorithm 1 and define
the sequence {ũk}∞k=1 inductively according to

ũk =
uk

‖uk‖Lp(Ω)
,

where uk is the solution to{
−∆puk = ũp−1

k−1 in Ω,

ũk = 0 on ∂Ω.
(2.2)

Note that in the equation (2.2) if we rewrite it in term of uk
then we have

λk−1 =
1

‖ũk−1‖p−1
Lp(Ω)

.
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Convergence

Lemma
Let λk and uk be as above. Then
• λk ≤ λk−1 for every k ≥ 1.
• lim

k→∞
ũk = u where u is the first eigenfunction.

Proof:
• Multiply the equation by uk and integrate∫

Ω

uk div

(
|∇uk |p−2∇uk

)
dx = λk−1

∫
Ω

uk ũp−1
k−1 dx .

• Next ∫
Ω

|∇uk |p dx ≤ λk−1‖uk‖Lp(Ω)‖ũk−1‖p−1
Lp(Ω),

Notice that by definition ‖ũk−1‖Lp(Ω) = 1 so

‖∇uk‖p
Lp ≤ λk−1‖uk‖Lp . (2.3)
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‖∇uk‖p
Lp ≤ λk−1‖uk‖Lp . (2.3)



Eigenfunctions
of the infinity

Laplacian

F. Bozorgnia

Introduction,
problems A
and B
Laplace Operator

Eigenvalues
of p-Laplace
Inverse power
Algorithm

Second Eigenvalue

Graph
p-Laplace

Convergence

Lemma
Let λk and uk be as above. Then
• λk ≤ λk−1 for every k ≥ 1.
• lim

k→∞
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uk ũp−1
k−1 dx .

• Next ∫
Ω

|∇uk |p dx ≤ λk−1‖uk‖Lp(Ω)‖ũk−1‖p−1
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Multiply the equation by ũk−1

λk−1 =

∫
Ω
|∇uk |p−2∇ũk−1 · ∇uk dx ≤ ‖∇ũk−1‖Lp‖∇uk‖

p−1
Lp ,

Since λk−1 = ‖∇ũk−1‖
p
Lp , we obtain

‖∇uk‖
p−1
Lp ≥ λ

p−1
p

k−1 . (2.4)

Inserting the inequality (2.4) into (2.3) we conclude

‖∇uk‖Lp ≤ λ
1
p
k−1‖uk‖Lp .

Dividing both sides by ‖uk‖Lp

λk ≤ λk−1
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SECOND EIGENVALUE

• To extend the idea of power inverse for second eigenvalue!
• Note that λ1 is isolated in the spectrum,

λ2 = inf {λ : is eigenvalue andλ > λ1}.

• Remind in the case p = 2 we have:

L2 = λ2 = inf
(Ω1,Ω2)∈D2

max(λ1(Ω1), λ1(Ω2))

Lemma
There exists u ∈ W 1,p

0 (Ω) such that ({u+ > 0}, {u− > 0}) achieves
infimum in L2. Furthermore,

λ1({u+ > 0}) = λ1({u− > 0}).

F. Della Pietra, N. Gavitone, G. Piscitelli On the second Dirichlet eigenvalue of some nonlinear
anisotropic elliptic operators. Bulletin des Sciences Mathématiques, 155, (2019), 10–32.
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SECOND EIGENVALUE
• Initialization: Set k = 0, choose initial u0

+ > 0 and u0
− > 0 having disjoint

supports and vanishing on the boundary, scale u0
± in Lp(Ω).

• Given uk = uk
+ − uk

− where uk
+ and uk

− are normalized in Lp, with disjoint
supports, then obtain λk

+ and λk
− by

λk
1(Ω1) =

∫
Ω1

|∇uk
1 (x)|2dx , λk

1(Ω2) =

∫
Ω2

|∇uk
2 (x)|2dx ,

• Solve  −∆pu = |uk |p−2
(
λk

+uk
+ − λk

−uk
−

)
in Ω,

u = 0 on ∂ Ω.
(2.5)

• Set uk+1
+ and uk+1

− as positive and negative part of the solution of (2.5).
Update Ω+ and Ω− as the supports of uk+1

+ and uk+1
− .

• Stop if for a given tolerance ε the following holds:

|λk+1
1 (Ω+)− λk

1(Ω+)| ≤ ε.

|λk+1
1 (Ω−)− λk

1(Ω−)| ≤ ε.

• Set k = k + 1 and go to second step.
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SECOND EIGENVALUE

The main assumption is that domain Ω is symmetric such
that

‖w+
2 ‖Lp(Ω) = ‖w−2 ‖Lp(Ω).

Lemma
Let λk

+(Ω+) and λk
−(Ω−) be obtained by previous Algorithm.

Then

max
(
λk

+(Ω+), λk
−(Ω−)

)
≤ max

(
λk−1

+ (Ω+), λk−1
− (Ω−)

)
,

for every k ≥ 1.

F. Bozorgnia, Approximation of the second eigenvalue of the
p-Laplace operator in symmetric domains.
https://arxiv.org/abs/1907.13390
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SECOND EIGENVALUE
Let Ω = [−2, 2]× [−2, 2]. Then λ2 = 3.084251375340425, Our approximate :

λ
(20)
2 = 3.081432954134751.

(a) (b)
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(d) p=10
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SECOND EIGENVALUE

(e)

(f) first eigenfunction
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Algorithm 3 for L3

We know that:
L2 = λ2.

Algorithm for the minimal 3-partition will be as follows.

• Initialization:
Let D0 = (Ω0

1,Ω
0
2,Ω

0
3) be a 3-partition of Ω.

• Step (n):
For n ≥ 1, we define the partition Dn = (Ωn

1,Ω
n
2,Ω

n
3) by

Ωn
1 = Ωn−1

3 ,
(Ωn

2,Ω
n
3) is the nodal partition associated to the second eigenfunction of

−∆ on Int(Ω \ Ωn
1).
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Algorithm for n partitions

Given uk
m with ‖uk

m‖L2 = 1 then obtain λk
1(Ωm). We iterate as

For t = 0,1, · · · , k
For m = 1, · · · ,n

For i = 1, · · · ,nx
For j = 1, · · · ,ny

u(t+1)
m (xi , yj) = max

(
um

(t)(xi , yj)−

∑
l 6=m

ul
(t)(xi , yj)− λk

1(Ωm)
h2

4
u(t)

m (xi , yj),0

 ,

End
End

End
End
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(g) Initial guess for n = 3

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(h) n = 3
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(i) n = 12
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(j) n = 24

Figure: Optimal partitions for different values of n.
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Figure: n = 24
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Graph notation

• Let G = (V ,E) be an undirected graph with vertex set
V = {v1, · · · , vn}.
• W denotes similarity or weight; each edge between two

vertices vi and vj carries a non-negative weight wij ≥ 0.
The weighted adjacency matrix of the graph is the
matrix W = (wij) i , j = 1, ...,n.
• G is undirected we require wij = wji . The degree of a

vertex vi ∈ V is defined as

di =
∑
j∈V

wij .

• The degree matrix D is defined as the diagonal matrix
with the degrees d1, ...,dn on the diagonal.
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Spectral clustering
• Given some data and a notion of similarity
• The task of partitioning the input data into maximally

homogeneous groups (i.e. clusters)
• Given data points v1, · · · , vn, pairwise affinities wij
• Find a low-dimensional embedding
• Project data points to new space
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Cheeger Cut

• Given graph (V ,E) and a subset of vertex S ⊂ V the
Cut(S,Sc) or ( the perimeter |∂S| ) is defined by

Cut(S,Sc) :=
∑

i∈S,j∈Sc

wij

• Ratio cut and Normalized cut for a partition of V into
C,Cc are defined as

Rcut(C,Cc) =
cut(C,Cc)

|C|
+

cut(C,Cc)

|Cc |

NCut(C,Cc) =
cut(C,Cc)

vol(C)
+

cut(C,Cc)

vol(Cc)

Note that the minimum is achieved if |C| = |Cc |.
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Cheeger Cut

• Ratio Cheeger cut:

RCC(C,Cc) =
cut(C,Cc)

min(|C|, |Cc |)
• key point: The cut obtained by thresholding the second

eigenvector of p-Laplace converges to optimal Cheeger
cut as p tends to 1.
• Finding optimal ratio Cheeger cut RCC∗ = min

C⊂V
RCC is

NP-hard problem.
• Tight relaxation:(Tomas Bühler, Matthias Hein, 2009)

λ2(∆1) = RCC∗



Eigenfunctions
of the infinity

Laplacian

F. Bozorgnia

Introduction,
problems A
and B
Laplace Operator

Eigenvalues
of p-Laplace
Inverse power
Algorithm

Second Eigenvalue

Graph
p-Laplace

Graph p-Laplace

• Let i ∈ V . Depend on the choice of inner product

(∆u
pf )i =

∑
j∈V

wij φp(fi − fj),

•
(∆n

pf )i =
1
di

∑
j∈V

wij φp(fi − fj).

• φp : R→ R is defined for x ∈ R as

φp(x) = |x |p−1sign(x).

• λp is an eigenvalue for ∆u
p if there exists a function

v : V → R such that

(∆u
pv)i = λpφp(vi) i = 1, · · · n
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Graph p-Laplace

• The variational characterization define similarly the
functional Fp : RV → R

Fp(v) =
Qp(f )

‖f‖pp
where
•

Qp(f ) :=< f ,∆u
pf >=

1
2

∑
i,j

wij |fi − fj |p

• The functional Fp has a critical point at v ∈ RV if and
only if v is a p-eigenfunction of ∆u

p . The corresponding
eigenvalue λp is given as

λp = Fp(v)
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Graph clustering

(a)

(b)
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Thanks for your attention
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