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The general Problem

Let X and U be two Hilbert spaces. Consider the parameter dependent Cauchy problems:

ẋζ = Aζxζ + Bζu, xζ(0) = xi
ζ ∈ X , (?)

with parameter ζ ∈ Ω and (Ω,F , µ) a probability space.

The aim:
given (xi

ζ)ζ∈Ω, (xf
ζ)ζ∈Ω and T > 0,

find u ∈ L2([0,T ],U) such that the solution of xζ(·; u) of (?) satisfies:

Averaged controllability:

∫
Ω

xζ(T ; u) dµζ =

∫
Ω

x f
ζ dµζ .

parameter dependent trajectories

yi

yf

average trajectory
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F. Maŕın, J. Mart́ınez-Frutos and F. Periago, Robust averaged control of vibrations
for the Bernoulli-Euler beam equation, 2017
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Duality

Exact averaged controllability and observability

Definition

System (?) is said exactly controllable in average in time T > 0 if:{∫
Ω

∫ T

0

e(T−t)AζBζu(t)dtdµζ , u ∈ L2([0,T ],U)

}
= X .

Let us consider for every zf ∈ X the adjoint system:

−żζ = A∗ζzζ , zζ(T ) = zf . (Adj)

Definition

The system (Adj) is said exactly observable in average in time T > 0 if there exists
c̄(T ) > 0 such that:

c̄(T )‖zf ‖2
X 6

∫ T

0

∥∥∥∥∫
Ω

B∗ζ zζ(t)dµζ

∥∥∥∥2

X

dt (zf ∈ X ).
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Duality

Duality results

Theorem

The system (?) is admissible in average if and only if (Adj) is, i.e.

∀T > 0, ∃C̄(T ) > 0, ∫ T

0

∥∥∥∥∫
Ω

B∗ζ zζ(t) dµζ

∥∥∥∥2

X

dt 6 C̄(T )‖zf ‖2
X (zf ∈ X );

The system (?) is exactly controllable in average in time T > 0 if and only if (Adj)
is exactly observable in average in time T.
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Duality

Kalman rank condition

Theorem (Zuazua, 2014)

Assume dimX <∞, then the system (?) is controllable in average if and only if the rank
condition:

rank

[∫
Ω

Aj
ζBζ dµζ , j ∈ N

]
= dimX

is satisfied.
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Perturbation

Perturbation result I

Theorem

Set T > 0, (Ω,F , µ̃) a probability space and ζ0 ∈ Ω.
Assume:

{ζ0} ∈ F and there exists Cζ0 (T ), cζ0 (T ) > 0 such that:

cζ0 (T )‖zf ‖2
X 6

∫ T

0

∥∥B∗ζ0
zζ0 (t)

∥∥2

U
dt 6 Cζ0 (T )‖zf ‖2

X (zf ∈ X );

For almost every ζ ∈ Ω, there exists Cζ(T ) > 0 such that:∫ T

0

∥∥B∗ζ zζ(t)
∥∥2

U
dt 6 Cζ(T )‖zf ‖2

X (zf ∈ X );

and ∫
Ω

√
Cζ(T )dµ̃ζ <∞.

Then for every θ ∈

[
0,

(
1 +

∫
Ω

√
Cζ (T )

cζ0
(T )

dµ̃ζ

)−1
)

, the system (?) is exactly controllable

in average for the probability measure:
µ = θµ̃+ (1− θ)δζ0 .
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Perturbation

Perturbation result II

Proof: Use Minkowski inequality:(∫ T

0

∥∥∥∥∫
Ω

B∗ζ zζ(t)dµζ

∥∥∥∥2

U

dt

) 1
2

=

(∫ T

0

∥∥∥∥(1− θ)B∗ζ0
zζ0 (t) + θ

∫
Ω

B∗ζ zζ(t)dµ̃ζ

∥∥∥∥2

U

dt

) 1
2

> (1− θ)

(∫ T

0

∥∥B∗ζ0
zζ0 (t)

∥∥2

U
dt

) 1
2

− θ

(∫ T

0

∥∥∥∥∫
Ω

B∗ζ zζ(t) dµ̃ζ

∥∥∥∥2

U

dt

) 1
2

> (1− θ)
√

cζ0 (T )‖zf ‖X − θ
∫

Ω

√
Cζ(T ) dµ̃ζ‖zf ‖X

�
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Averaged Ingham

Ingham inequalities I

Consider X = `2(N∗,C), U = C and (λn)n∈N∗ ∈ RN∗ , with
∑

1/λ2
n <∞.

Set the operator A of domain D(A) =

{
(an)n ∈ `2(N∗),

∑
n∈N∗
|λn|2|an|2 <∞

}
:= X1

defined by:
Aen = 2iπλnen (n ∈ N∗)

and the operator B ∈ L(U,X−1) defined by :

[Bv ]n = v (v ∈ C).

Consider the system:

ẋ = Ax + Bu i.e. ẋn = 2iπλnxn + u (n ∈ N∗).

The adjoint system is:

ż = −Az i.e. żn = 2iπλnzn (n ∈ N∗) thus zn(t) = e2iπλntzn(0) (n ∈ N∗, t ∈ R).

and the observation operator:

X1 → L2([0,T ],C)
(an)n 7→

∑
n∈N∗ ane

2iπλnt .
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Averaged Ingham

Ingham inequalities II

Theorem (Ingham inequalities, Ingham 1936)

Assume inf
m,n∈N∗
m 6=n

|λm − λn| := γ > 0. Then for every T > 0, there exists C(T ) > 0 such

that: ∫ T

0

∣∣∣∣∣∑
n∈N∗

ane
2iπλnt

∣∣∣∣∣
2

dt 6 C(T )
∑
n∈N∗
|an|2

and for every T >
1

γ
, there exists c(T ) > 0 such that:

c(T )
∑
n∈N∗
|an|2 6

∫ T

0

∣∣∣∣∣∑
n∈N∗

ane
2iπλnt

∣∣∣∣∣
2

dt.

Consequently, if γ > 0 and T > 1
γ

, the system ẋ = Ax + Bu is exactly controllable.
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Averaged Ingham

Averaged version of Ingham inequalities I

Let us now consider the probability space (Ω,F , µ) given by Ω = {ζ0, . . . , ζK} ⊂ R,
F = P(Ω) and µ given by µ({ζk}) := θk ∈ [0, 1].
Consider the parameter dependent system:

ẋζ = ζAxζ + Bu.

The goal would be to find T > 0 and c̄(T ) > 0 such that;

c̄(T )
∑
n∈N∗
|an|2 6

∫ T

0

∣∣∣∣∣
K∑

k=0

θk
∑
n∈N∗

ane
2iπλnζk t

∣∣∣∣∣
2

dt ((an)n ∈ X ).

Theorem

Set γ > 0 and assume λn ∈ γN Then, if T >
1

γ

K∑
k=0

1

|ζk |
, there exists a constant

c̄(T ) > 0 such that:

θ0c̄(T )
∑
n∈N∗
|an|2

K∏
k=1

sin

(
λnπ

γ

ζ0

ζk

)
6
∫ T

0

∣∣∣∣∣
K∑

k=0

θk
∑
n∈N∗

ane
2iπλnζk t

∣∣∣∣∣
2

dt ((an)n ∈ X ).
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Averaged Ingham

Averaged version of Ingham inequalities II

Idea of the proof:

Set f (t) =
K∑

k=0

θk
∑
n∈N∗

ane
2iπλnζk t and notice that

f (t + 1/(γ|ζK |))− f (t) =
K−1∑
k=0

θk
∑
n∈N∗

an

(
e

2iπ λn
γ

ζk
|ζK | − 1

)
e2iπλnζt .

Iterate K times and use Ingham Inequality. �

Corollary (With diophantine approximation, cf. Schmidt, 1970)

Assume in addition that ζ1
ζ0
, . . . , ζK

ζ0
are algebraic, ζ0, . . . , ζK are Q-linearly independent

and θ0 > 0.

Then for every T >
1

γ

K∑
k=0

1

|ζk |
, and every ε > 0, there exists c̄ε(T ) > 0 such that:

c̄ε(T )
∑
n∈N

|an|2

|λn|2(1+ε)
6
∫ T

0

∣∣∣∣∣
K∑

k=0

θk
∑
n∈N∗

ane
2iπλnζt

∣∣∣∣∣
2

dt.

Consequently we obtained an Ingham inequality in a weighed space.
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String equation

Application to the string equation I

Consider the parameter dependent string equation:

ẅζ(t, x) = ζ2∂2
xwζ(t, x) ((t, x) ∈ R∗+ × (0, 1)),

wζ(t, 0) = u(t) (t ∈ R∗+),

wζ(t, 1) = 0 (t ∈ R∗+),

wζ(0, x) = wi,0(x) and ẇζ(0, x) = wi,1(x) (x ∈ (0, 1)).

The adjoint problem of averaged observability is:

z̈ζ(t, x) = ζ2∂2
x zζ(t, x) ((t, x) ∈ R∗+ × (0, 1)),

0 = zζ(t, 0) = zζ(t, 1) (t ∈ R∗+),

zζ(0, x) = zi,0(x) and żζ(0, x) = zi,1(x) (x ∈ (0, 1)).

and the averaged observability map is:

(zi,0, zi,1) 7→ −
K∑

k=0

∂x(A−1
0 żζ(t, ·))(0) ζkθk .
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String equation

Application to the string equation II

Expanding zζ(t, x) on the Fourier basis sin(πnζx), i.e. zζ(t, x) =
∑

n∈N∗ an(t) sin(πnζx)
leads to an averaged observability map of the type:

K∑
k=0

θk
∑
n∈Z∗

ane
2iπλnζk t ,

with λn = 1
2
n.

Applying the previous corollary, we obtain:
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String equation

Application to the string equation III

Proposition

Let ε > 0 and assume ζ0, . . . , ζK Q-linearly independent and ζ1
ζ0
, . . . , ζK

ζ0
are algebraic.

Then, if (wi,0
ζ0
,wi,1

ζ0
), . . . , (wi,0

ζK
,wi,1

ζK
), (wf ,0,wf ,1) ∈ X1+ε × Xε, for every T > 2

K∑
k=0

1

|ζk |
,

there exists u ∈ L2([0,T ]) such that the solution wζ(t, x) = wζ(t, x ; u) satisfies:

K∑
k=0

θkwζk (T , x) = wf ,0(x) and
K∑

k=0

θk ẇζk (T , x) = wf ,1(x) (x ∈ (0, 1)).

With Xα =

{
ϕ : x ∈ (0, 1) 7→

∑
n∈N∗

an sin(πnx),
∑
n∈N∗

n2α|an|2 <∞

}
(α > 0).

From Dáger-Zuazua (2006),
if in addition ζl

ζk
are algebraic for every k 6= l , then there exists u ∈ L2([0,T ]) such that

the solution wζ(t, x) = wζ(t, x ; u) satisfies:

wζk (T , x) = wf ,0(x) and ẇζk (T , x) = wf ,1(x) (x ∈ (0, 1), k ∈ {0, . . . ,K}).
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String equation

Application to the string equation IV

We can also apply the perturbation argument.
For instance, for ζ0 = 1 and ζ1 =

√
2 and measure µ = (1− θ)δζ0 + θδζ1 , we obtain the

set of parameters where averaged controllability holds.

0

1

2

3

5

0 0.8 1

Exact averaged controllability Exact averaged controllability

in a weighted space

1
1+2

√
5

0.6
√

5
2
√

2+
√

5

4

2 +
√

2

√
2

T

θ
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Conclusion

Conclusion and open questions

Few averaged controllability results exists in PDE context.

Averaged Ingham inequality in general means:

∃c and C > 0 s.t. c
∑
n

|an|2 6
∫ T

0

∣∣∣∣∣
∫

Ω

∑
n

ane
2iπλnζt dµζ

∣∣∣∣∣
2

dt 6 C
∑
n

|an|2.

In particular, for Ω = R, we end up with:

c
∑
n

|an|2 6
∫ T

0

|anµ̂(−λnt)|2 dt 6 C
∑
n

|an|2.

That is to say, {µ̂(−λn·)}n is a Riesz basis.

Still for averaged Ingham inequalities, are they true for dµζ = 1
2ε

1(1−ε,1+ε)(ζ) dζ,
with ε > 0 small enough?

THANK YOU, FOR YOUR ATTENTION!
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