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We consider D ¢ RY a fixed open bounded set. We are interested in
the optimization problem:

min /g(x)u(x) dx
D

Vey
subject to
-Au+Vu=f in D,
u=20 on 9D,
where,

V= {V: D — [0,+o0] : V Lebesgue measurable, / P(V(x))dx < 1}
D

and ¢ satisfying some appropriate qualitative conditions.
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The function 1 : [0, +00] — [0, +00] we assume that:
(i) v is strictly decreasing;

For instance the following functions:

The choice (s) = e~*S was proposed in [Buttazzo et al ,2014], in
order to approximate shape optimization problems with Dirichlet
condition on the free boundary.

Moreover, as o — 0 the problems with the parameter « were shown to
-converge to the shape optimization problem with a volume constraint
|2] < 1 being Q2 the shape variable.
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Existence results:

@ f > 0and g < 0 (o reverse case), maximum principle, cost is
monotonically increasing, and volume constraint saturated
([Buttazzo et al., 2014])

Main assumptions:
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Existence results:

@ f > 0and g < 0 (o reverse case), maximum principle, cost is
monotonically increasing, and volume constraint saturated
([Buttazzo et al., 2014])

@ Optimal domains with f and g are allowed to change sign
([Buttazzo and Velichkov, 2018])

@ We analyze the existence of optimal potentials when f and g are
allowed to change sign. We expect no saturation of volume
constraint.

Main assumptions:

@ linear cost (otherwise simple examples show optimal solution only
exists in a relaxed sense).

@ D bounded (characterization of the relaxed formulation).
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Homogenization, Spectral problems and other topics
in PDE’s

Q Introduction

@ Capacitary measures
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A capacitary measure 1. is a nonnegative Borel measure on D,

possibly taking the value +oo, that vanishes on all sets of capacity
zero. Notation p € M gp.

Capacity is intended with respect to the H' norm

cap(E,D) = inf{/ |Vul? dx+/ u? dx : u e H)(D),
D D
u > 1 in a neigborhood of E}

We consider the Hilbert space HJ(D) N L3(x) endowed with norm:

1/2
lull = (IV o) + lulleg,y) -
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We say that u € H}(D) N L2(w) is a solution of the problem

~Au+ pu="f, for a function f € L3(D),

/Vuv¢dx+/u¢du:/f¢dx Vo € HY(D) N L3(p),
D D D
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Homogenization, Spectral problems and other topics
in PDE’s
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For V € V the state equation
~Au+W=Ff  ueH)(D)NLEV).
The capacitary measure p associated to V is defined as:
V(x)dx if cap(AN{V =+})=0
-, ( )
+00 if cap (AN{V =+o0}) >0,

which implies u = 0 quasi-everywhere on the set {V = +o0}.
Abusing the terminology we will identify . and V.
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Relaxed problem

We put V the family of capacitary measures . obtained as limits of
sequences (Vy) of potentials in V. Relaxed problem:

min/g(x)u(x) dx
D

ney
subject to
1 2
u e H(D)n L2(y)
—Au+pu=f in D,
F. Maestre (Universidad de Sevilla) Optimal Potentials
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Theorem

Let D c RY be a bounded open set and let v satisfy the assumptions
i) and ij) above. Then, for every f, g € L?(D), the original optimization
problem has a solution.

Sketch of the proof:
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Theorem

Let D c RY be a bounded open set and let v satisfy the assumptions
i) and ii) above. Then, for every f, g € L?(D), the original optimization
problem has a solution.

Sketch of the proof:

@ ;. €V be solution of the relaxed problem = ;1 = V + 5,
uS singular respect to the Lebesgue measure and
p¥({V = +o0}) =0.

@ 15 = +ook, with K quasi-closed set —
p=V+ps=V+(+ook) €V.
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Homogenization, Spectral problems and other topics
in PDE’s

@ Existence results

@ Optimality conditions
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We consider u, p € H}(D) N L?(p) solutions of:

—Au+pu=f in D, —-Ap+pup=g in D,
u=20 on 0D, p=0 on 0D,
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We consider u, p € H}(D) N L3() solutions of:

—Au+pu=f in D, —-Ap+pup=g in D,
u=20 on 0D, p=0 on 0D,

Proposition

Suppose that i is a solution of the relaxed optimization problem on the
bounded domain D c RY. Then

up<0 a.e. onD.

Moreover, the above inequality holds quasi-everywhere on D.
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We consider u, p € H}(D) N L3() solutions of:

—Au+pu=f in D, —-Ap+pup=g in D,
u=20 on 0D, p=0 on 0D,

Proposition

Suppose that i is a solution of the relaxed optimization problem on the
bounded domain D c RY. Then

up<0 a.e. onD.

Moreover, the above inequality holds quasi-everywhere on D.

Remark

In fact, for a potential V solution of the original optimization problem,
(whose existence follows from previous Theorem), we have

up<0 ae.on D.
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Homogenization, Spectral problems and other topics
in PDE’s

@ Existence results

@ Saturation of the Constraint
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One cannot expect that the constraint / P(V)dx < 1 is saturated.
D

@ (0) = +oo (for instance, ¥(s) = s P, p > 0):
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One cannot expect that the constraint / P(V)dx < 1 is saturated.
D
@ (0) = +oo (for instance, ¥(s) = s P, p > 0):
D

> If/qu(+oo)dx21 :>/D’(/J(Vop[)dX: 1.

@ (0) < +oo (for instance, ¥(s) = e, a > 0):
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One cannot expect that the constraint / P(V)dx < 1 is saturated.
D
@ (0) = +oo (for instance, ¥(s) = s P, p > 0):
D

> If/qu(—i—oo)dx >1= /D’(/J(Vop[)dX: 1.
@ (0) < +oo (for instance, ¥(s) = e, a > 0):
> E|Vop[ s.t. /w(Vop,)dx =1.
D
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One cannot expect that the constraint / P(V)dx < 1 is saturated.
D
@ (0) = +oo (for instance, ¥(s) = s P, p > 0):
D

> If/w(—i—oo)dx > 1 :>/’(/J(Vop[)dX: 1.
@ (0) < i-OO (for instance, qz(s) =e %, a>0):
- 3V st / O(Vopt)dx = 1.
. 0 onQ
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Homogenization, Spectral problems and other topics
in PDE’s

e Numerical experiments
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Numerical Analysis

We propose the numerical analysis of the following problem. We
consider D = [0, 1]2:

min /g(x)u(x) dx
D

Vey
subject to
—Au+Vu=f in D,
u=20 on 0D,
where,

Y = {V: D — [0,+oc] : V Lebesgue measurable, / P(V(x))dx < 1}
D
and y(s) = Le s
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We use Method of Moving Asymptotes (MMA).
The structure of the algorithm is as follows.

@ Initialization of the potential V° € V;
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We use Method of Moving Asymptotes (MMA).
The structure of the algorithm is as follows.

@ Initialization of the potential V° ¢ V;
@ for k > 0, iteration until convergence as follows:

» compute the state uy« and then the co-state pyx,
» compute the descent direction VX(x) = —uy« - py«
» update the potential V¥ in D:

Vk+1 — Vk +€k \N/k’
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We use FreeFem++ v 3.50 completed with the library NLopt.
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We use FreeFem++ v 3.50 completed with the library NLopt. The
main required data:

@ Initialization V°

@ routines for cost function and associated gradient through the
adjoint state

@ lower and upper bounds for V € [0, Vinax] (Vmax large enough)
@ stopping criteria

In the following, we take g = 1 and consider different choices for f and
parameters o and m.
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Figure: To the left: the domain D and its triangulation; number of nodes:
40401; number of triangles: 80000. To the right: the right-hand side function
f(x,y) = —(1+ 10x).
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Figure: The optimal potential Vo for volume constraint m = 0.2 = mgp;. Case
a = 1072 (lefty and o = 10~* (right).
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Figure: Cost evolution for the example from previous Figure, case o = 104,
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Figure: The right-hand side function f is given by f(x, y) = —1, if
y—14x>03,and f(x,y)=1,if y —1.4x < 0.3
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Figure: Optimal potential V,,; for m = 0.2 (left) and m = 0.45 (right). The
occupied volume on the right is 0.33276.
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Figure: The right-hand side function f (left) and the optimal potential Vi
(right). The volume m = 0.45 is entirely occupied.
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Figure: The right-hand side function f (left) and the optimal potential Vi,
(right). The occupied volume is 0.378404 of the total available m = 0.5.
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Homogenization, Spectral problems and other topics
in PDE’s

e Unbounded domain
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Unbounded domain

We consider D = RY. We are interested in the optimization problem:

,min Rd/(x, u(x), Vu(x)) dx

subject to

—Au+pu=Ff in RY,
and
W(p) <1,

Work in progress with: G. Buttazzo and J. Casado-Diaz.
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some dificulties

@ Which is good space X for the solutions of —Au + pu = f,???

Vu-Vvdx+/ uvdu = fv, velX,

Rd Rd Rd
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some dificulties

@ Which is good space X for the solutions of —Au + pu = f,???

Vu-Vvdx+/ uvdu = fv, velX,
Rd Rd RY
We consider:

1 1
Wx)=——ifd#£2, W(x)= if d = 2.

=3 972 W= G ieg + 1)) |
and we put:
L={u:RY—R:Wue 2R}
H={ueln H,‘OC(RC’) . Vu € L2(RY)9}

and one gets

lulle < C([IVUll zme)y + Ul iz
m
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@ Which is good space X for the solutions of —Au + pu = f,???

Vu-Vvdx+/ uvdu = fv, velX,
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We consider:

1 1
Wx)=——ifd#£2, W(x)= if d = 2.

=3 972 W= G ieg + 1)) |
and we put:
L={u:RY—R:Wue 2R}
H={ueln H,‘OC(RC’) . Vu € L2(RY)9}

and one gets

lulle < C([IVUll zme)y + Ul iz
m

We take
X=HnL?
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some dificulties

@ How is defined W(u)?7?7.
We decompose n = p? + p° 4+ ook, and consider:
V(p) = o $(u?) Ax + Cyp®(RY) + ¢(oc)cap(K),
where ¢ : RT™ — [0, +o0] is a convex and lower semicontinuous

function and ,
Cw: lim M

t—4o00 I
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Existence result

Theorem

We considerj: R? x R x RY — R U {+oc} measurable in x € R, lower
semincontinuous in (s, &) and some growth conditions in (s, §). We
consider ) : R — [0, +o0] convex and lower semicontinuous and a
measure v € Mcgp such that there exists ji € Mqp Satisfying

pzv, W) <.
Moreover, ifd = 1,2 we assume that:
either 1)(0) > 0 or v is not the null measure

Then, for every f € H' the optimization problem has at least one
solution.
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