On optimal potentials problems for bounded and unbounded domains

Faustino Maestre

Departamento de Ecuaciones Diferenciales y Análisis Numérico Universidad de Sevilla. Spain.

VIII Partial differential equations, optimal design and numerics Benasque, Spain. August 2019

Joint work: Giuseppe Buttazzo, Università di Pisa Juan Casado-Díaz, Universidad de Sevilla Bozhidar Velichkov, Université Grenoble Alpes.

Optimal Potentials

(I) > (A) > (A) > (A) > (A)

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

3 Numerical experiments

Homogenization, Spectral problems and other topics in PDE's

1

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint
- 3 Numerical experiments
- Unbounded domain

A (10) A (10) A (10)

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint
- Numerical experiments
- 4 Unbounded domain

A (10) A (10) A (10)

We consider $D \subset \mathbb{R}^d$ a fixed open bounded set. We are interested in the optimization problem:

$$\min_{\ell\in\mathcal{V}}\int_D g(x)u(x)\ dx$$

subject to

$$\begin{cases} -\Delta u + V \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases}$$

where,

$$\mathcal{V} = \left\{ V: D
ightarrow [0, +\infty] \; : \; V ext{ Lebesgue measurable, } \int_D \psi(V(x)) \, dx \leq 1
ight\}$$

and ψ satisfying some appropriate qualitative conditions.

The function $\psi: [\mathbf{0},+\infty] \to [\mathbf{0},+\infty]$ we assume that:

(i) ψ is strictly decreasing;

(ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

- (1) $\psi(s) = s^{-p}$, for any p > 0,
- 2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

The function $\psi: [\mathbf{0}, +\infty] \rightarrow [\mathbf{0}, +\infty]$ we assume that:

- (i) ψ is strictly decreasing;
- (ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

- (1) $\psi(s) = s^{-p}$, for any p > 0,
- 2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

The function $\psi: [\mathbf{0}, +\infty] \rightarrow [\mathbf{0}, +\infty]$ we assume that:

- (i) ψ is strictly decreasing;
- (ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

1
$$\psi(s) = s^{-p}$$
, for any $p > 0$,

2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

The function $\psi: [\mathbf{0}, +\infty] \rightarrow [\mathbf{0}, +\infty]$ we assume that:

- (i) ψ is strictly decreasing;
- (ii) there exist p > 1 such that the function $s \mapsto \psi^{-1}(s^p)$ is convex.

For instance the following functions:

1
$$\psi(s) = s^{-p}$$
, for any $p > 0$,

2 $\psi(s) = e^{-\alpha s}$, for any $\alpha > 0$,

The choice $\psi(s) = e^{-\alpha s}$ was proposed in [Buttazzo et al ,2014], in order to approximate shape optimization problems with Dirichlet condition on the free boundary.

Moreover, as $\alpha \to 0$ the problems with the parameter α were shown to Γ -converge to the shape optimization problem with a volume constraint $|\Omega| \leq 1$ being Ω the shape variable.

- *f* ≥ 0 and *g* ≤ 0 (o reverse case), maximum principle, cost is monotonically increasing, and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sign ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sign. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

- *f* ≥ 0 and *g* ≤ 0 (o reverse case), maximum principle, cost is monotonically increasing, and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sign ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sign. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

- *f* ≥ 0 and *g* ≤ 0 (o reverse case), maximum principle, cost is monotonically increasing, and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sign ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sign. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

- *f* ≥ 0 and *g* ≤ 0 (o reverse case), maximum principle, cost is monotonically increasing, and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sign ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sign. We expect no saturation of volume constraint.

Main assumptions:

 linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).

• *D* bounded (characterization of the relaxed formulation).

- *f* ≥ 0 and *g* ≤ 0 (o reverse case), maximum principle, cost is monotonically increasing, and volume constraint saturated ([Buttazzo et al., 2014])
- Optimal domains with *f* and *g* are allowed to change sign ([Buttazzo and Velichkov, 2018])
- We analyze the existence of optimal potentials when *f* and *g* are allowed to change sign. We expect no saturation of volume constraint.

Main assumptions:

- linear cost (otherwise simple examples show optimal solution only exists in a relaxed sense).
- *D* bounded (characterization of the relaxed formulation).

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint
- Numerical experiments
- Unbounded domain

A (10) A (10) A (10)

A *capacitary measure* μ is a nonnegative Borel measure on *D*, possibly taking the value $+\infty$, that vanishes on all sets of capacity zero. Notation $\mu \in \mathcal{M}_{cap}$.

Capacity is intended with respect to the H^1 norm

$${\it cap}(E,D) = \inf \left\{ \int_D |
abla u|^2 \ {\it d}x + \int_D u^2 \ {\it d}x : u \in H^1_0(D), \ u \geq 1 \ {
m in \ a \ neightrophy of \ } E
ight\}$$

We consider the Hilbert space $H_0^1(D) \cap L^2(\mu)$ endowed with norm:

$$\|u\| = \left(\|\nabla u\|_{L^2(D)}^2 + \|u\|_{L^2(\mu)}^2\right)^{1/2}$$

F. Maestre (Universidad de Sevilla)

< 日 > < 同 > < 回 > < 回 > < □ > <

We say that $u \in H_0^1(D) \cap L^2(\mu)$ is a solution of the problem

 $-\Delta u + \mu u = f$, for a function $f \in L^2(D)$,

 $\int_D \nabla u \nabla \phi \, dx + \int_D u \phi \, d\mu = \int_D f \phi \, dx \qquad \forall \phi \in H^1_0(D) \cap L^2(\mu),$

F. Maestre (Universidad de Sevilla)

if

Optimal Potentials

VIII PDEs. Optimal Design 10 / 36

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint
- 3 Numerical experiments
- Unbounded domain

A (10) A (10) A (10)

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint
- Numerical experiments

Unbounded domain

A (10) A (10) A (10)

For $V \in \mathcal{V}$ the state equation

$$-\Delta u + Vu = f, \qquad u \in H^1_0(D) \cap L^2(V).$$

The capacitary measure μ associated to V is defined as:

$$\mu(A) = \begin{cases} \int_{A} V(x) \, dx & \text{if } \operatorname{cap} \left(A \cap \{ V = +\infty \} \right) = 0 \\ +\infty & \text{if } \operatorname{cap} \left(A \cap \{ V = +\infty \} \right) > 0, \end{cases}$$

which implies u = 0 quasi-everywhere on the set $\{V = +\infty\}$. Abusing the terminology we will identify μ and V.

イロト イポト イラト イラト

We put $\overline{\mathcal{V}}$ the family of capacitary measures μ obtained as limits of sequences (V_n) of potentials in \mathcal{V} . Relaxed problem:

$$\min_{u\in\overline{\mathcal{V}}}\int_D g(x)u(x)\ dx$$

subject to

$$\begin{cases} u \in H_0^1(D) \cap L^2(\mu) \\ -\Delta u + \mu \ u = f & \text{in } D, \end{cases}$$

A b

Theorem

Let $D \subset \mathbb{R}^d$ be a bounded open set and let ψ satisfy the assumptions *i*) and *ii*) above. Then, for every $f, g \in L^2(D)$, the original optimization problem has a solution.

Sketch of the proof:

- $\mu \in \overline{\mathcal{V}}$ be solution of the relaxed problem $\Longrightarrow \mu = V + \mu^s$, μ^s singular respect to the Lebesgue measure and $\mu^s(\{V = +\infty\}) = 0.$
- $\mu^s = +\infty_K$, with K quasi-closed set \implies $\mu = V + \mu^s = V + (+\infty_K) \in \mathcal{V}.$

Theorem

Let $D \subset \mathbb{R}^d$ be a bounded open set and let ψ satisfy the assumptions *i*) and *ii*) above. Then, for every $f, g \in L^2(D)$, the original optimization problem has a solution.

Sketch of the proof:

- $\mu \in \overline{\mathcal{V}}$ be solution of the relaxed problem $\Longrightarrow \mu = \mathcal{V} + \mu^s$, μ^s singular respect to the Lebesgue measure and $\mu^s(\{\mathcal{V} = +\infty\}) = 0.$
- $\mu^s = +\infty_K$, with K quasi-closed set $\implies \mu = V + \mu^s = V + (+\infty_K) \in \mathcal{V}$.

Theorem

Let $D \subset \mathbb{R}^d$ be a bounded open set and let ψ satisfy the assumptions *i*) and *ii*) above. Then, for every $f, g \in L^2(D)$, the original optimization problem has a solution.

Sketch of the proof:

• $\mu \in \overline{\mathcal{V}}$ be solution of the relaxed problem $\Longrightarrow \mu = \mathbf{V} + \mu^s$, μ^s singular respect to the Lebesgue measure and $\mu^s(\{\mathbf{V} = +\infty\}) = \mathbf{0}.$

•
$$\mu^{s} = +\infty_{K}$$
, with K quasi-closed set $\implies \mu = V + \mu^{s} = V + (+\infty_{K}) \in \mathcal{V}.$

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint
- Numerical experiments

Unbounded domain

A (10) A (10) A (10)

We consider $u, p \in H_0^1(D) \cap L^2(\mu)$ solutions of:

$$\begin{cases} -\Delta u + \mu \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases} \begin{cases} -\Delta p + \mu \ p = g & \text{in } D, \\ p = 0 & \text{on } \partial D, \end{cases}$$

Proposition

Suppose that μ is a solution of the relaxed optimization problem on the bounded domain $D \subset \mathbb{R}^d$. Then

 $u p \leq 0$ a.e. on D.

Moreover, the above inequality holds quasi-everywhere on D.

Remark

In fact, for a potential V solution of the original optimization problem, (whose existence follows from previous Theorem), we have

$up \leq 0$ a.e. on D.

э

We consider $u, p \in H_0^1(D) \cap L^2(\mu)$ solutions of:

$$\begin{cases} -\Delta u + \mu \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases} \begin{cases} -\Delta p + \mu \ p = g & \text{in } D, \\ p = 0 & \text{on } \partial D, \end{cases}$$

Proposition

Suppose that μ is a solution of the relaxed optimization problem on the bounded domain $D \subset \mathbb{R}^d$. Then

 $u p \leq 0$ a.e. on D.

Moreover, the above inequality holds quasi-everywhere on D.

Remark

In fact, for a potential V solution of the original optimization problem, (whose existence follows from previous Theorem), we have

 $up \leq 0$ a.e. on D.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

We consider $u, p \in H_0^1(D) \cap L^2(\mu)$ solutions of:

$$\begin{cases} -\Delta u + \mu \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases} \begin{cases} -\Delta p + \mu \ p = g & \text{in } D, \\ p = 0 & \text{on } \partial D, \end{cases}$$

Proposition

Suppose that μ is a solution of the relaxed optimization problem on the bounded domain $D \subset \mathbb{R}^d$. Then

 $up \leq 0$ a.e. on D.

Moreover, the above inequality holds quasi-everywhere on D.

Remark

In fact, for a potential V solution of the original optimization problem, (whose existence follows from previous Theorem), we have

 $up \leq 0$ a.e. on D.

17/36

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

Numerical experiments

Unbounded domain

< 同 ト < 三 ト < 三 ト

One cannot expect that the constraint $\int_{\Gamma} \psi(V) dx \leq 1$ is saturated. • $\psi(0) = +\infty$ (for instance, $\psi(s) = s^{-p}, p > 0$): • If $\int_{\Omega} \psi(+\infty) dx < 1 \Rightarrow V_{opt} = +\infty$ (i.e. $\Omega = \emptyset$). • If $\int_{\Omega} \psi(+\infty) dx \ge 1 \Rightarrow \int_{\Omega} \psi(V_{opt}) dx = 1.$ • $\psi(0) < +\infty$ (for instance, $\psi(s) = e^{-\alpha s}, \alpha > 0$):

One cannot expect that the constraint $\int_{\Omega} \psi(V) dx \le 1$ is saturated. • $\psi(0) = +\infty$ (for instance, $\psi(s) = s^{-p}, p > 0$): • If $\int_{\Omega} \psi(+\infty) dx < 1 \Rightarrow V_{opt} = +\infty$ (i.e. $\Omega = \emptyset$). • If $\int_{\Omega} \psi(+\infty) dx \ge 1 \Rightarrow \int_{\Omega} \psi(V_{opt}) dx = 1.$ • $\psi(\mathbf{0}) < +\infty$ (for instance, $\psi(s) = e^{-\alpha s}, \alpha > \mathbf{0}$):

One cannot expect that the constraint $\int_{\Gamma} \psi(V) dx \leq 1$ is saturated. • $\psi(\mathbf{0}) = +\infty$ (for instance, $\psi(s) = s^{-p}, p > 0$): • If $\int_{\Omega} \psi(+\infty) dx < 1 \Rightarrow V_{opt} = +\infty$ (i.e. $\Omega = \emptyset$). • If $\int_{D} \psi(+\infty) dx \ge 1 \Rightarrow \int_{D} \psi(V_{opt}) dx = 1.$ • $\psi(\mathbf{0}) < +\infty$ (for instance, $\psi(s) = e^{-\alpha s}, \alpha > \mathbf{0}$):

One cannot expect that the constraint $\int_{D} \psi(V) dx \leq 1$ is saturated. • $\psi(\mathbf{0}) = +\infty$ (for instance, $\psi(s) = s^{-p}, p > 0$): • If $\int_{\Sigma} \psi(+\infty) dx < 1 \Rightarrow V_{opt} = +\infty$ (i.e. $\Omega = \emptyset$). • If $\int_{\Omega} \psi(+\infty) dx \ge 1 \Rightarrow \int_{\Omega} \psi(V_{opt}) dx = 1.$ • $\psi(\mathbf{0}) < +\infty$ (for instance, $\psi(s) = e^{-\alpha s}, \alpha > \mathbf{0}$): ► $\exists V_{opt}$ s.t. $\int_{\Omega} \psi(V_{opt}) dx = 1.$ • if $\int_{-} \psi(V_{opt}) dx < 1 \Rightarrow V_{opt} = \begin{cases} 0 & \text{on } \Omega \\ +\infty & \text{on } \Omega^{\circ} \end{cases}$.

One cannot expect that the constraint $\int_{D} \psi(V) dx \leq 1$ is saturated. • $\psi(\mathbf{0}) = +\infty$ (for instance, $\psi(s) = s^{-p}, p > 0$): • If $\int_{\Sigma} \psi(+\infty) dx < 1 \Rightarrow V_{opt} = +\infty$ (i.e. $\Omega = \emptyset$). • If $\int_{\Omega} \psi(+\infty) dx \ge 1 \Rightarrow \int_{\Omega} \psi(V_{opt}) dx = 1.$ • $\psi(\mathbf{0}) < +\infty$ (for instance, $\psi(s) = e^{-\alpha s}, \alpha > \mathbf{0}$): • $\exists V_{opt} \text{ s.t. } \int_{D} \psi(V_{opt}) dx = 1.$ • if $\int_{-} \psi(V_{opt}) dx < 1 \Rightarrow V_{opt} = \begin{cases} 0 & \text{on } \Omega \\ +\infty & \text{on } \Omega^c \end{cases}$.

One cannot expect that the constraint $\int_{D} \psi(V) dx \leq 1$ is saturated. • $\psi(\mathbf{0}) = +\infty$ (for instance, $\psi(s) = s^{-p}, p > 0$): • If $\int_{\Omega} \psi(+\infty) dx < 1 \Rightarrow V_{opt} = +\infty$ (i.e. $\Omega = \emptyset$). • If $\int_{\Omega} \psi(+\infty) dx \ge 1 \Rightarrow \int_{\Omega} \psi(V_{opt}) dx = 1.$ • $\psi(\mathbf{0}) < +\infty$ (for instance, $\psi(s) = e^{-\alpha s}, \alpha > \mathbf{0}$): • $\exists V_{opt} \text{ s.t. } \int_{D} \psi(V_{opt}) dx = 1.$ • if $\int_{-} \psi(V_{opt}) dx < 1 \Rightarrow V_{opt} = \begin{cases} 0 & \text{on } \Omega \\ +\infty & \text{on } \Omega^c \end{cases}$.

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

Numerical experiments

Unbounded domain

A (10) A (10) A (10)

Numerical Analysis

We propose the numerical analysis of the following problem. We consider $D = [0, 1]^2$:

$$\min_{V\in\mathcal{V}}\int_D g(x)u(x)\ dx$$

subject to

$$\begin{cases} -\Delta u + V \ u = f & \text{in } D, \\ u = 0 & \text{on } \partial D, \end{cases}$$

where,

$$\mathcal{V} = \left\{ V: D o [0, +\infty] : V ext{ Lebesgue measurable, } \int_D \psi(V(x)) \, dx \leq 1
ight\}$$

and $\psi(s) = \frac{1}{m}e^{-\alpha s}$

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $V^{\kappa}(x) = -u_{V^{\kappa}} \cdot p_{V^{\kappa}}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \, \tilde{V}^k,$$

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $\tilde{V}^k(x) = -u_{V^k} \cdot p_{V^k}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \, \tilde{V}^k,$$

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $V^k(x) = -u_{V^k} \cdot p_{V^k}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \tilde{V}^k,$$

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $\tilde{V}^k(x) = -u_{V^k} \cdot p_{V^k}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \tilde{V}^k,$$

- Initialization of the potential $V^0 \in \mathcal{V}$;
- for $k \ge 0$, iteration until convergence as follows:
 - compute the state u_{V^k} and then the co-state p_{V^k} ,
 - compute the descent direction $\tilde{V}^k(x) = -u_{V^k} \cdot p_{V^k}$
 - update the potential V^k in D:

$$V^{k+1} = V^k + \ell_k \, \tilde{V}^k,$$

- Initialization V⁰
- routines for cost function and associated gradient through the adjoint state
- lower and upper bounds for $V \in [0, V_{max}]$ (V_{max} large enough)
- stopping criteria

In the following, we take $g \equiv 1$ and consider different choices for *f* and parameters α and *m*.

- Initialization V^0
- routines for cost function and associated gradient through the adjoint state
- lower and upper bounds for $V \in [0, V_{max}]$ (V_{max} large enough)
- stopping criteria

In the following, we take $g \equiv 1$ and consider different choices for *f* and parameters α and *m*.

- Initialization V⁰
- routines for cost function and associated gradient through the adjoint state
- lower and upper bounds for $V \in [0, V_{max}]$ (V_{max} large enough)
- stopping criteria

In the following, we take $g \equiv 1$ and consider different choices for *f* and parameters α and *m*.

- Initialization V⁰
- routines for cost function and associated gradient through the adjoint state
- lower and upper bounds for $V \in [0, V_{max}]$ (V_{max} large enough)
- stopping criteria

In the following, we take $g \equiv 1$ and consider different choices for *f* and parameters α and *m*.

- Initialization V⁰
- routines for cost function and associated gradient through the adjoint state
- lower and upper bounds for $V \in [0, V_{max}]$ (V_{max} large enough)
- stopping criteria

In the following, we take $g \equiv 1$ and consider different choices for f and parameters α and m.

- Initialization V⁰
- routines for cost function and associated gradient through the adjoint state
- lower and upper bounds for $V \in [0, V_{max}]$ (V_{max} large enough)
- stopping criteria

In the following, we take $g \equiv 1$ and consider different choices for f and parameters α and m.

- Initialization V⁰
- routines for cost function and associated gradient through the adjoint state
- lower and upper bounds for $V \in [0, V_{max}]$ (V_{max} large enough)
- stopping criteria

In the following, we take $g \equiv 1$ and consider different choices for *f* and parameters α and *m*.

< 日 > < 同 > < 回 > < 回 > < □ > <

Figure: To the left: the domain *D* and its triangulation; number of nodes: 40401; number of triangles: 80000. To the right: the right-hand side function f(x, y) = -(1 + 10x).

F. Maestre (Universidad de Sevilla)

Optimal Potentials

VIII PDEs. Optimal Design 24 / 36

Figure: The optimal potential V_{opt} for volume constraint $m = 0.2 = m_{opt}$. Case $\alpha = 10^{-2}$ (left) and $\alpha = 10^{-4}$ (right).

VIII PDEs. Optimal Design 25 / 36

Figure: Cost evolution for the example from previous Figure, case $\alpha = 10^{-4}$.

Figure: The right-hand side function f is given by f(x, y) = -1, if $y - 1.4x \ge 0.3$, and f(x, y) = 1, if y - 1.4x < 0.3

F. Maestre (Universidad de Sevilla)

Optimal Potentials

VIII PDEs. Optimal Design 27 / 36

A b

Figure: Optimal potential V_{opt} for m = 0.2 (left) and m = 0.45 (right). The occupied volume on the right is 0.33276.

Figure: The right-hand side function *f* (left) and the optimal potential V_{opt} (right). The volume m = 0.45 is entirely occupied.

VIII PDEs. Optimal Design 29 / 36

Figure: The right-hand side function *f* (left) and the optimal potential V_{opt} (right). The occupied volume is 0.378404 of the total available m = 0.5.

30/36

Homogenization, Spectral problems and other topics in PDE's

Introduction

- Statement of the problem
- Capacitary measures

Existence results

- The admissible class of potentials and its relaxation
- Optimality conditions
- Saturation of the Constraint

Numerical experiments

Unbounded domain

A (10) × A (10) × A (10) ×

Unbounded domain

We consider $D = \mathbb{R}^d$. We are interested in the optimization problem:

$$\min_{\mu \in \mathcal{M}_{cap}} \int_{\mathbb{R}^d} j(x, u(x), \nabla u(x)) \ dx$$

subject to

and

$$-\Delta u + \mu \ u = f \quad \text{in} \quad \mathbb{R}^d,$$

 $\Psi(\mu) \leq 1,$

Work in progress with: G. Buttazzo and J. Casado-Díaz.

F. Maestre (Universidad de Sevilla)

Optimal Potentials

VIII PDEs. Optimal Design 32 / 36

• Which is good space X for the solutions of $-\Delta u + \mu u = f$,??? $\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$

We consider:

$$W(x) = rac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = rac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.
and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C \left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}} \right)$$

We take

$$X = H \cap L^2_\mu$$

F. Maestre (Universidad de Sevilla)

Optimal Potentials

• Which is good space X for the solutions of $-\Delta u + \mu u = f$,??? $\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$

We consider:

$$W(x) = rac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = rac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.
and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C \left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}} \right)$$

We take

$$X = H \cap L^2_\mu$$

F. Maestre (Universidad de Sevilla)

Optimal Potentials

• Which is good space X for the solutions of $-\Delta u + \mu u = f$,??? $\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$

We consider:

$$W(x) = \frac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = \frac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.

and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C \left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}}\right)$$

 $X = H \cap L^2_{\mu}$

We take

F. Maestre (Universidad de Sevilla)

33/36

(日)

• Which is good space X for the solutions of $-\Delta u + \mu u = f$,??? $\int_{\mathbb{R}^d} \nabla u \cdot \nabla v \, dx + \int_{\mathbb{R}^d} u \, v \, d\mu = \int_{\mathbb{R}^d} fv, \quad v \in X,$

We consider:

$$W(x) = \frac{1}{1+|x|}$$
 if $d \neq 2$, $W(x) = \frac{1}{(1+|x|)\log(2+|x|)}$ if $d = 2$.

and we put:

$$L = \{ u : \mathbb{R}^d \to \mathbb{R} : Wu \in L^2(\mathbb{R}^d) \}$$
$$H = \{ u \in L \cap H^1_{loc}(\mathbb{R}^d) : \nabla u \in L^2(\mathbb{R}^d)^d \}$$

and one gets

$$\|u\|_{L} \leq C \left(\|\nabla u\|_{L^{2}(\mathbb{R}^{d})} + \|u\|_{L^{2}_{\mu}}\right)$$

We take

$$X = H \cap L^2_\mu$$

F. Maestre (Universidad de Sevilla)

Optimal Potentials

33/36

• How is defined $\Psi(\mu)$???.

We decompose $\mu = \mu^{a} + \mu^{s} + \infty_{K}$, and consider:

$$\Psi(\mu) = \int_{\mathbb{R}^d} \psi(\mu^a) \, dx + C_{\psi} \mu^s(\mathbb{R}^d) + \psi(\infty) cap(K),$$

where $\psi: \mathbb{R}^+ \to [0, +\infty]$ is a convex and lower semicontinuous function and

$$C_{\psi} = \lim_{t \to +\infty} rac{\psi(t)}{t}$$

3

イロト 不得 トイヨト イヨト

Theorem

We consider $j : \mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ measurable in $x \in \mathbb{R}$, lower semincontinuous in (s,ξ) and some growth conditions in (s,ξ) . We consider $\psi : \mathbb{R} \to [0, +\infty]$ convex and lower semicontinuous and a measure $\nu \in \mathcal{M}_{cap}$ such that there exists $\hat{\mu} \in \mathcal{M}_{cap}$ satisfying

$$\hat{\mu} \ge \nu, \quad \Psi(\hat{\mu}) \le \mathbf{1}.$$

Moreover, if d = 1, 2 we assume that:

either $\psi(0) > 0$ or ν is not the null measure

Then, for every $f \in H'$ the optimization problem has at least one solution.

< 日 > < 同 > < 回 > < 回 > < □ > <

THANKS FOR YOUR ATTENTION!!!

F. Maestre (Universidad de Sevilla)

Optimal Potentials

A B F A B F VIII PDEs. Optimal Design 36/36

A b