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Biological aspect of nutrient uptake

o Photosynthesis :
— carbon (C)
from carbon dioxide (CO5).

@ Root absorption :

- magnesium (Mg?"),
- calcium (Ca®"),

- potassium (K™),
nitrogen (NO;"),
phosphorus (P),

- water (H,0).
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Biological aspect of nutrient uptake

o Photosynthesis :
— carbon (C)
from carbon dioxide (CO5).

@ Root absorption :
- magnesium (Mg?"),
- calcium (Ca®"),
- potassium (K™),
- nitrogen (NO;™),
- phosphorus (P),
- water (H,0).
@ Absorption of nutrients by roots

o small absorption zone

o need of more nutrients !
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Description of the domain of

o [; : the root surface,

@ [ : the boundary between a piece of

observed soil and the rest of soil,

where M :=T1UlM et NI = 0.

The figure, above, shows the domain of

study Q, an open bounded set of R? of
boundary T.
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Description of the domain of

o [ : the root surface,

@ [ : the boundary between a piece of
observed soil and the rest of soil,
where I :=T1Ul et [Nl = (. For the
study of uptake problem, we consider :

e Q:=]0, T[xQ,
e ¥;:=]0, T[xI7y,

e ¥, :=]0, T[xI2, complementary of
2.

Absorption mechanisms

@ root interception of nutrients, mass
flow .. < 5%

The figure, above, shows the domain of
study Q, an open bounded set of R? of
boundary T. o diffusion : 93% of phosphorus, 80%

of potassium.
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The Nutrient uptake model

The Nye-Tinker-Barber (NTB) system (1980’s) :

Let the function ¢ = c¢(t, x) represents the concentration of nutrient,

ac

o +aVe—DAc
(DVec — qe). /
(DVec — qc). 7
c(0, x)

@

h(c)
0

Co(X)

Q,
2,
2,
Q.

(1)

Description of the NTB System :

5/14



rient uptake model

The Nye-Tinker-Barber (NTB) system (1980’s) :

Let the function ¢ = c¢(t, x) represents the concentration of nutrient,
a% +qgVec—DAc = 0 in  Q,
(DVec — qc). = h(c) on X, (1)
(DVec — qc). 7 = 0 on XY,
c(0, x) = ofx) in Q.

Description of the NTB System :
o o= b+ 6 with b : the buffer power and 6 : the liquid saturation.
o gV represents the spatial convection with q : the Darcy flux, with div g = 0.

@ DA the spatial diffusion with D the diffusion coefficient.
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The Nye-Tinker-Barber (NTB) system (1980’s) :

Let the function ¢ = c¢(t, x) represents the concentration of nutrient,
a% +qgVec—DAc = 0 in  Q,
(DVec — qc). = h(c) on X, (1)
(DVec — qc). 7 = 0 on XY,
c(0, x) = ofx) in Q.

Description of the NTB System :
o o= b+ 6 with b : the buffer power and 6 : the liquid saturation.
o gV represents the spatial convection with q : the Darcy flux, with div g = 0.

@ DA the spatial diffusion with D the diffusion coefficient.

@ h(c) = K’ch the Michaelis-Menten function : nutrient absorption function at the
Ic

root surface. The linear version of h is h(c) = 3¢ when K >> c.

@ | : the maximum uptake constant and K : the Michaelis-Menten constant.
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The existence of a unique solution for the NTB system

We introduce the Hilbert space :

v={ver (@), y, =0}, with [} =¥2eq + Vel

Proposition

Suppose that the vector field q satisfies |q| € L>°((0, T) x ). Then there is a unique
solution ¢ € V (here c € L?(0, T; V)) such that :

a(tic,y) = L(t;p) VeV, (2)
where

a(t; c, ) = %/Qq (Ve — cVy) dx + D/QVC V) dx P eV, 3)

wa=ﬂhmmnww vev. (@)
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Associated cultures (cropping)
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Associated cultures (cropping)

@ Absorption of nutrients in polluted
soils.
— Banana needs important amount of :
- Water, Nitrogen.
- Use of chemicals : Nitrogen
fertilizers !
— Solution : Associated plants
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Associated cultures (cropping)

@ Absorption of nutrients in polluted
soils.
— Banana needs important amount of :
- Water, Nitrogen.
- Use of chemicals : Nitrogen
fertilizers !
— Solution : Associated plants

@ Optimal control
— Control of the nutrient
concentration, addition of nutrient
(associated plant).
— Control of systems of incomplete

data (pollution).
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Nutrient uptake model with pollution & Optimal control

The nutrient uptake model with pollution is given by the following system :

ac

sy +qVc—DAc = g in Q,
(DVec —qgc).H = ’75 on X, (5)
(DVec — qc). = —v on X,
c(0, x) = 0 in

with g € G C L%(Q) : unknown pollution function, and v € L?(X3) : control function.

v

Minimize : J(v,g) = |le(v,g) — E||i2():1) + N||V||i2():2) VgeG. (6)

v

o A natural idea : inf sup J(v,g)|.But sup J(v,g)=+oo!
veLZ(Xz) 2€12(Q) g€12(Q)
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Nutrient uptake model with pollution & Optimal control

The nutrient uptake model with pollution is given by the following system :

ac

sy +qVc—DAc = g in Q,
(DVec —qgc).H = ’75 on X, (5)
(DVec — qc). = v on X,
c(0, x) = 0 in

with g € G C L%(Q) : unknown pollution function, and v € L?(X3) : control function.

v

Minimize : J(v,g) = |le(v,g) — E||i2():1) + N||V||i2():2) VgeG. (6)

v

o A natural idea : inf sup J(v,g)|.But sup J(v,g)=+oo!
veLZ(Xz) 2€12(Q) g€12(Q)

@ Indeed, we have :

c(v,g) =c(v,0)+¢c(0,g), and ¢(0,g)=A"g

— No-regret control : J(v,g) < J(0,g), Vg € G C L?(Q).
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Towards the low-reg

Definition

We say that the function u € L?(X,) is a no-regret control, if it is a solution of the following new
MinMax problem :

inf (sup [J(v,g) — J(ng)]> . (7)

vel2($p) \g€6

J(v,g) = J(0, ) = J(v,0) — J(0,0) +2(c(v,0), (0, ¢))

Remark : (e(v,0),¢c(0,8)) = (&(v),g), £ linear sol. to the adjoint problem
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Towards the low-regret . . . control

Definition

We say that the function u € L?(X,) is a no-regret control, if it is a solution of the following new
MinMax problem :

inf (sup [J(v,g) — J(ng)]> . (7)

vel2(xp) \g€G
J(v,g) = J(0,g) = J(v,0) — J(0,0) + 2(<c(v,0),c(0, 8) )

Remark : (e(v,0),¢c(0,8)) = (&(v),g), £ linear sol. to the adjoint problem

The Low-regret control wu is a low-regret control iff :

inf <sup (J(v,g) — J(0,g) 'Y||g|%;)>
geG

ve Lz(Zz)

vEL?(,) ge

= inf <J(V,0) J(o, 0)+SUP [2(&(v )g>7gzc]) (conjugate)

— inf (J(V,O) J(0,0)+ Hg H /): inf T

veL2(%,) vEL2(Z
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Existence of a unique low-regret control

Proposition

The optimal problem n;{ )J”(v) admits a unique solution u~ called low-regret
velL?(Xs

control for the NTB system with pollution.
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Existence of a unique low-regret control

Proposition

The optimal problem n;{ )J”(v) admits a unique solution u~ called low-regret
velL?(Xs

control for the NTB system with pollution.

1
Proof - We recall that 77(v) = J(v,0) — J(0, O)+f||§(v)||f2(o) and that
v

— =12 2 — 212
J(,0) = [|e(v,0) = &2y, + NilvIZagg,, and J(0.0) = €2, .
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Existence of a unique low-regret control

Proposition

The optimal problem n;{ )J”(v) admits a unique solution u~ called low-regret
velL?(Xs

control for the NTB system with pollution.

1

Proof - We recall that 77(v) = J(v,0) — J(0, O)+f||§(v)||f2(o) and that
v

J(v.0) = [le(v.0) — &lRsg, + NlvlZag, and J(0.0) = 2%,

The cost function J7(v) satisfies 77 (v) > —J(0,0), for any v € L?(X,). Therefore,

it exists ky = |r21{ )J”(v). Consider a minimizing sequence {va(v)} = {va}, then :
velLs(Xy

(v 0) = &l225,y + Nllvallags,) + = ||s(vn)uLz(Q <y + 14 P

2(5p)"
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Existence of a unique low-regret control

Proposition

The optimal problem n;{ )J”(v) admits a unique solution u~ called low-regret
velL?(Xs

control for the NTB system with pollution.

1

Proof - We recall that 77(v) = J(v,0) — J(0, O)+f||§(v)||f2(o) and that
v

J(v.0) = [le(v.0) — &lRsg, + NlvlZag, and J(0.0) = 2%,

The cost function J7(v) satisfies 77 (v) > —J(0,0), for any v € L?(X,). Therefore,

it exists ky = |r21{ )J”(v). Consider a minimizing sequence {va(v)} = {va}, then :
velLs(Xy

(v 0) = &l225,y + Nllvallags,) + = ||s(vn)uLz(Q <y + 14 P

2(5p)"

e}
— Notations : A := O&a +qgV—-DAinQ, and B:=DV —qgonX.
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Characterization of the low-regret control to the NTB system

Proposition

The low-regret control u., satisfies to :

1
(e(uy,0) = & c(w,0)) 25,y + N(uy, W) 2(5,) + (;E(Uw)u &(wW))2(q) = 0, Yw € ().

T (uy + Aw) — j’y(uw)) —0.

Proof - We use the Euler-Lagrange formula : lim (
A—0 A
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Characterization of the low-regret control to the NTB system

Proposition
The low-regret control u., satisfies to :

1
(e(uy,0) = & c(w,0)) 25,y + N(uy, W) 2(5,) + (;E(Uw)u &(wW))2(q) = 0, Yw € ().

Y A — Y
Proof - We use the Euler-Lagrange formula : Jimo (j (uy +2w) = T (UA’)) =0.
—

A

Theorem

The low-regret control is characterized by the unique quadruplet {c, p~,&~,p~} s.t. :

Ac, =0, A*é, =0, Apy = 2&,, A*py, =0 in Q,
(Bey).n=h(cy), (B*Ey).n=ry, (Bpy)n=h(py), —(B"py)n=ky onii,
(Bey)n=—uy, (B*¢y)n=0, (Bp~).n=0, (B*py).n=0 on ¥,
c(0) =0, £,(T)=0, p~(0) =0, py(T) =0 inQ,

ry = c(uy,0) + £&(uy), my=cy+&+py, and ky =—my + L£p,,
with the adjoint equation :
py + Nuy =0 in L3(Q).
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Some remarks

@ Work in progress

— No-regret control
— Numerical simulation

— Comparison : Numerical curves to
the measurements?
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Some remarks

@ Work in progress
— No-regret control
— Numerical simulation

— Comparison : Numerical curves to

the measurements?

o Nutrient transfert : Plant-fungus
association

— Mycorhizes?

— Problem of scale?

— Other applications in biology..
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Thank you for your attention! ]
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