Control of incomplete data problems. Application to an ecology problem

 $\label{eq:Abdennebi} \begin{array}{l} \text{Abdennebi } \operatorname{OMRANE} \\ \text{(joint work with } L. \ \operatorname{LOUISON)} \end{array}$

UMR 42 Ecologie des Forêts de Guyane (EcoFoG)
University of French Guiana,
Campus of TrouBiran, Cayena
aomrane@gmail.com

Benasque (Spain), August 27th, 2019 8th Conference - PDE's, Optimal Design and Numerics

Contents

- Around the plant absorption of nutrients
- 2 Analysis and optimal control
 - Description of the domain of study
 - The Nutrient uptake model (Nye-Tinker-Barber)
 - Associated cultures (cropping)
 - The low-regret . . . control
- Conclusion and Remarks
- References

Biological aspect of nutrient uptake


```
Photosynthesis :– carbon (C)
```

Root absorption :

```
- magnesium (Mg^{2+}),
- calcium (Ca^{2+}),
- potassium (K^+),
- nitrogen (NO_3^-),
- phosphorus (P),
- water (H_2O).
```

- Absorption of nutrients by roots
 - small absorption zone
 - need of more nutrients

Biological aspect of nutrient uptake

Photosynthesis:

- carbon (C) from carbon dioxide (CO_2).

• Root absorption :

```
    magnesium (Mg<sup>2+</sup>),
    calcium (Ca<sup>2+</sup>),
```

potassium (K⁺),

- potassium (K '),

nitrogen (NO₃⁻),
phosphorus (P),

- water (H_2O) .

Absorption of nutrients by roots

• small absorption zone

need of more nutrients

Biological aspect of nutrient uptake

Photosynthesis:

```
carbon (C)from carbon dioxide (CO<sub>2</sub>).
```

• Root absorption :

```
magnesium (Mg<sup>2+</sup>),
calcium (Ca<sup>2+</sup>),
potassium (K<sup>+</sup>),
nitrogen (NO<sub>3</sub><sup>-</sup>),
phosphorus (P),
water (H<sub>2</sub>O).
```

• Absorption of nutrients by roots

- small absorption zone
- need of more nutrients!

Description of the domain of study

The figure, above, shows the domain of study Ω , an open bounded set of \mathbb{R}^2 of boundary Γ .

- $\bullet \ \Gamma_1: the \ root \ surface,$
- Γ₂: the boundary between a piece of observed soil and the rest of soil,

where $\Gamma:=\Gamma_1\cup\Gamma_2$ et $\Gamma_1\cap\Gamma_2=\emptyset.$

Description of the domain of study

The figure, above, shows the domain of study Ω , an open bounded set of \mathbb{R}^2 of boundary Γ .

- \bullet Γ_1 : the root surface,
- Γ₂: the boundary between a piece of observed soil and the rest of soil,

where $\Gamma:=\Gamma_1\cup\Gamma_2$ et $\Gamma_1\cap\Gamma_2=\emptyset$. For the study of uptake problem, we consider :

- $Q :=]0, T[\times \Omega,$
- $\bullet \ \Sigma_1 :=]0, \, \mathcal{T}[\times \Gamma_1,$
- $\bullet \ \Sigma_2 :=]0, \, \mathcal{T}[\times \Gamma_2, \, \text{complementary of} \\ \Sigma_1.$

Description of the domain of study

The figure, above, shows the domain of study Ω , an open bounded set of \mathbb{R}^2 of boundary Γ .

- \bullet Γ_1 : the root surface,
- Γ₂: the boundary between a piece of observed soil and the rest of soil,

where $\Gamma := \Gamma_1 \cup \Gamma_2$ et $\Gamma_1 \cap \Gamma_2 = \emptyset$. For the study of uptake problem, we consider :

- $Q :=]0, T[\times \Omega,$
- $\bullet \ \Sigma_1 :=]0, \, \mathcal{T}[\times \Gamma_1,$
- $\Sigma_2 :=]0, T[\times \Gamma_2, \text{ complementary of } \Sigma_1.$

Absorption mechanisms

- root interception of nutrients, mass flow .. < 5%
- diffusion: 93% of phosphorus, 80% of potassium.

The Nutrient uptake model

The Nye-Tinker-Barber (NTB) system (1980's) :

Let the function c = c(t, x) represents the concentration of nutrient,

$$\begin{cases}
\alpha \frac{\partial c}{\partial t} + q \nabla c - D \Delta c &= 0 & \text{in } Q, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= h(c) & \text{on } \Sigma_1, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= 0 & \text{on } \Sigma_2, \\
c(0, x) &= c_0(x) & \text{in } \Omega.
\end{cases}$$
(1)

Description of the NTB System:

- $\alpha = b + \theta$ with b: the buffer power and θ : the liquid saturation.
- $q\nabla$ represents the spatial convection with q: the Darcy flux, with $\underline{\text{div } q=0}$.
- \bullet $D\Delta$ the spatial diffusion with D the diffusion coefficient
- $h(c) = \frac{lc}{K+c}$ the Michaelis-Menten function : nutrient absorption function at the root surface. The linear version of h is $h(c) = \frac{lc}{K}$ when K >> c.
- 1: the maximum uptake constant and K: the Michaelis-Menten constant.

The Nutrient uptake model

The Nye-Tinker-Barber (NTB) system (1980's) :

Let the function c = c(t, x) represents the concentration of nutrient,

$$\begin{cases}
\alpha \frac{\partial c}{\partial t} + q \nabla c - D \Delta c &= 0 & \text{in } Q, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= h(c) & \text{on } \Sigma_1, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= 0 & \text{on } \Sigma_2, \\
c(0, x) &= c_0(x) & \text{in } \Omega.
\end{cases}$$
(1)

Description of the NTB System:

- $\alpha = b + \theta$ with b : the buffer power and θ : the liquid saturation.
- $q\nabla$ represents the spatial convection with q: the Darcy flux, with $\underline{\text{div } q=0}$.
- $D\Delta$ the spatial diffusion with D the diffusion coefficient.
- $h(c) = \frac{Ic}{K+c}$ the Michaelis-Menten function : nutrient absorption function at the root surface. The linear version of h is $h(c) = \frac{Ic}{K}$ when K >> c.
- I : the maximum uptake constant and K : the Michaelis-Menten constant

The Nutrient uptake model

The Nye-Tinker-Barber (NTB) system (1980's) :

Let the function c = c(t, x) represents the concentration of nutrient,

$$\begin{cases}
\alpha \frac{\partial c}{\partial t} + q \nabla c - D \Delta c &= 0 & \text{in } Q, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= h(c) & \text{on } \Sigma_1, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= 0 & \text{on } \Sigma_2, \\
c(0, x) &= c_0(x) & \text{in } \Omega.
\end{cases}$$
(1)

Description of the NTB System:

- $\alpha = b + \theta$ with b: the buffer power and θ : the liquid saturation.
- $q\nabla$ represents the spatial convection with q: the Darcy flux, with $\underline{\text{div } q=0}$.
- $D\Delta$ the spatial diffusion with D the diffusion coefficient.
- $h(c) = \frac{l c}{K + c}$ the Michaelis-Menten function : nutrient absorption function at the root surface. The linear version of h is $h(c) = \frac{l c}{K}$ when K >> c.
- I: the maximum uptake constant and K: the Michaelis-Menten constant.

The existence of a unique solution for the NTB system

We introduce the Hilbert space :

$$V = \left\{ \psi \in H^1(\Omega), \ \psi_{|_{\Gamma_2}} = 0 \right\}, \qquad \text{with} \quad \|\psi\|_V^2 = \|\psi\|_{L^2(\Omega)}^2 + \|\nabla \psi\|_{L^2(\Omega)}^2.$$

Proposition

Suppose that the vector field q satisfies $|q| \in L^{\infty}((0,T) \times \Omega)$. Then there is a unique solution $c \in V$ (here $c \in L^2(0,T;V)$) such that :

$$a(t; c, \psi) = L(t; \psi) \quad \forall \ \psi \in V,$$
 (2)

where

$$a(t;c,\psi) = \frac{1}{2} \int_{\Omega} q. (\psi \nabla c - c \nabla \psi) \, dx + D \int_{\Omega} \nabla c \, \nabla \psi \, dx \qquad \psi \in V, \tag{3}$$

and

$$L(t;\psi) = \int_{\Gamma_1} h(c)\psi(x).\mathbf{n}\,d\gamma \qquad \psi \in V. \tag{4}$$

Associated cultures (cropping)

Absorption of nutrients in polluted soils.

- → Banana needs important amount of :
 - Water, Nitrogen.
 - Use of chemicals : Nitroger fertilizers!
- → Solution : Associated plants

Optimal control

- → Control of the nutrient concentration, addition of nutrient (associated plant).
- Control of systems of incomplete data (pollution).

Associated cultures (cropping)

Absorption of nutrients in polluted soils.

- $\,\,\,\,\,\,\,\,\,\,\,\,\,$ Banana needs important amount of :
 - Water, Nitrogen.
 - Use of chemicals : Nitrogen fertilizers!
- $\rightarrow \ \, \text{Solution}: \text{Associated plants}$

Optimal control

- → Control of the nutrient concentration, addition of nutrient (associated plant).
- Control of systems of incomplete data (pollution).

Associated cultures (cropping)

Absorption of nutrients in polluted soils.

- $\,\,\,\,\,\,\,\,\,\,\,\,\,$ Banana needs important amount of :
 - Water, Nitrogen.
 - Use of chemicals : Nitrogen fertilizers!
- $\rightarrow \ \, \mathsf{Solution} : \underline{\mathsf{Associated plants}}$

Optimal control

- → Control of the nutrient concentration, addition of nutrient (associated plant).
- → Control of systems of incomplete data (pollution).

Nutrient uptake model with pollution & Optimal control

The nutrient uptake model with pollution is given by the following system :

$$\begin{cases}
\alpha \frac{\partial c}{\partial t} + q \nabla c - D \Delta c &= g & \text{in} \quad Q, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= \frac{l c}{K} & \text{on} \quad \Sigma_{1}, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= -\mathbf{v} & \text{on} \quad \Sigma_{2}, \\
c(0, \mathbf{x}) &= 0 & \text{in} \quad \Omega,
\end{cases} \tag{5}$$

with $g \in G \subset L^2(Q)$: unknown pollution function, and $\mathbf{v} \in L^2(\Sigma_2)$: control function.

$$\text{Minimize}: \quad J(\mathbf{v},\mathbf{g}) = \|c(\mathbf{v},\mathbf{g}) - \widetilde{c}\|_{L^2(\Sigma_1)}^2 + N\|\mathbf{v}\|_{L^2(\Sigma_2)}^2 \quad \forall \ \mathbf{g} \in \ G. \tag{6}$$

- A natural idea : $\inf_{\mathbf{v} \in L^2(\Sigma_2)} \left(\sup_{g \in L^2(Q)} J(\mathbf{v}, g) \right)$. But $\sup_{g \in L^2(Q)} J(\mathbf{v}, g) = +\infty$!
- Indeed, we have :

$$c(v, g) = c(v, 0) + c(0, g),$$
 and $c(0, g) = A^*g$

 \rightarrow No-regret control : $J(v,g) \leq J(0,g), \forall g \in G \subset L^2(Q)$

Nutrient uptake model with pollution & Optimal control

The nutrient uptake model with pollution is given by the following system :

$$\begin{cases}
\alpha \frac{\partial c}{\partial t} + q \nabla c - D \Delta c &= g & \text{in} \quad Q, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= \frac{l c}{K} & \text{on} \quad \Sigma_{1}, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= -\mathbf{v} & \text{on} \quad \Sigma_{2}, \\
c(0, \mathbf{x}) &= 0 & \text{in} \quad \Omega,
\end{cases} \tag{5}$$

with $g \in G \subset L^2(Q)$: unknown pollution function, and $\mathbf{v} \in L^2(\Sigma_2)$: control function.

$$\text{Minimize}: \quad J(\mathbf{v},\mathbf{g}) = \|c(\mathbf{v},\mathbf{g}) - \widetilde{c}\|_{L^2(\Sigma_1)}^2 + N\|\mathbf{v}\|_{L^2(\Sigma_2)}^2 \quad \forall \ \mathbf{g} \in \ G. \tag{6}$$

- A natural idea : $\inf_{\mathbf{v} \in L^2(\Sigma_2)} \left(\sup_{\mathbf{g} \in L^2(Q)} J(\mathbf{v}, \mathbf{g}) \right)$. But $\sup_{\mathbf{g} \in L^2(Q)} J(\mathbf{v}, \mathbf{g}) = +\infty$!
- Indeed, we have :

$$c(\mathbf{v}, \mathbf{g}) = c(\mathbf{v}, 0) + c(0, \mathbf{g}), \quad \text{and} \quad c(0, \mathbf{g}) = \mathcal{A}^* \mathbf{g}$$

 \rightarrow No-regret control : $J(v,g) \leq J(0,g), \forall g \in G \subset L^2(Q)$.

Nutrient uptake model with pollution & Optimal control

The nutrient uptake model with pollution is given by the following system :

$$\begin{cases}
\alpha \frac{\partial c}{\partial t} + q \nabla c - D \Delta c &= g & \text{in} \quad Q, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= \frac{l c}{K} & \text{on} \quad \Sigma_{1}, \\
(D \nabla c - q c) \cdot \overrightarrow{n} &= -\mathbf{v} & \text{on} \quad \Sigma_{2}, \\
c(0, \mathbf{x}) &= 0 & \text{in} \quad \Omega,
\end{cases} \tag{5}$$

with $g \in G \subset L^2(Q)$: unknown pollution function, and $\mathbf{v} \in L^2(\Sigma_2)$: control function.

$$\text{Minimize}: \quad J(\mathbf{v},\mathbf{g}) = \|c(\mathbf{v},\mathbf{g}) - \widetilde{c}\|_{L^2(\Sigma_1)}^2 + N\|\mathbf{v}\|_{L^2(\Sigma_2)}^2 \quad \forall \ \mathbf{g} \in \ G. \tag{6}$$

- A natural idea : $\inf_{\mathbf{v} \in L^2(\Sigma_2)} \left(\sup_{g \in L^2(Q)} J(\mathbf{v}, g) \right)$. But $\sup_{g \in L^2(Q)} J(\mathbf{v}, g) = +\infty$!
- Indeed, we have :

$$c(\mathbf{v}, \mathbf{g}) = c(\mathbf{v}, 0) + c(0, \mathbf{g}), \quad \text{and} \quad c(0, \mathbf{g}) = A^* \mathbf{g}$$

→ No-regret control : $J(\mathbf{v}, \mathbf{g}) \leq J(0, \mathbf{g}), \forall \mathbf{g} \in G \subset L^2(Q)$.

Towards the low-regret ... control

Definition

We say that the function $u \in L^2(\Sigma_2)$ is a no-regret control, if it is a solution of the following new MinMax problem :

$$\inf_{v \in L^2(\Sigma_2)} \left(\sup_{g \in G} \left[J(v, g) - J(0, g) \right] \right). \tag{7}$$

$$J(\mathbf{v}, \mathbf{g}) - J(0, \mathbf{g}) = J(\mathbf{v}, 0) - J(0, 0) + 2\langle c(\mathbf{v}, 0), c(0, \mathbf{g}) \rangle$$

Remark : $\langle c(v,0),c(0,g)\rangle = \langle \xi(v),g\rangle$, ξ linear sol. to the adjoint problem

Towards the low-regret ... control

Definition

We say that the function $u \in L^2(\Sigma_2)$ is a no-regret control, if it is a solution of the following new MinMax problem :

$$\inf_{\mathbf{v}\in L^2(\Sigma_2)} \left(\sup_{g\in G} \left[J(\mathbf{v},g) - J(0,g) \right] \right). \tag{7}$$

$$J(\mathbf{v}, \mathbf{g}) - J(0, \mathbf{g}) = J(\mathbf{v}, 0) - J(0, 0) + 2\langle c(\mathbf{v}, 0), c(0, \mathbf{g}) \rangle$$

Remark : $\langle c(v,0),c(0,g)\rangle = \langle \xi(v),g\rangle$, ξ linear sol. to the adjoint problem

The Low-regret control u_{γ} is a low-regret control iff:

$$\inf_{\boldsymbol{v} \in L^2(\Sigma_2)} \left(\sup_{\boldsymbol{g} \in G} \left(J(\boldsymbol{v}, \boldsymbol{g}) - J(\boldsymbol{0}, \boldsymbol{g}) - \gamma \|\boldsymbol{g}\|_G^2 \right) \right)$$

Definition

We say that the function $u \in L^2(\Sigma_2)$ is a **no-regret control**, if it is a solution of the following new MinMax problem :

$$\inf_{\mathbf{v} \in L^2(\Sigma_2)} \left(\sup_{\mathbf{g} \in G} \left[J(\mathbf{v}, \mathbf{g}) - J(0, \mathbf{g}) \right] \right). \tag{7}$$

$$J(\mathbf{v}, \mathbf{g}) - J(0, \mathbf{g}) = J(\mathbf{v}, 0) - J(0, 0) + 2\langle c(\mathbf{v}, 0), c(0, \mathbf{g}) \rangle$$

Remark : $\langle c(v,0), c(0,g) \rangle = \langle \xi(v), g \rangle$, ξ linear sol. to the adjoint problem

The Low-regret control u_{γ} is a low-regret control iff:

$$\begin{split} \inf_{v \in L^2(\Sigma_2)} \left(\sup_{g \in G} \left(J(v,g) - J(0,g) - \gamma \|g\|_G^2 \right) \right) \\ &= \inf_{v \in L^2(\Sigma_2)} \left(J(v,0) - J(0,0) + \sup_{g \in G} \left[2 \langle \xi(v), g \rangle - \gamma \|g\|_G^2 \right] \right) \quad \text{(conjugate)} \\ &= \inf_{v \in L^2(\Sigma_2)} \left(J(v,0) - J(0,0) + \frac{1}{\gamma} \left\| \xi(v) \right\|_{G'} \right) = \inf_{v \in L^2(\Sigma_2)} \mathcal{J}^{\gamma}(v). \end{split}$$

Proposition

The optimal problem $\inf_{v \in L^2(\Sigma_2)} \mathcal{J}^{\gamma}(v)$ admits a unique solution u_{γ} called low-regret control for the NTB system with pollution.

Proposition

The optimal problem $\inf_{v \in L^2(\Sigma_2)} \mathcal{J}^{\gamma}(v)$ admits a unique solution u_{γ} called low-regret control for the NTB system with pollution.

$$\begin{aligned} \textbf{Proof -} & \text{ We recall that } \mathcal{J}^{\gamma}(v) = J(v,0) - J(0,0) + \frac{1}{\gamma} \|\xi(v)\|_{L^2(Q)}^2 \text{ and that} \\ & J(v,0) = \|c(v,0) - \tilde{c}\|_{L^2(\Sigma_1)}^2 + N \|v\|_{L^2(\Sigma_2)}^2 \quad \text{and} \quad J(0,0) = \|\tilde{c}\|_{L^2(\Sigma_1)}^2. \end{aligned}$$

Proposition

The optimal problem $\inf_{v \in L^2(\Sigma_2)} \mathcal{J}^{\gamma}(v)$ admits a unique solution u_{γ} called low-regret control for the NTB system with pollution.

$$\begin{aligned} \textbf{Proof -} \quad & \text{We recall that } \mathcal{J}^{\gamma}(v) = J(v,0) - J(0,0) + \frac{1}{\gamma} \|\xi(v)\|_{L^2(Q)}^2 \text{ and that} \\ & J(v,0) = \|c(v,0) - \tilde{c}\|_{L^2(\Sigma_1)}^2 + N \|v\|_{L^2(\Sigma_2)}^2 \quad \text{and} \quad & J(0,0) = \|\tilde{c}\|_{L^2(\Sigma_1)}^2. \end{aligned}$$

The cost function $\mathcal{J}^{\gamma}(\nu)$ satisfies $\mathcal{J}^{\gamma}(\nu) \geq -J(0,0)$, for any $\nu \in L^{2}(\Sigma_{2})$. Therefore, it exists $k_{\gamma} = \inf_{\nu \in L^{2}(\Sigma_{2})} \mathcal{J}^{\gamma}(\nu)$. Consider a minimizing sequence $\{\nu_{n}(\gamma)\} = \{\nu_{n}\}$, then :

$$\|c(v_n,0)-\tilde{c}\|_{L^2(\Sigma_1)}^2+N\|v_n\|_{L^2(\Sigma_2)}^2+\frac{1}{\gamma}\|\xi(v_n)\|_{L^2(Q)}^2\leq k_\gamma+1+\|\tilde{c}\|_{L^2(\Sigma_1)}^2.$$

Proposition

The optimal problem $\inf_{v \in L^2(\Sigma_2)} \mathcal{J}^{\gamma}(v)$ admits a unique solution u_{γ} called **low-regret** control for the NTB system with pollution.

$$\begin{aligned} \textbf{Proof -} \quad & \text{We recall that } \mathcal{J}^{\gamma}(v) = J(v,0) - J(0,0) + \frac{1}{\gamma} \|\xi(v)\|_{L^2(Q)}^2 \text{ and that} \\ & J(v,0) = \|c(v,0) - \tilde{c}\|_{L^2(\Sigma_1)}^2 + N \|v\|_{L^2(\Sigma_2)}^2 \quad \text{and} \quad & J(0,0) = \|\tilde{c}\|_{L^2(\Sigma_1)}^2. \end{aligned}$$

The cost function $\mathcal{J}^{\gamma}(\nu)$ satisfies $\mathcal{J}^{\gamma}(\nu) \geq -J(0,0)$, for any $\nu \in L^{2}(\Sigma_{2})$. Therefore, it exists $k_{\gamma} = \inf_{\nu \in L^{2}(\Sigma_{2})} \mathcal{J}^{\gamma}(\nu)$. Consider a minimizing sequence $\{\nu_{n}(\gamma)\} = \{\nu_{n}\}$, then :

$$\|c(v_n,0)-\tilde{c}\|_{L^2(\Sigma_1)}^2+N\|v_n\|_{L^2(\Sigma_2)}^2+\frac{1}{\gamma}\|\xi(v_n)\|_{L^2(Q)}^2\leq k_{\gamma}+1+\|\tilde{c}\|_{L^2(\Sigma_1)}^2.$$

ightarrow Notations : $\mathcal{A}:=lpharac{\partial}{\partial t}+q
abla-D\Delta$ in Q, and $\mathcal{B}:=D
abla-q$ on Σ .

Characterization of the low-regret control to the NTB system

Proposition

The low-regret control u_{γ} satisfies to :

$$\langle c(u_\gamma,0)-\tilde{c},c(w,0)\rangle_{L^2(\Sigma_1)}+N\langle u_\gamma,w\rangle_{L^2(\Sigma_2)}+\langle \frac{1}{\gamma}\xi(u_\gamma),\xi(w)\rangle_{L^2(Q)}=0, \qquad \forall w\in L^2(\Sigma_2).$$

$$\text{\bf Proof - We use the Euler-Lagrange formula}: \lim_{\lambda \to 0} \left(\frac{\mathcal{J}^{\gamma}(u_{\gamma} + \lambda w) - \mathcal{J}^{\gamma}(u_{\gamma})}{\lambda} \right) = 0.$$

Characterization of the low-regret control to the NTB system

Proposition

The low-regret control u_{γ} satisfies to :

$$\langle c(u_\gamma,0)-\tilde{c},c(w,0)\rangle_{L^2(\Sigma_1)}+N\langle u_\gamma,w\rangle_{L^2(\Sigma_2)}+\langle \frac{1}{\gamma}\xi(u_\gamma),\xi(w)\rangle_{L^2(Q)}=0, \qquad \forall w\in L^2(\Sigma_2).$$

Proof - We use the Euler-Lagrange formula : $\lim_{\lambda \to 0} \left(\frac{\mathcal{J}^{\tau}(u_{\gamma} + \lambda w) - \mathcal{J}^{\tau}(u_{\gamma})}{\lambda} \right) = 0.$

Theorem

The low-regret control is characterized by the unique quadruplet $\{c_{\gamma}, \rho_{\gamma}, \xi_{\gamma}, p_{\gamma}\}$ s.t. :

$$\begin{cases} \mathcal{A}c_{\gamma}=0, & \mathcal{A}^{*}\xi_{\gamma}=0, & \mathcal{A}\rho_{\gamma}=\frac{1}{\gamma}\xi_{\gamma}, & \mathcal{A}^{*}p_{\gamma}=0 & \text{in } Q,\\ (\mathcal{B}c_{\gamma}).\mathbf{n}=h(c_{\gamma}), & (\mathcal{B}^{*}\xi_{\gamma}).\mathbf{n}=r_{\gamma}, & (\mathcal{B}\rho_{\gamma}).\mathbf{n}=h(\rho_{\gamma}), & -(\mathcal{B}^{*}p_{\gamma}).\mathbf{n}=k_{\gamma} & \text{on } \Sigma_{1},\\ (\mathcal{B}c_{\gamma}).\mathbf{n}=-u_{\gamma}, & (\mathcal{B}^{*}\xi_{\gamma}).\mathbf{n}=0, & (\mathcal{B}\rho_{\gamma}).\mathbf{n}=0, & (\mathcal{B}^{*}p_{\gamma}).\mathbf{n}=0 & \text{on } \Sigma_{2},\\ c_{\gamma}(0)=0, & \xi_{\gamma}(T)=0, & \rho_{\gamma}(0)=0, & p_{\gamma}(T)=0 & \text{in } \Omega, \end{cases}$$

$$r_{\gamma}=c(u_{\gamma},0)+rac{1}{K}\xi(u_{\gamma}), \quad m_{\gamma}=c_{\gamma}+ ilde{c}+
ho_{\gamma}, \quad ext{and} \quad k_{\gamma}=-m_{\gamma}+rac{1}{K}p_{\gamma},$$

with the adjoint equation :

$$p_{\gamma} + Nu_{\gamma} = 0$$
 in $L^2(Q)$.

Some remarks

Work in progress

- $\rightarrow \ \, \text{No-regret control}$
- → Numerical simulation
- → Comparison : Numerical curves to the measurements?
- Nutrient transfert : Plant-fungus association
 - → Mycorhizes?
 - → Problem of scale?
 - → Other applications in biology.

Some remarks

Work in progress

- \rightarrow No-regret control
- → Numerical simulation
- → Comparison : Numerical curves to the measurements?
- Nutrient transfert : Plant-fungus association
 - → Mycorhizes?
 - \rightarrow Problem of scale?
 - \rightarrow Other applications in biology..

References

Lions J.-L. (1992), Contrôle à moindres regrets des systèmes distribués, C. R. Acad. Sciences de Paris, Ser I Maths, 315 pp 1253-1257.

Louison L., Omrane A., Ozier-Lafontaine H., Picart D. (2015), *Modeling plant nutrient uptake: Mathematical analysis and optimal control*, Evol. Equations and Control Theory, 4 (2) pp 193-203.

Louison L., Omrane A., Modeling plant nutrient uptake under pollution : Mathematical analysis and optimal control (to appear).

Ptashnyk M. (2010), Derivation of a macroscopic model for nutrient uptake by hairy-roots, Nonlinear Analysis: Real World Applications, 11, pp 4586–4596.

Roose T. (2001), A mathematical model of plant nutrient uptake, J. Math. Biol 42, pp 347–360.

Tinker P. B., Nye P. H. (2000), Solute movement in the rhizosphere, Oxford Press University.

Thank you for your attention!