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The Turnpike Phenomenon

• Consider a dynamic optimal control problem with a time interval [0, T ].

• If all the time-derivatives are set to zero and initial conditions and terminal
conditions are canceled, this yields a static optimal control problem.
• Turnpike results give relations between the static optimal control and the dynamic

optimal control.
• They state that for sufficiently large T , some distance between the static optimal

point and the dynamic optimal point becomes small.
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Example

For T ≥ 1 we consider the problem

(OC)T



min
u∈L2(0,T ),u(t)≥0,y(t)≤0

T∫
0

1
2|u(t)|2 + |u(t)| + |y(t)| dt subject to

y(0) = −1, y ′(t) = y(t) + exp(t) u(t)

y(T ) = 0.

Here the turnpike is zero, that is y (σ) = 0 and u(σ) = 0.
The feasible set is nonempty: Define û(t) = e− e

t ≥ 0 for t ∈ (0, 1) and u(t) = 0 for
t ≥ 1. Then for t ∈ (0, 1) we have

ŷ(t) = e
t
[
−1 +

∫ t

0
u(τ ) dτ

]
= t e

t+1 − e
2t ≤ 0

and for t ≥ 1 we have ŷ(t) = 0.
The feasible controls are characterized by the moment equation

∫ T
0 u(τ ) dτ = 1.
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Example

• In fact û is the optimal control!

So the optimal point is equal to the turnpike for t ≥ 1!
• In the problem we have terminal conditions.

What happens, if we cancel y(T ) = 0?
Then instead of the moment equation, due to y(T ) ≤ 0 we have the
moment inequality ∫ T

0
u(τ ) dτ ≤ 1.

• In fact, if exp T ≥ 1 + e, û is again the optimal control!
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• In fact, if exp T ≥ 1 + e, û is again the optimal control!

Martin Gugat · FAU · The Turnpike Phenomenon for Problems of Optimal Boundary Control Benasque 2019 6



Example
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Example

For sufficiently large T , due to the L1-norm of y that appears in the objective
function, the solution has a finite–time turnpike structure where the system is
steered to zero in the finite time t0 = 1 that is independent of T and remains there
for all t ∈ (t0, T ).

~

�
�
�
�
�
�
�
�
��

You can think of the turnpike as a point that does not move.
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L1-Optimal Dirichlet control of the wave equation

Norm minimal exact control, finite horizon
T ≥ 1

Let y0 ∈ L1(0, 1), y1 ∈W−1,1(0, 1) and T ≥ 1
be given. Define (EC) :

min
∫ T

0 |u0(t)| + |u1(t)| dt subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)

y(t , 0) = u0(t), y(t , 1) = u1(t), t ∈ (0,T )

ytt(t , x) = yxx(t , x), (t , x) ∈ (0,T )× (0, 1)

y(T , x) = 0, yt(T , x) = 0, x ∈ (0, 1).

In general the optimal controls are
not unique!

Gugat, French-German-Spanish
Conf. on Opt., Avignon 2004

Let T ≥ 1. There exist solutions of
(EC) that are 2–periodic i.e. for
k ∈ {1, 2, ..., }, t ∈ (0, 2),
t + 2k ≤ T , l ∈ {1, 2} we have

ul(t + 2k) = ul(t).
The set of all solutions is
parametrized by pairs of

measurable convex combinations
(t ∈ (0, 1))

λ
(l)
j (t) ≥ 0,

∑
j :t+2 j≤T λ

(l)
j (t) = 1.
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L1-Optimal Dirichlet control of the wave equation

Example: Let y1 = 0.

Let
k = max{j ∈ {1, 2, 3, ...} : j ≤ T}

and
∆ = T − k ≥ 0.

(0,T ) = (0,∆)∪(∆, 1)∪(1, 1 + ∆)∪(2+∆, 2)∪(2, 2 + ∆)...∪((k−1)+∆, k)∪(k , k + ∆)

There are k + 1 red intervals and k black intervals!

Then for t ∈ (0, ∆), a periodic optimal control is given by

u0(t + j) = u1(t + j) = (−1)j y0(t)

2 (k + 1)
.

For t ∈ (∆, 1), a periodic optimal control is given by

u0(t + j) = u1(t + j) = (−1)j y0(t)

2 k
.
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L1-Optimal Dirichlet control of the wave equation

Example: y1 = 0.
The control action can be shifted between the different time periods!

Let again
k = max{j ∈ {1, 2, 3, ... : j ≤ T}, ∆ = T − k ≥ 0.

Define

d(t) =

{
(k + 1) if t ∈ (0, ∆),
k if t ∈ (∆, 1).

The set of all optimal controls has the following structure:
For pairs of measurable convex combinations l ∈ {1, 2}, t ∈ (0, 1)

λ
(l)
j (t) ≥ 0,

∑
j :t+2 j≤T

λ
(l)
j (t) = 1

we obtain the optimal controls

u0(t + 2j) = λ
(1)
2j (t)

y0(t)

2 d(t)
, u0(t + 2j + 1) = −λ(2)2j+1(t)

y0(t)

2 d(t)
,

u1(t + 2j) = λ
(2)
2j (t)

y0(t)

2 d(t)
, u1(t + 2j + 1) = −λ(1)2j+1(t)

y0(t)

2 d(t)
.
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L1-Optimal Dirichlet control of the wave equation

• The convex combinations (t ∈ (0, 1), l ∈ {1, 2})

λ
(l)
j (t) ≥ 0,

∑
j :t+2 j≤T

λ
(l)
j (t) = 1

determine the support of the corresponding optimal control (together with the
support of y0, y1).
It can be the whole interval [0, T ].

• If for all t ∈ (0, 1), the λ(l)j (t) are equal for all j , we obtain periodic controls.

In fact, this yields λ(l)j (t) = 1
d(t).

These are the optimal controls with minimal L2-norm.
• If one of the λ(l)j (t) is equal to 1, the others must be equal to 0.

In this case, the support of the corresponding optimal control can be constrained
to a subinterval of [0, T ] of minimal length 1.
• Thus we have optimal controls with support (0, 1).

These controls steer the system to rest at the time t = 1.
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L1-Optimal Dirichlet control of the wave equation

Adding a tracking-term in the goal function

Finite horizon T ≥ 1, γ > 0. Define (P):

min
u0,u1∈L1(0,T )

∫ T
0 |u0(t)| + |u1(t)| dt

+ γ
∫ T

1

∫ 1
0 |y(t , x)| dx dt

subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)

y(t , 0) = u0(t), y(t , 1) = u1(t), t ∈ (0,T )

ytt(t , x) = yxx(t , x), (t , x) ∈ (0,T )× (0, 1),

y(T , x) = 0, yt(T , x) = 0, x ∈ (0, 1).

Solution of (P)

The nonsmooth problem (P) has a
unique solution.
The unique solution of (P) steers the
state to rest at time t = 1.
Then the control is switched off.
Here we have an extreme
(finite time) turnpike structure!
For t > 1 we have

u0(t) = u1(t) = 0,

y(t , x) = 0, x ∈ (0, 1)
and yt(t , x) = 0.

This is possible due to
exact controllability!
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Optimal Dirichlet L1-control of the wave equation

Proof.

Problem (EC) has a unique solution where the
support of the controls is in (0, 1).

This optimal control (u∗0, u∗1) steers the state to
rest at time t = 1.
Let ν(EC) denote the optimal value of (EC).
Let ν(P) denote the optimal value of (P).
Since the objective function of (EC) is ≤ the
objective function of (P), we have

ν(EC) ≤ ν(P).

The objective value of (P) for (u∗0, u∗1) is

ν(EC) + γ

∫ T

1

∫ 1

0
|y(t , x)| dx dt = ν(EC) ≥ ν(P).

Hence ν(EC) = ν(P). (u∗0, u∗1) solves (P).

We can replace (P) with
the problem without ter-
minal constraints.
If T is sufficiently large,
the solution should stay
the same - however, the
proof is not written.
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L2-optimal Neumann control of the wave equation

Norm minimal exact control, finite horizon
T ≥ 2

Let y0 ∈ H1(0, 1) with y0(0) = 0, y1 ∈ L2(0, 1)
and T ≥ 2 be given. Define (EC) :

min ‖u‖2
L2(0,T )

subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)

y(t , 0) = 0, yx(t , 1) = u(t) , t ∈ (0,T )

ytt(t , x) = yxx(t , x), (t , x) ∈ (0,T )× (0, 1)

y(T , x) = 0, yt(T , x) = 0, x ∈ (0, 1).

Gugat, Arab. J. Math. 2015 Open Access

Let T ∈ N be even. The unique
solution of (EC) is 4–periodic and

u(t) =


y ′0(1−t)−y1(1−t)

T , t ∈ (0, 1),

y ′0(t−1)+y1(t−1)
T , t ∈ (1, 2).

For k ∈ {1, 2, ..., (T − 2)/2},
t ∈ (0, 2) we have

u(t + 2k) = (−1)ku(t).

For t0 = 0 (Moving horizon) this
yields the well-known feedback
law

yx(t0, 1) = − 1
T−1 yt(t0, 1).
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Optimal Neumann control of the wave equation

Adding a tracking-term in the goal function

Finite horizon T ≥ 2, γ > 0. Define (P):

min
u∈L2(0,T )

T∫
0

(yx(t , 0))2 + γ u2(t) dt subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)

y(t , 0) = 0, yx(t , 1) = u(t) , t ∈ (0,T )

ytt(t , x) = yxx(t , x), (t , x) ∈ (0,T )× (0, 1),

y(T , x) = 0, yt(T , x) = 0, x ∈ (0, 1).

Solution of (P), Syst. & Control Lett.
2016 (with E. TRÉLAT, E. ZUAZUA)

The unique solution of (P) is the
sum of 2 parts that grow/decay
exponentially. Choose zγ with
z2
γ + (2 + 4

γ) zγ + 1 = 0.

For t ∈ (0, 2) let

H(t) =


y ′0(1−t)−y1(1−t)

2 , t ∈ (0, 1),

y ′0(t−1)+y1(t−1)
2 , t ∈ [1, 2).

For t ∈ (0, 2), k ∈ N0 and
t + 2k ≤ T :
u(t + 2k) =

(
zk
γ − 1

zk
γ

)
1+zγ
1−zγ

H(t).This is an exponential turnpike structure!
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Finite horizon T ≥ 2, γ > 0. Define (P):

min
u∈L2(0,T )

T∫
0

(yx(t , 0))2 + γ u2(t) dt subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)

y(t , 0) = 0, yx(t , 1) = u(t) , t ∈ (0,T )

ytt(t , x) = yxx(t , x), (t , x) ∈ (0,T )× (0, 1),

y(T , x) = 0, yt(T , x) = 0, x ∈ (0, 1).

Solution of (P), Syst. & Control Lett.
2016 (with E. TRÉLAT, E. ZUAZUA)

The unique solution of (P) is the
sum of 2 parts that grow/decay
exponentially. Choose zγ with
z2
γ + (2 + 4

γ) zγ + 1 = 0.

For t ∈ (0, 2) let

H(t) =


y ′0(1−t)−y1(1−t)

2 , t ∈ (0, 1),

y ′0(t−1)+y1(t−1)
2 , t ∈ [1, 2).

For t ∈ (0, 2), k ∈ N0 and
t + 2k ≤ T :
u(t + 2k) =

(
zk
γ − 1

zk
γ

)
1+zγ
1−zγ

H(t).This is an exponential turnpike structure!
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Turnpike for linear systems: Problem definition
For d− < 0 < d+, define the 2× 2 matrix

D(x) =

(
d+ 0
0 d−

)
.

Let a 2× 2 matrix M(x) and
η0 ∈ (−∞, 0] be given.

Consider the system equation

(pde) : rt + D rx = η0 M r ,

where for t ∈ (0,T ) and x ∈ (0, L) the

state is given by r (t , x) =

(
r+(t , x)
r−(t , x)

)
.

Initial conditions (t = 0)

For x ∈ [0, L]: r+(0, x) = 0, r−(0, x) = 0.

Dirichlet boundary control (x ∈ {0, L})

r+(t , 0) = u+(t), r−(t , L) = u−(t) with
boundary controls u+, u− ∈ L2(0,T ).

Objective Function

J(u, r ) =
∫ T

0 f0(u+(t), r−(t , 0)) dt

+

∫ T

0
fL(u−(t), r+(t , L)) dt

with strictly convex quadratic functions
f0, fL.

Dynamic optimal control problem

Optimal boundary control problem{
minu∈(L2(0,T ))2 J(u, r )
subject to (pde), initial c. and b.c.
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Stability Assumptions
For real numbers µ+, µ− define

E(x) =

(
exp(−µ+ x) 0

0 exp(µ− x)

)
.

Assume that there exist µ+ > 0, µ− > 0 and νa < 0
(µ+ < 0, µ− < 0 and ν0 > 0 respectively) such that for all x ∈ [0, L]

sup
v : v>E(x) v=1

v> [E ′(x)D(x) + E(x)D′(x)− 2|η0|E(x)M(x)] v ≤ νa < 0 and respectively

inf
v : v>E(x) v=1

v> [E ′(x)D(x)− E(x)D′(x) + 2 |η0|E(x) M(x)] v ≥ ν0 > 0.

Can be checked with a 1-d optimization problem!

1. If M(x) is a diagonal matrix or if |η0| is sufficiently small or if L > 0 is sufficiently
small, both conditions hold.

2. If M> = M, both conditions equivalent with ν0 = −νa.

Martin Gugat · FAU · The Turnpike Phenomenon for Problems of Optimal Boundary Control Benasque 2019 20



Stability Assumptions
For real numbers µ+, µ− define

E(x) =

(
exp(−µ+ x) 0

0 exp(µ− x)

)
.

Assume that there exist µ+ > 0, µ− > 0 and νa < 0
(µ+ < 0, µ− < 0 and ν0 > 0 respectively) such that for all x ∈ [0, L]

sup
v : v>E(x) v=1

v> [E ′(x)D(x) + E(x)D′(x)− 2|η0|E(x)M(x)] v ≤ νa < 0 and respectively

inf
v : v>E(x) v=1

v> [E ′(x)D(x)− E(x)D′(x) + 2 |η0|E(x) M(x)] v ≥ ν0 > 0.

Can be checked with a 1-d optimization problem!

1. If M(x) is a diagonal matrix or if |η0| is sufficiently small or if L > 0 is sufficiently
small, both conditions hold.

2. If M> = M, both conditions equivalent with ν0 = −νa.

Martin Gugat · FAU · The Turnpike Phenomenon for Problems of Optimal Boundary Control Benasque 2019 20



Stability Assumptions
For real numbers µ+, µ− define

E(x) =

(
exp(−µ+ x) 0

0 exp(µ− x)

)
.

Assume that there exist µ+ > 0, µ− > 0 and νa < 0
(µ+ < 0, µ− < 0 and ν0 > 0 respectively) such that for all x ∈ [0, L]

sup
v : v>E(x) v=1

v> [E ′(x)D(x) + E(x)D′(x)− 2|η0|E(x)M(x)] v ≤ νa < 0 and respectively

inf
v : v>E(x) v=1

v> [E ′(x)D(x)− E(x)D′(x) + 2 |η0|E(x) M(x)] v ≥ ν0 > 0.

Can be checked with a 1-d optimization problem!

1. If M(x) is a diagonal matrix or if |η0| is sufficiently small or if L > 0 is sufficiently
small, both conditions hold.

2. If M> = M, both conditions equivalent with ν0 = −νa.

Martin Gugat · FAU · The Turnpike Phenomenon for Problems of Optimal Boundary Control Benasque 2019 20



Stability Assumptions
For real numbers µ+, µ− define

E(x) =

(
exp(−µ+ x) 0

0 exp(µ− x)

)
.

Assume that there exist µ+ > 0, µ− > 0 and νa < 0
(µ+ < 0, µ− < 0 and ν0 > 0 respectively) such that for all x ∈ [0, L]

sup
v : v>E(x) v=1

v> [E ′(x)D(x) + E(x)D′(x)− 2|η0|E(x)M(x)] v ≤ νa < 0 and respectively

inf
v : v>E(x) v=1

v> [E ′(x)D(x)− E(x)D′(x) + 2 |η0|E(x) M(x)] v ≥ ν0 > 0.

Can be checked with a 1-d optimization problem!

1. If M(x) is a diagonal matrix or if |η0| is sufficiently small or if L > 0 is sufficiently
small, both conditions hold.

2. If M> = M, both conditions equivalent with ν0 = −νa.

Martin Gugat · FAU · The Turnpike Phenomenon for Problems of Optimal Boundary Control Benasque 2019 20



Stability Assumptions
For real numbers µ+, µ− define

E(x) =

(
exp(−µ+ x) 0

0 exp(µ− x)

)
.

Assume that there exist µ+ > 0, µ− > 0 and νa < 0
(µ+ < 0, µ− < 0 and ν0 > 0 respectively) such that for all x ∈ [0, L]

sup
v : v>E(x) v=1

v> [E ′(x)D(x) + E(x)D′(x)− 2|η0|E(x)M(x)] v ≤ νa < 0 and respectively

inf
v : v>E(x) v=1

v> [E ′(x)D(x)− E(x)D′(x) + 2 |η0|E(x) M(x)] v ≥ ν0 > 0.

Can be checked with a 1-d optimization problem!

1. If M(x) is a diagonal matrix or if |η0| is sufficiently small or if L > 0 is sufficiently
small, both conditions hold.

2. If M> = M, both conditions equivalent with ν0 = −νa.

Martin Gugat · FAU · The Turnpike Phenomenon for Problems of Optimal Boundary Control Benasque 2019 20



Stability Assumptions
For real numbers µ+, µ− define

E(x) =

(
exp(−µ+ x) 0

0 exp(µ− x)

)
.

Assume that there exist µ+ > 0, µ− > 0 and νa < 0
(µ+ < 0, µ− < 0 and ν0 > 0 respectively) such that for all x ∈ [0, L]

sup
v : v>E(x) v=1

v> [E ′(x)D(x) + E(x)D′(x)− 2|η0|E(x)M(x)] v ≤ νa < 0 and respectively

inf
v : v>E(x) v=1

v> [E ′(x)D(x)− E(x)D′(x) + 2 |η0|E(x) M(x)] v ≥ ν0 > 0.

Can be checked with a 1-d optimization problem!

1. If M(x) is a diagonal matrix or if |η0| is sufficiently small or if L > 0 is sufficiently
small, both conditions hold.

2. If M> = M, both conditions equivalent with ν0 = −νa.

Martin Gugat · FAU · The Turnpike Phenomenon for Problems of Optimal Boundary Control Benasque 2019 20



Problem definition: The static problem

The static state is denoted by

R(σ)(x) =

(
R(σ)

+ (x)

R(σ)
− (x)

)
, x ∈ [0, L].

Consider the static system equation

(bvp)


D R(σ)

x (x) = η0 M(x) R(σ)(x),

R(σ)
+ (0) = u(σ)

+ ,

R(σ)
− (L) = u(σ)

− .

Objective Function, λ ∈ (0, 1)

J0(u(σ), R(σ)(x)) = f0(u(σ)
+ , R(σ)

− (0))

+fL(u(σ)
− , R(σ)

+ (L))

Static optimal control problem{
minu(σ)∈R2 J0(u(σ), R(σ)(x))
subject to (bvp).
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The dyn. and stat. problems have a turnpike prop.
SICON 2019 (with F. HANTE)

For a finite time horizon T > 0, let
the optimal dynamic control be

u(δ,T ) ∈ L2(0, T )× L2(0,T )

and the optimal static control. be

u(σ) ∈ R2.

There exists a constant C̄ > 0 that
is independent of T , such that
for all T > 0

1
T

T∫
0

∥∥u(δ,T )(τ )− u(σ)
∥∥2

R2 dτ ≤ C̄
T
.

Remark

• For increasing time horizon T →∞,
the average quadratic mean distance
between the optimal dynamic and the
optimal static control converges to zero
with the rate O( 1

T ).

For the state we have

T∫
0

∫ L

0

∥∥r (δ,T )(τ, x)− r (σ)
∥∥2

R2 dx dτ ≤ D̄.
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Conclusion
• The extreme turnpike result for L1–control cost shows that for suff. large T > 1

the optimal control steers the system to rest in the minimal time t = 1.

• The L1–cost leads to non-smooth optimal control problems.
In the applications, the turnpike results allow to obtain
L1-optimal controls by finite time stabilizing feedback controlers (LIONEL ROSIER)
that can be applied independent of the initial state.

• In the L2–case, the finite-time turnpike does not occur.
However, there is exponential turnpike.
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Open Problems

• Can we also omit the end condition in the L1-case if T is sufficiently large?

• Write down (and prove) a result on finite-time turnpike in a general framework
(semigroup?) under assumptions that are easy to verify!
• Is this also possible for semi-linear or quasi-linear systems?
• Thank you for your attention!
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