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We consider the dynamical optimal control problem

min
u

JT (u) =

∫ T

0
L(y ,u)dt ,

where: {
d
dt y = f (y ,u) in (0,T )

y(0) = y0.

We assume the above problem is well posed as well as its steady
analogue

min
u

Js(u) = L(y ,u), with the constraint f (y ,u) = 0.

The turnpike property

The control problem enjoys the turnpike property if the time-
evolution optimal pair (uT , yT ) in long time remains exponentially
close to the steady optimal pair (u, y) for most of time, except for
thin initial and final boundary intervals.
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Time-evolution optimal control problem

min
u∈L2((0,T )×ω)

JT (u) =
1
2

∫ T

0

∫
ω

|u|2dxdt +
β

2

∫ T

0

∫
ω0

|y − z|2dxdt ,

where: 
yt −∆y + f (y) = uχω in (0,T )× Ω

y = 0 on (0,T )× ∂Ω

y(0, x) = y0(x) in Ω.

Ω ⊂ Rn is a regular bounded domain, with n = 1, 2, 3. The nonlinearity
f is C3 increasing, with f (0) = 0. Hence, the behaviour is dissipative,
thus avoiding blow up. ω ⊆ Ω is the control domain, while ω0 ⊆ Ω is
the observation domain. The target z is bounded and the parameter
β > 0.

By direct methods in the Calculus of Variations, there exists an optimal
control uT minimizing JT . The corresponding optimal state is denoted
by yT . 4 / 29
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Steady optimal control problem

min
u∈L2(ω)

Js(u) =
1
2

∫
ω

|u|2dx +
β

2

∫
ω0

|y − z|2dx ,

where: {
−∆y + f (y) = uχω in Ω

y = 0 on ∂Ω.

By direct methods in the Calculus of Variations, there exists an optimal
control u minimizing Js. The corresponding optimal state is denoted by
y .
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Uniqueness steady optimal control

If ‖z‖L∞ is small enough, the steady problem admits a unique optimal
control u = −qχω, where (y ,q) solves the Optimality System

−∆y + f (y) = −qχω in Ω

y = 0 on ∂Ω

−∆q + f ′(y)q = β(y − z)χω0 in Ω

q = 0 on ∂Ω.

Porretta, Alessio and Zuazua, Enrique
Remarks on long time versus steady state optimal control
Mathematical Paradigms of Climate Science, (2016), pp. 67− 89
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Local turnpike

Theorem (Porretta-Zuazua, 2016)

There exists δ > 0 such that if the initial datum and the target fulfil
the smallness condition

‖y0‖L∞ ≤ δ and ‖z‖L∞ ≤ δ,
there exists a solution (yT ,qT ) to the Optimality System

yT
t −∆yT + f (yT ) = −qTχω in (0,T )× Ω

yT = 0 on (0,T )× ∂Ω

yT (0, x) = y0(x) in Ω

−qT
t −∆qT + f ′(yT )qT = β(yT − z)χω0 in (0,T )× Ω

qT = 0 on (0,T )× ∂Ω

qT (T , x) = 0 in Ω

satisfying for any t ∈ [0,T ]

‖qT (t)− q‖L∞(ω) + ‖yT (t)− y‖L∞(Ω) ≤ K
[
e−µt + e−µ(T−t)

]
,

where K and µ are T -independent.
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Our goal is to

1. prove that in fact the turnpike property is satisfied by the optima;
2. remove the smallness condition on the initial datum.

We keep the smallness condition on the target. This leads to the
smallness and uniqueness of the steady optima.
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Global turnpike

Theorem (P.-Zuazua, 2019)

Let uT be an optimal control for the time-evolution problem. There
exists ρ > 0 such that for every y0 ∈ L∞(Ω) and z verifying

‖z‖L∞ ≤ ρ,
we have for any t ∈ [0,T ]

‖uT (t)− u‖L∞(ω) + ‖yT (t)− y‖L∞(Ω) ≤ K
[
e−µt + e−µ(T−t)

]
,

the constants K and µ > 0 being independent of the time horizon T .
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Main ingredients of the proof

The main ingredients that our proofs require are as follows:

• prove a L∞ bound of the norm of the optimal control, uniform in
the time horizon T > 0;

• for small data and small targets, prove that any optimal control
verifies the turnpike property;
• for small targets and any data, proof of the smallness of
‖yT (t)‖L∞(Ω) in time t large. This is done by estimating the critical
time needed to approach the turnpike;

• conclude concatenating the two former steps.
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Numerical simulations
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Steady optimal control problem

min
u∈L2(ω)

Js(u) =
1
2

∫
ω

|u|2dx +
β

2

∫
ω0

|y − z|2dx ,

where: {
−∆y + f (y) = uχω in Ω

y = 0 on ∂Ω.

Uniqueness of the optimal control for large targets z?
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Steady optimal control problem

min
v∈R

Js(v) =
1
2
|v |2 +

β

2

∫
ω0

|y − z|2dx ,

where: {
−∆y + y3 = vgχω in Ω

y = 0 on ∂Ω.

Theorem (P.-Zuazua, 2019)

Suppose g ∈ L∞(ω) \ {0} is nonnegative. Assume ω ⊂ ω0. Then,
there exists a target z ∈ L∞(ω0) such that the functional Js admits
(at least) two global minimizers.
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Steady optimal control problem

min
u∈L2(ω)

Js(u) =
1
2

∫
ω

|u|2dx +
β

2

∫
ω0

|y − z|2dx ,

where: {
−∆y + y3 = uχω in Ω

y = 0 on ∂Ω.

Proposition (P.-Zuazua, 2019)

Assume ω ( ω0. There exists a target z ∈ L∞(ω0) such that the
steady functional Js admits (at least) two stationary points. Namely,
there exist two distinguished pairs (y ,q) satisfying the optimality
system 

−∆y + y3 = −qχω in Ω

−∆q + 3y2q = β(y − z) in Ω

y = 0, q = 0 on ∂Ω.
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Secondment in Marposs

Figure: Marposs headquarter
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Consider a rotor rotating about a fixed axis, with respect to an inertial
reference frame.

Often time, rotor’s mass distribution is not homogeneous, thus
producing dangerous vibrations.
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A system of balancing masses is given. We determine the optimal
movement of the balancing masses to minimize the imbalance of
the rotor.
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We introduce a rotor-fixed reference frame (O; (x , y , z)), where z
coincides with the rotation axis.
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The balancing masses are supposed to rotate in two planes π1 and π2
orthogonal to the rotation axis.

In each balancing plane πi , the positions of the corresponding
balancing masses are given by two angles αi and γi and their mass is
mi .

(a) intermediate angle (b) gap angle
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The imbalance generates a force F and a momentum N on the
rotation axis, which can be decomposed into a force F 1 in plane π1
and a force F 2 in π2.

The balancing masses produce a force B1(α1, γ1) in π1 and a force
B2(α2, γ2) in π2 to compensate the imbalance.

The global imbalance of the system made of rotor and balancing
heads is given by the imbalance indicator

G(α1, γ1;α2, γ2) := ‖B1(α1, γ1) + F1‖2 + ‖B2(α2, γ2) + F2‖2
.

We assume the existence of (α1, γ1;α2, γ2) ∈ T4, such that
G (α1, γ1;α2, γ2) = 0.
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Optimal control problem

Find the trajectory Φ(t) = (α1(t), γ1(t);α2(t), γ2(t)) minimizing

J (Φ) :=
1
2

∫ ∞
0

[
‖Φ̇‖2 + βG(Φ)

]
dt ,

over the set of admissible trajectories

A :=

{
Φ ∈

⋂
T>0

H1((0,T );T4)

∣∣∣∣ Φ(0) = Φ0,

Φ̇ ∈ L2(0,+∞) and G(Φ) ∈ L1(0,+∞).
}
.

β > 0 is a weighting parameter.
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Proposition (Gnuffi-P.-Sakamoto, 2019)

For i = 1,2, set

c i :=
1

2mi riω2 (Fi,x ,Fi,y )

Then,
1. there exists Φ ∈ A minimizer of J;
2. Φ = (α1, γ1;α2, γ2) is C∞ smooth and, for i = 1,2, the following

Euler-Lagrange equations are satisfied, for t > 0
−α̈i = β cos (γi )

[
−c i

1 sin (αi ) + c i
2 cos (αi )

]
−γ̈i = −β sin (γi )

[
c i

1 cos(αi ) + c i
2 sin(αi )− cos(γi )

]
αi (0) = α0,i , γi (0) = γ0,i , Φ̇(T ) −→

T→+∞
0.
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Proposition (Gnuffi-P.-Sakamoto, 2019)

Let Φ be an optimal trajectory. Then,
(1) there exists Φ ∈ zero(G) such that

Φ(t) −→
t→+∞

Φ, Φ̇(t) −→
t→+∞

0.

and
|G (Φ(t))| −→

t→+∞
0.

(2) If, in addition

m1r1 >

√
F 2

1,x + F 2
1,y

2ω2 and m2r2 >

√
F 2

2,x + F 2
2,y

2ω2 ,

we have the exponential estimate for any t ≥ 0
‖Φ(t)− Φ‖+ ‖Φ̇(t)‖+ |G (Φ(t))| ≤ C exp (−µt) ,

with C, µ > 0 independent of t.
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1. the proof of (1) is based on Łojasiewicz inequality;
2. the proof of (2) relies on the Stable Manifold Theorem applied to

the Pontryagin Optimality System.

Sakamoto, Noboru and Pighin, Dario and Zuazua, Enrique
The turnpike propety in nonlinear optimal control - A geometric
approach
arXiv:1903.09069
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Gnuffi, Matteo and Pighin, Dario and Sakamoto, Noboru
Rotors imbalance suppression by optimal control
arXiv:1907.11697

The related computational code is available in the DyCon blog at the
following link:
https://deustotech.github.io/DyCon-Blog/tutorial/
wp02/P0005
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