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Motivation

Motivation

We consider the dynamics {
ẋ(t) = f (x(t), u(t)),
x(0) = x0,

(1)

and a corresponding optimal control problem

min
u

JT (u) :=

∫ T

0

f 0(x(t), u(t))dt, x solution of (1),

and the stationary analogue problem

min
u

Js(u) := f 0(x , u), with the constraint f (x , u) = 0.

We assume that both JT and Js admit minimal control (and state).
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Motivation

Motivation

The problem is the following: to analyze the convergence of the trajectories and
controls which are optimal in [0,T ] toward the stationary state and control which
are optimal for the corresponding stationary regime.

I How does this fact depend of the model under consideration?

I Does depend on the type of control problem?

I In aeronautics, the optimal shape design problems are addressed in a steady
context. Is this model reduction justified?
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Navier–Stokes equation

Mathematical background

I Let Ω ⊂ Ri , with i = 2, 3 be a bounded and simply connected domain, with
boundary ∂Ω of class C 2.

I We denote the Sobolev spaces H1(Ω) = H1(Ω;Ri ), H1
0(Ω) = H1

0 (Ω;Ri ),
H−1(Ω) = H−1(Ω;Ri ), for i = 2, 3, and we consider the following spaces

V = {v ∈ H1
0(Ω) : div v = 0},

H = {v ∈ L2(Ω) : div v = 0, γnv = 0},

where γn denotes the normal component of the trace operator.

I The spaces V,H, and V′ satisfies

V ⊂ H = H′ ⊂ V′

with dense and continuous imbedding.
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Navier–Stokes equation

I The trilinear form b : V × V × V→ R is the variational formulation of the
nonlinearity term (y · ∇)v given by

b(y, v,w) =

∫
Ω

((y · ∇v)) ·wdx .

I We know that the trilinear form b satisfies the following properties, which are
fundamental for the study of the Navier–Stokes equations.

Lemma (Temam Book)

1 b(y, v,w) + b(y,w, v) = 0, ∀y ∈ V, ∀v,w ∈ H1(Ω).

2 b(y, v, v) = 0, ∀y ∈ V, ∀v ∈ H1(Ω)).

3 b(y, v,w) = ((∇v)Tw, y), ∀y, v,w ∈ H1(Ω).

4 For all y ∈ V and all v,w ∈ H1(Ω) we have

|b(y, v,w)| ≤ C‖y‖1/2
L2(Ω)‖y‖

1/2
H1(Ω)‖v‖

1/2
L2(Ω)‖v‖

1/2
H1(Ω)‖w‖H1(Ω).(2)
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Navier–Stokes equation

I Ay = −P(∆y), where ∆ is the vector Laplacian, and P is the orthogonal
projector from L2(Ω)) onto H, called the Leray projector.

I Let B be the nonlinear operator B : W (0,T )→ L2(0,T ; V′), where
W (0,T ) := {y ∈ L2(0,T ; V) : yt ∈ L2(0,T ; V′)}, for y ∈W (0,T ),
w ∈ L2(0,T ; V′) defined by

〈B(y),w〉L2(V′),L2(V) =

∫ T

0

〈(B(y))(t),w(t)〉V′,Vdt =

∫ T

0

b(y(t), y(t),w(t))dt.

(3)
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Navier–Stokes equation

Proposition (Wachsmuth ’06)

1 y→ B(y) is differentiable from V into V′, and we have

〈B ′(y)w, v〉L2(V′),L2(V) =

∫ T

0

[b(y,w(t), v(t)) + b(w(t), y, v(t))]dt.

2 Let B ′(y)∗ denote the adjoint of B ′(y) for the duality between V and V′,
then we have

〈B ′(y)∗v,w〉 =

∫ T

0

[b(w(t), y, v(t))− b(y, v(t),w(t))]dt.

3 As for quadratic functions, the second derivative is independent of y:

〈B ′′(y)[w1,w2], v〉L2(V′),L2(V) =

∫ T

0

[b(w1(t),w2(t), v(t)) + b(w2(t),w1(t), v(t))] dt.
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Navier–Stokes equation

2D

Given T > 0, we denote ΩT = Ω× (0,T ) and ΓT = ∂Ω× (0,T ). We consider
the incompressible Navier–Stokes problem in the two–dimensional case

yt − µ∆y + (y · ∇)y +∇p = u , in QT ,
div y = 0 , in QT ,

y = 0 , on ΓT ,
y(x , 0) = y0(x) , x ∈ Ω,

(4)

where the forcing term u is in L2(0,T ; L2(Ω)), the initial data y0 is in V, and the
kinematic viscosity µ > 0 (constant).

Theorem

There exists a unique weak solution of (4) satisfying for all T > 0

(y, p) ∈ (C ([0,T ]; V) ∩ L2(0,T ; H2(Ω)) ∩ V))× L2(0,T ;H1(Ω) ∩ L2
0(Ω)),

and

yt ∈ L2(0,T ; H).
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Navier–Stokes equation

We consider the stationary Navier–Stokes equations −µ∆y + (y · ∇)y +∇p = u , in Ω,
div y = 0 , in Ω,

y = 0 , on ∂Ω,
(5)

where u ∈ L2(Ω).

Theomem

If ‖u‖L2(Ω) ≤ C (Ω)µ2, then the problem (5) has a unique weak solution

y ∈ H2(Ω) ∩ V , p ∈ H1(Ω).
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Turnpike in 2D

Optimal control problem

Find uT ∈ L2(0,T ; H), yT is the solution of (4) associated to uT , minimizing the
functional

JT (u) =
1

2

∫ T

0

‖y(t)− xd‖2
L2(Ω)dt +

k

2

∫ T

0

‖u(t)‖2
L2(Ω)dt + q0 · y(T ),(6)

where xd ∈ L2(Ω) is desired state, q0 ∈ L2(Ω) and k > 0 is a constant.

Theorem

Let y0 ∈ V. There exists at least an element uT ∈ L2(0,T ; H), and
yT ∈ C ([0,T ]; V) ∩ L2(0,T ; H2(Ω)) such that the functional JT (u) attains its
minimum at uT .
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Turnpike in 2D

Theorem (Abergel and Temam 1990)

Let (yT ,uT ) be an optimal pair for problem (8). The following equality holds

uT + qT = 0,

where qT is the adjoint state that of the linearized adjoint problem
−qt − µ∆qT + (∇yT )TqT − (yT · ∇)qT +∇p̃ = yT − xd , in QT ,

div qT = 0 , in QT ,
qT = 0 , on ΓT ,

qT (x ,T ) = q0 , x ∈ Ω.
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Turnpike in 2D

Optimal control problem

Our optimal control problem is find u, y being the solution of (5) associated to u,
minimizing the functional

J(u) =
1

2
‖y − xd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω),

where xd ∈ L2(Ω) is a target and α > 0 is a constant.

Theorem

There exists at least an element u ∈ L2(Ω) such that the functional J(u) attains
its minimum at u.
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Turnpike in 2D

Theorem (J. De los Reyes 2004)

Let (u, y) be an optimal solution such that µ >M(y), where

M(y) = sup
v∈V

|b(v, v, y)|
‖v‖2

V

. Then there exists q ∈ V such that satisfies the following

optimality system in variational sense

−µ∆y + (y · ∇)y +∇p = −q , in Ω,
div y = 0 , in Ω,

y = 0 , on ∂Ω,
−µ∆q− (y · ∇)q + (∇y)Tq +∇π = y − xd , in Ω

div q = 0 , in Ω,
q = 0 , on ∂Ω.
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Turnpike in 2D

Main Theorem

Theorem (S.Z. 2018)

We assume that the tracking term ‖y − xd‖V is sufficiently small, µ >M(y), and
z0 = y0 − y ∈ Xσ. Then, there exists some ε > 0 such that for every y0,q0 with

‖y0 − y‖L2(Ω) + ‖q0 − q‖L2(Ω) ≤ ε,

there exists a solution of the evolutionary optimality system such that

‖yT (t)− y‖L2(Ω) + ‖qT (t)− q‖L2(Ω) ≤ C (e−γt + e−γ(T−t)), ∀t < T ,

where γ > 0 is the stabilizing rate of the linearized optimality system.
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Turnpike in 3D

We consider the evolutionary Navier–Stokes problem in 3D
yt − µ∆y + (y · ∇)y +∇p = f + u , in QT ,

div y = 0 , in QT ,
y = 0 , on ΓT ,

y(x , 0) = y0(x) , x ∈ Ω.

(7)

We consider the space

W (0,T ) := {y ∈ L2(0,T ; V) : yt ∈ L2(0,T ; V′)}.

We will assume that f,u ∈ L2(0,T ; L2(Ω)) and y0 ∈ V. We shall say that
y ∈W (0,T ) is a weak solution of (7) if{

yt + µAy + By = f + u , on (0,T ),
y(0) = y0 ,

where A is the Stokes operator
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Turnpike in 3D

I It is a well–known result that there exists at least one weak solution
y ∈W (0,T ) of (7). However, is still an open problem the uniqueness of such
solution.

I Alternatively, we consider strong solutions of (7). These are solutions with
y ∈ Lp(0,T ; H2(Ω)∩H1

0(Ω)) and yt ∈ Lp(0,T ; Lp(Ω)), for some 2 ≤ p <∞.

I From the work of Sohr and von Wahl (1987)1, we have the following: a weak
solution y of (7) is strong if y ∈ Ls(0,T ; Lq(Ω)) holds for some s, q ∈ (0,∞)
with 2

s + 3
q ≤ 1. Therefore, we consider the following class of regular

solutions.

Definition

Let f,u ∈ L2(0,T ; L2(Ω)) and y0 ∈ V. We shall say that y is a strong solution of
(7) if it is a weak solution and

y ∈ L8(0,T ; L4(Ω)).

1H. Sohr and W. von Wahl. Generic solvability of the equations of Navier-Stokes. Hiroshima
Mathematical Journal, 17(3):613–625, 1987.
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Turnpike in 3D

I It is well–known that (7) does not have more than one strong solution.
However, is still an open problem the existence of strong solutions of (7) for
arbitrary T > 0.

Theorem (Casas 1998)

aLet us assume that (y, p) is a strong solution of (7). Then
y ∈ H2,1(Ω) ∩ C ([0,T ]; V) and p ∈ L2(0,T ;H1(Ω)). Moreover, there exists an
increasing function η : [0,+∞)→ [0,+∞) depending only on Ω and µ such that

‖y‖H2,1(Ω) ≤ η
(
‖y0‖V + ‖f + u‖L2(0,T ;L2(Ω)) + ‖y‖L8(0,T ;L4(Ω))

)
.

aE. Casas. An optimal control problem governed by the evolution Navier-Stokes
equations. Optimal control of viscous flow, 59:79–95, 1998
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Turnpike in 3D

Theorem

Let us assume that system (7) has a strong solution for some u ∈ L2(0,T ; L2(Ω)).
Then there exists an open neighborhood A0 of u in L2(0,T ; L2(Ω)) such that (7)
has a strong solution for every u ∈ A0. Moreover, the mapping
G : A0 → H2,1(Ω) ∩ C ([0,T ]; V), defined by G (u) = yu, is of class C∞.a

aE. Casas and K. Chrysafinos. Analysis of the velocity tracking control problem for
the 3d evolutionary navier–stokes equations. SIAM Journal on Control and
Optimization, 54(1):99–128, 2016.
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Turnpike in 3D

I As a consequence of the previous Theorem, we deduce that the set of
controls u ∈ L2(0,T ; L2(Ω)) for which there exists a strong solution yu is
open. Hereafter, this set will be denoted by A.

I This set A

A := {u ∈ L2(0,T ; L2(Ω)) : (7) has a strong solution yu}

is an open subset of L2(0,T ; L2(Ω)) and is dense in the norm Ls(0,T ; Lq(Ω))
for all s, q ∈ (0,∞) with 4 < 2

s + 3
q (Sohr and von Wahl (1987)).

I In particular we have that for any u ∈ L2(0,T ; L2(Ω)) and any ε > 0, there
exists vε ∈ L2(0,T ; L2(Ω)) with ‖vε‖L1(0,T ;L1(Ω)) such that u + vε ∈ A.
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Turnpike in 3D

Optimal control problem

I We consider the functional J : Aε → R defined by

JT (u) =
1

8

∫ T

0

‖y(t)− xd‖8
L4(Ω)dt +

α

2

∫ T

0

‖u(t)‖2
L2(Ω)dt + q0 · y(T ),(8)

where xd ∈ L2(Ω) is desired state, q0 ∈ L2(Ω), α > 0 is a constant, and Aε
is the set of controls u ∈ L2(0,T ; L2(Ω)) for which there exists a strong
solution yu of (7).

I We assume that the set of admissible controls Uad = Aε ∩ Ua,b satisfies

Uad 6= ∅,(9)

where

Ua,b := {u ∈ L2(0,T ; L2(Ω)) : aj ≤ uj(x , t) ≤ bj

for a.e. (x , t) ∈ QT , 1 ≤ j ≤ 3},

where −∞ ≤ aj ≤ bj ≤ +∞ for 1 ≤ j ≤ 3.
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Turnpike in 3D

Theorem (Casas and Crysafinos (2016))

The optimal control problem has at least one solution. Moreover, for any local
solution uT , there exists yT ,qT ∈ H2,1(QT ) ∩ C ([0,T ]; V) and
pT , πT ∈ L2(0,T ;H1(Ω)) such that

yTt − µ∆yT + (yT · ∇)yT +∇pT = f + uT , in QT ,
div yT = 0 , in QT ,

yT = 0 , on ΓT ,
yT (x , 0) = y0(x) , x ∈ Ω,

−qT
t − µ∆qT − (yT · ∇)qT + (∇yT )T qT +∇πT = ‖yT − xd‖4

L4(Ω)
|yT − xd |2(yT − xd ) , in QT ,

div qT = 0 , in QT ,
qT = 0 , on ΓT ,

qT (x ,T ) = q0 , x ∈ Ω,

Sebastián Zamorano 22 / 27



Turnpike in 3D

Optimal control problem

Consider the functional

J(u) =
1

8
‖y − xd‖8

L4(Ω) +
α

2
‖u‖2

L2(Ω),(10)

where xd ∈ L2(Ω) is a target and α > 0 is a constant.

Theorem

Let (u, y) be an optimal solution. Then there exists q ∈ V such that satisfies the
following optimality system in a variational sense



−µ∆y + (y · ∇)y +∇p = −
q

α
, in Ω,

div y = 0 , in Ω,
y = 0 , on ∂Ω,

−µ∆q − (y · ∇)q + (∇y)Tq +∇π = ‖y − xd‖4
L4(Ω)
|y − xd |2(y − xd ) , in Ω

div q = 0 , in Ω,
q = 0 , on ∂Ω.

(11)
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Turnpike in 3D

Main Theorem

Theorem

We assume that the tracking term ‖y − xd‖V is sufficiently small, µ >M(y), and
z0 = y0 − y ∈ Xσ. Then, there exists some ε > 0 such that for every y0,q0 with

‖y0 − y‖L2(Ω) + ‖q0 − q‖L2(Ω) ≤ ε,

there exists a solution of the evolutionary optimality system such that

‖yT (t)− y‖L2(Ω) + ‖qT (t)− q‖L2(Ω) ≤ C (e−γt + e−γ(T−t)), ∀t < T ,

where γ > 0 is the stabilizing rate of the linearized optimality system.
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Turnpike in 3D

Future work and open problems

I Moore realistic boundary data: Nonlinear Navier–slip boundary condition

(σ(y, p) · n)tg + (A(x , t)y)tg = g ,

where σ(y, p) = ∇y +∇yT − pI .

I Optimal shape design for 2D Navier–Stokes equations in large time.
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