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Dynamic Boundary Parabolic Equations without drift terms

In this talk, we study the null controllability of the following
Parabolic equation with dynamic boundary conditions


∂ty − d∆y + a(t, x)y = χωv(t, x) in ΩT := (0,T )× Ω,

∂tyΓ − δ∆ΓyΓ + d∂νy + b(t, x)yΓ = 0 on ΓT := (0,T )× Γ,

yΓ(t, x) = y|Γ,

y(0, ·) = y0, yΓ(0, ·) = y0,Γ,

I Ω ⊂ RN is a bounded domain with compact smooth boundary
Γ = ∂Ω, N ≥ 2, and the control region ω is an arbitrary
nonempty open subset such that ω ⊂ Ω.

I The term ∂tyΓ −∆ΓyΓ models the tangential diffusive flux on
the boundary which is coupled to the equation on the bulk by
the normal derivative ∂νy = ν · ∇y |Γ.
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Motivation and References

This type of dynamic boundary conditions arises for many known
equations of mathematical physics and biology.
They are motivated by :

I problems in diffusion phenomena,

I Reaction-diffusion systems in phase-transition phenomena.

I Special flows in hydrodynamics (the flow of heat for a solid in
contact with a fluid),

I Models in Dynamical populations, ....

References :
C. Gal, Favini, J. and G. Goldstein, Grasselli, Miranville, Meyries,
Romanelli, Schnaubelt, Vazquez, Vitillaro, Warma, Zellik, ....

G. R. Goldstein, Derivation of dynamical boundary conditions, Adv.
Differential Equations, 11 (2006), 457–480.
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The Laplace-Beltrami operator

The operator ∆Γ on Γ is given here by the surface divergence
theorem∫

Γ
∆Γy z dS = −

∫
Γ
〈∇Γy ,∇Γz〉Γ dS , y ∈ H2(Γ), z ∈ H1(Γ),

where ∇Γ is the surface gradient.

Proposition

The operator (∆Γ,H
2(Γ)) is self-adjoint and non positive on L2(Γ).

Thus it generates an analytic C0-semigroup on L2(Γ).
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Well-posedness

Consider the following inhomogeneous parabolic problem with
dynamic boundary conditions


∂ty − d∆y + a(t, x)y = f (t, x), in ΩT ,

∂tyΓ − δ∆ΓyΓ + d(∂νy)|Γ + b(t, x)yΓ = g(t, x), on ΓT

yΓ = y |Γ,
y(0, ·) = y0, yΓ(0, ·) = y0,Γ,

(1)

d > 0 and δ > 0.
On L2 := L2(Ω)× L2(Γ), we consider the linear operator

A0 =

(
d∆ 0
−d∂ν δ∆Γ

)
, D(A0) = H2,

where Hk := {(y , yΓ) ∈ Hk(Ω)× Hk(Γ) : y |Γ = yΓ} for k ∈ N,
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Our wellposedness and regularity results for the underlying
evolution equations rely on this fact.

Proposition

The operator A0 is densely defined, self-adjoint, non-positive and
generates an analytic C0-semigroup (etA0)t≥0 on L2. We further
have (L2,H2)1/2,2 = H1.
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Let a ∈ L∞((0,T )× Ω) and b ∈ L∞((0,T )× Γ). Then, The
following perturbed system


∂ty − d∆y + a(t, x)y = 0 in ΩT := (0,T )× Ω,

∂tyΓ − δ∆ΓyΓ + d(∂νy)|Γ + b(t, x)yΓ = 0 on ΓT := (0,T )× Γ,

yΓ = y |Γ,
y(0, ·) = y0, yΓ(0, ·) = y0,Γ,

has also a solution which is an evolution family S(t, s) on L2

depending strongly continuously on 0 ≤ s ≤ t ≤ T such that

S(t, τ)y0 = e(t−τ)A0y0 −
∫ t

τ
e(t−s)A0(a(s, ·), b(s, ·))S(s, τ)y0 ds
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Proposition

Let f ∈ L2(ΩT ), g ∈ L2(ΓT ) and (y0, y0,Γ) ∈ L2.

(a) There is a unique mild solution y ∈ C ([0,T ];L2) of (1).
Moreover, y belongs to
E1(τ,T ) := H1(τ,T ;L2) ∩ L2(τ,T ; D(A0)) and solves (1)
strongly on (τ,T ) with initial y(τ), for all τ ∈ (0,T ) and it is
given by

y(t) = S(t, 0)y0 +

∫ t

0
S(t, s)(f (s), g(s)) ds, t ∈ [0,T ],

(b) If y0 ∈ H1, then the mild solution y of (1) is the strong one,
i.e., y ∈ E1 := H1(0,T ;L2) ∩ L2(0,T ; D(A0)) and solves (1)
strongly on (0,T ) with initial data y0.
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Null Controllability

∂ty − d∆y + a(t, x)y = v(t, x)1ω in ΩT ,

∂ty − δ∆Γy + d∂νy + b(t, x)y = 0 on ΓT , (2)

y(0, ·) = y0 in Ω,

Definition

The system (2) is said to be null controllable at time T > 0 if for
all given y0 ∈ L2(Ω) and y0,Γ ∈ L2(Γ) we can find a control
v ∈ L2((0,T )× ω) such that the solution satisfies

y(T , ·) = yΓ(T , ·) = 0.
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Some References

Static boundary conditions : Dirichlet, Neumann, Mixed
boundary conditions ( Robin or Fourier)

-Lebeau-Robbiano
- Fursikov-Imanuvilov

- Albano, Cannarsa, Zuazua, Yamamoto, Zhang, Guerrero,
Fernandez-Cara, Puel, Benabdellah, Dermenjian, Le Rousseau,
Ammar-Khodja, Gonzalez-Burgos, ....
Dynamic boundary conditions :

1. I.I. Vrabie, the approximate controllability : (ω = Ω).

2. D. Höomberg, K. Krumbiegel, J. Rehberg, Optimal Control :
(ω = Ω. )

3. G. Nikel and Kumpf, Approximate controllability :
(one-dimension heat equation with control at the boundary).
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Null Controllability of linear problems

The solution of the linear system

∂ty − d∆y + a(t, x)y = v(t, x)1ω in ΩT , (3)

∂ty − δ∆Γy + d∂νy + b(t, x)y = 0 on ΓT , (4)

y(0, ·) = y0 in Ω, (5)

can be written as

(y(T , ·), yΓ(T , ·)) = S(T , 0)y0 + T v ,

T v =

∫ T

0
S(T , τ)(1ωv(τ), 0) dτ.

Null controllability ⇐⇒ R(S(T , 0)) ⊂ R(T )

⇐⇒ ∃C : ‖S(T , 0)∗ϕT‖L2 ≤ C‖T ∗ϕT‖L2 , ϕT ∈ L2.
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Null Controllability of linear problems

Lemma

1. The function ϕ(t) = S(T , t)∗ϕT is the solution of the backward
adjoint system

− ∂tϕ− d∆ϕ+ a(t, x)ϕ = 0 in ΩT ,

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ+ b(t, x)ϕΓ = 0 on ΓT

ϕ(T , ·) = ϕT in Ω,

2. The adjoint of the operator T is given by

T ∗ϕT = χωϕ.

3. The estimate (3) can be written as (Observability Ineq.)

‖ϕ(0, ·)‖2
L2 + ‖ϕΓ(0, ·)‖2

L2 ≤ C

∫ T

0

∫
ω
|ϕ|2 dt dx .
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Carleman estimate

To show the above observabity inequality, we show first a Carleman
estimate for the backward adjoint linear problem

− ∂tϕ− d∆ϕ+ a(t, x)ϕ = f (t, x) in ΩT ,

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ+ b(t, x)ϕΓ = g(t, x) on ΓT (6)

ϕ(T , ·) = ϕT in Ω,

for given ϕT in H1(Ω) or in L2(Ω), f ∈ L2(ΩT ) and g ∈ L2(ΓT ).
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The Carleman estimate

Lemma

Given a nonempty open set ω b Ω, there is a function η0 ∈ C 2(Ω)
such that

η0 > 0 in Ω, η0 = 0 on Γ, |∇η0| > 0 in Ω\ω.

Take λ,m > 1 and η0 with respect to ω as in the lemma. We
define the weight functions α and ξ by

α(x , t) = (t(T − t))−1
(
e2λm‖η0‖∞ − eλ(m‖η0‖∞+η0(x))

)
, x ∈ Ω

ξ(x , t) = (t(T − t))−1eλ(m‖η0‖∞+η0(x)), x ∈ Ω.
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The Carleman estimate

Theorem

There are constants C > 0 and λ1, s1 ≥ 1 such that,
∀λ ≥ λ1, s ≥ s1 and every mild solution ϕ of (6), we have

sλ2

∫
ΩT

e−2sαξ|∇ϕ|2 dx dt + s3λ4

∫
ΩT

e−2sαξ3|ϕ|2 dx dt

+sλ

∫
ΓT

e−2sαξ|∇ΓϕΓ|2 + s3λ3

∫
ΓT

e−2sαξ3|ϕΓ|2 dS dt

+sλ

∫
ΓT

e−2sαξ|∂νϕ|2 dS dt

≤ Cs3λ4

∫ T

0

∫
ω

e−2sαξ3|ϕ|2 dx dt

+C

∫
ΩT

e−2sα|f |2 dx dt + C

∫
ΓT

e−2sα|g |2 dS dt.
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Observability Inequality

Lemma

For f = g = 0, we obtain the following fundamental estimates∫ 3T
4

T
4

∫
Ω
|ϕ(t, x)|2 dx dt +

∫ 3T
4

T
4

∫
Γ
|ϕΓ(t, x)|2 dS dt

≤ C

∫ T

0

∫
ω
|ϕ(t, x)|2 dx dt

and

‖ϕ(0, ·)‖2
L2(Ω) + ‖ϕΓ(0, ·)‖2

L2(Γ) ≤ C‖ϕ(t, ·)‖2
L2 , 0 ≤ t ≤ T .
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Observability Inequality

Proposition

Let T > 0, a nonempty open set ω b Ω and a ∈ L∞(ΩT ) and
b ∈ L∞(ΓT ). Then there is a constant C > 0 ( depending on
Ω, ω, ‖a‖∞, ‖b‖∞) such that

‖ϕ(0, ·)‖2
L2(Ω) + ‖ϕΓ(0, ·)‖2

L2(Γ) ≤ C

∫ T

0

∫
ω
|ϕ|2 dx dt

for every mild solution ϕ of the homogeneous backward problem

− ∂tϕ− d∆ϕ+ a(t, x)ϕ = 0 in ΩT ,

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ+ b(t, x)ϕΓ = 0 on ΓT

ϕ(T , ·) = ϕT in Ω,
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Null Controllability

Theorem

Let T > 0 and coefficients d , δ > 0, a ∈ L∞(ΩT ) and b ∈ L∞(ΓT )
be given. Then for each nonempty open set ω b Ω and for all data
y0, y0,Γ, there is a control v ∈ L2((0,T )× ω) such that the mild
solution y of (3)–(5) satisfies y(T , ·) = yΓ(T , ·) = 0.

L. Maniar, M. Meyries, R. Schnaubelt, Null controllability for
parabolic problems with dynamic boundary conditions of
reactive-diffusive type, Evol. Equat. and Cont. Theo. 6 (2017),
381-407.
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Dynamic Boundary Parabolic Equations with drift terms

We consider now the controllability of a dynamic boundary
Parabolic equation with drift terms


∂ty − d∆y + C (x).∇y + a(x)y = v1ω in ΩT

∂tyΓ − δ∆ΓyΓ + d∂νy + D(x).∇ΓyΓ + b(x)yΓ = 0 on ΓT ,

y|Γ(t; x) = yΓ(t; x) on ΓT ,

(y , yΓ)|t=0 = (y0, y0,Γ) in Ω× Γ,

(7)

a ∈ L∞(Ω), b ∈ L∞(Γ), C ∈ L∞(Ω)N and D ∈ L∞(Γ)N .

Fursikov-Immanuvilov, Fernandez-Cara, Guerrero,
Gonzalez-Burgos, Puel : Dirichlet and Fourier boundary conditions.
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Wellposedness

For the wellposedness of the above parabilic equation, consider the
operators

A0 =

(
d∆ 0
−d∂ν δ∆Γ

)
, D(A0) = H2,

B =

(
−C .∇− a 0

0 −D.∇Γ − b

)
, D(B1) = H1,
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A Genration Theorem

Proposition

1. B is an A0-bounded operator, with null A0-bound.
That is
(i) 

D(A0) ⊂ D(B),

∃α, β ∈ R+, ∀(f , g) ∈ D(A0),

‖B(f , g)‖L2 ≤ α‖A0(f , g)‖L2 + β‖(f , g)‖L2 ,

(8)

(ii) inf{α ≥ 0 : there exists β ∈ R+, such that (8) holds } = 0.
2. The operator A = A0 + B generates an analytic semigroup.
3. The interpolation result (L2,H2)1/2,2 = H1 holds.
4. The equation (7) is wellposed and has maximal regularity.
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Wellposedness

For the controllability of the dynamic boundary parabolic equation
with drift terms (7), we need to consider its backward adjoint
equation


−∂tψ − d∆ψ + aψ − div(ψC (x)) = f ,

−∂tψΓ − δ∆ΓψΓ + d∂νψ + bψΓ + ψC .ν − divΓ(ψΓD(x)) = g

ψ(T , ·) = ψT on Ω,

ψΓ(T , ·) = ψT ,Γ,

(9)

a ∈ L∞(Ω), b ∈ L∞(Γ), C ∈ L∞(Ω)N and D ∈ L∞(Γ)N .
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Wellposedness of adjoint equation : Extrapolation technique

I H−k the topological dual of Hk , with pivot
space L2.

I X1 := H2, equipped with the graph norm ‖.‖A0
.

I X−1 the dual space of X1 with pivot space L2.

I X−1 is the completed space of L2 for the norm

‖ · ‖λ,−1 = ‖(λ− A0)
−1 · ‖L2.

H2 ↪→ H1 ↪→ L2 ↪→ H−1 ↪→ X−1 ↪→ H−2.
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Extrapolation of the operator A0

Let A0,−1 : L2 −→ X−1 be the adjoint operator of A0

(in the sense of duality) with pivot space L2 .

A0,−1 is also the unique continuous extension of A0 to an operator
from L2 to X−1.

A0,−1 is called the extrapolated operator of A0.

A0,−1 generates an analytic semigroup (S0,−1(t))t≥0 on X−1

where S0,−1(t) is just the extension to X−1 of S0(t) (the
semigroup generated by A0).
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Let the perturbation operator

B(u, uΓ) =

[
div(u.C )− au

−uC .ν + divΓ(uΓ.D)− buΓ

]
,

where for F ∈ L2(Ω)N and FΓ ∈ L2(Γ)N ,

div(F ) : H1(Ω)→ R, v 7→ −
∫

Ω
F .∇vdx + 〈F .ν, v|Γ〉H− 1

2 (Γ),H
1
2 (Γ)

.

divΓ(FΓ) : H1(Γ)→ R, vΓ 7−→ −
∫

Γ
FΓ.∇ΓvΓdσ.
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Theorem

1. B is a bounded linear operator from L2 to
(X−1,L2)1/2,2 = H−1.

2. The operator (A0,−1 + B)|L2 with domain

D((A0,−1 + B)|L2) = {U ∈ L2 : A0,−1U + BU ∈ L2}
generates an analytic semigroup (T (t))t≥0 on L2, given by the
variation of parameters formula

T (t) = S0(t) +

∫ t

0
S0,−1(t − r)B−1T (r)dr .

3. The adjoint equation (9) is wellposed.

A. Khoutaibi, L. Maniar, D. Mungolo and A. Rhandi.
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Controllability : New Carleman estimates

For the null controllability, we establish a Carleman estimate for
the backward adjoint equation
−∂tϕ− d∆ϕ = −a(x)ϕ+ div(ϕ.C (x))

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ = −b(x)ϕΓ − ϕC .ν + divΓ(ϕΓ.D(x))

ϕ(T , ·) = ϕT ∈ L2(Ω)

ϕΓ(T , ·) = ϕT ,Γ ∈ L2(Γ).

For this, consider the intermediate system, for F ∈ L2(ΩT ) and
FΓ ∈ L2(ΓT ).{

−∂tϕ− d∆ϕ = F0 + div(F )

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ|Γ = F0,Γ−Fν + divΓ(FΓ)
(10)
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FΓ ∈ L2(ΓT ).{

−∂tϕ− d∆ϕ = F0 + div(F )

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ|Γ = F0,Γ−Fν + divΓ(FΓ)
(10)
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Carleman Estimate for (10) : Main Result

Lemma

∃λ1 > 1, σ > 0 et C > 0 s.t, ∀λ ≥ λ1 ∀s ≥ s0 = σ(T + T 2) such
that for all Φ = (ϕ,ϕΓ) ∈ L2(0,T ;H1) ∩ H1(0,T ;L2) solution of
(10)

sλ2

∫
ΩT

ξe−2sα|∇ϕ|2dtdx + s3λ4

∫
ΩT

e−2sαξ3|ϕ|2dtdx

+ sλ2s

∫
ΓT

ξe−2sα|∇ΓϕΓ|2dtdσ + s3λ3

∫
ΓT

e−2sαξ3|ϕΓ|2dtdσ.

≤ s3λ4

∫
ωT

e−2sαξ3|ϕ|2dtdx +

∫
ΩT

e−2sα|F0|2dtdx

+s2λ2

∫
ΩT

e−2sαξ2|F |2dtdx +

∫
ΓT

e−2sα|F0,Γ|2dtdσ

+s2λ2

∫
ΓT

e−2sαξ2|FΓ|2dtdσ.
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Observability inequality

Come back to the adjoint parabolic equation
−∂tϕ− d∆ϕ = −a(x)ϕ+ div(ϕ.C (x))

−∂tϕΓ − δ∆ΓϕΓ + d∂νϕ = −b(x)ϕΓ − ϕC .ν + divΓ(ϕΓ.D(x))

ϕ(T , ·) = ϕT ∈ L2(Ω)

ϕΓ(T , ·) = ϕT ,Γ ∈ L2(Γ)

With F0 = −aϕ, F = ϕC , F0,Γ = −bϕΓ, FΓ = ϕΓD, we
obtain the following Carleman estimate for the adjoint problem

sλ2

∫
ΩT

ξe−2sα|∇ϕ|2dtdx + s3λ4

∫
ΩT

e−2sαξ3|ϕ|2dtdx

+ sλ2s

∫
ΓT

ξe−2sα|∇ΓϕΓ|2dtdσ + s3λ3

∫
ΓT

e−2sαξ3|ϕΓ|2dtdσ.

≤ s3λ4

∫
ωT

e−2sαξ3|ϕ|2dtdx .
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Observability inequality

Theorem

1. There exists a constant CT > 0 s.t the unique mild solution ϕ
to the backward system (9) satisfies observability inequality

‖ϕ(0, ·)‖2
L2(Ω) + ‖ϕΓ(0, ·)‖2

L2(Γ) ≤ CT

∫
ωT

|ϕ|2dtdx .

Log(CT ) = C (1 + 1/T + ‖c‖2/3
∞ + ‖`‖2/3

∞ )

+ CT (‖B‖2
∞ + ‖b‖2

∞ + ‖c‖∞ + ‖B‖∞ + ‖`‖∞ + ‖b‖∞).

2. The parabolic system with dynamic boundary conditions and
drift terms is nul controllable.

A. Khoutaibi and L. Maniar : Null controllability for a heat
equation with dynamic boundary condition and drift terms, JEEC,
accepted.
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Null controllability of Semilinear Dynamic Boundary Problems

∂ty − d∆y + F (y ,∇y) = v1ω, in ΩT , (11)

∂tyΓ − δ∆ΓyΓ + d(∂νy)|Γ + G (yΓ,∇ΓyΓ) = 0, on ΓT , (12)

y(0, ·) = y0, yΓ(0, ·) = y0,Γ. (13)

Theorem

Let T > 0, ω b Ω be open and nonempty, and F ,G ∈ C 1(R× R.)
satisfy

F (0, 0) = G (0, 0) = 0 and |F (s, ξ)|+|G (s, ξ)| ≤ C (1+|s|+|ξ|).

Then for all y0 ∈ H1, there is v ∈ L2(ωT ) such that (11)–(13) has
a unique strong solution y ∈ E1 with y(T , ·) = yΓ(T , ·) = 0.
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Perspectives :

– Blowing up semilinear dynamic boundary equations. Under
preparation.

F ,G : R→ R are locally Lipschitz-continuous,
F (0, 0) = G (0, 0) = 0 and

lim
|(s,p)|→+∞

|F1(s, ξ)|+ |G1(s, ξ)|
(ln(1 + |s|+ |ξ|)

3
2

= 0, lim
|(s,p)|→+∞

|F2(s, ξ)|+ |G2(s, ξ)|
ln(1 + |s|+ |ξ|)

1
2

= 0.

Fernandez-Cara, Gonzalez-Burgos, Guerrero, Zuazua.

Null Controllability for Parabolic Systems with Dynamic Boundary Conditions and Drift Terms L. Maniar, Cadi Ayyad University



Comments and open Problems

– The presence of Lapalce Beltrami in the second equation (δ 6= 0)
was necessary to get rid of bad boundary terms.

– In the case δ = 0 ?
∂ty − d∆y + C (x).∇y + a(t, x)y = v1ω in ΩT

∂tyΓ + d∂νy + D(x).∇ΓyΓ + b(t, x)yΓ = 0 on ΓT ,

y|Γ(t, x) = yΓ(t, x) on ΓT ,

(y , yΓ)|t=0 = (y0, y0,Γ) in Ω× Γ,

– N = 1.
– Cornilleau-Guerrero : Boundary Carleman estimate.
– With F. Ammar-Khodja : Internal Carleman estimate.
– N ≥ 2 : ? ? Could one obtain a uniform Carleman estimate
with respect δ and tends δ to 0.
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Thank you for your attention
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