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Application: Gas transportation through pipelines

The system dynamics in a pipe is described by

the isothermal Euler equations
ρt + qx = 0

qt +
(

p + q2

ρ

)
x

= − fg
2δ

q|q|
ρ − ρ g sin(α)

or a similar (linearized) model, see A. Osiadacz, M. Chazykowski, Comparison of isothermal
and non-isothermal pipeline gas flow models, 2001.

See the results of DFG CRC 154:



Model for the flow in a single pipe

Ideal gas

In ideal gas, we have

p = c2 ρ.

The sound speed c is constant!

The isothermal Euler equations
ρt + qx = 0

qt +
(

p + q2

ρ

)
x

= − fg
2δ

q|q|
ρ



A simplified model for ideal gas flow
In terms of the RIEMANN invariants the hyperbolic system has the quasilinear form

Rt + Dq(R) Rx = F (R)

with a diagonal matrix Dq(R) that contains the eigenvalues
q
ρ

+ c,
q
ρ
− c.

If we replace the eigenvalues by

d+ = c, d− = −c

we get a semilinear model with a constant matrix D.
Let a stationary state R̄ with D R̄x = F (R̄) be given. Linearizing around R̄ with
r = R − R̄ yields

rt + D rx = F ′(R̄) r .

For the ideal gas we get F ′(R̄) = −2 fg
δ |R̄+(x)− R̄−(x)|

(
1 −1
−1 1

)
.

The matrix
(

1 −1
−1 1

)
is positive semidefinite. (First go to RIEMANN invariants, then

linearize!) The pressure is given by exp
(

1
2

(
r+ + r− + R̄+ + R̄−

))
> 0

and the gas velocity is proportional to r+ − r− + R̄+ − R̄−.
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Boundary control problems

We are interested in boundary control of the system!

For this purpose, we introduce a control u(t) in the boundary condition.

For example DIRICHLET boundary control

r+(t , 0) = u+(t), r−(t , L) = u−(t).

What happens if in the pde

rt + D rx = −M r

the matrix is not positive definite?
Can this cause difficulties?

Yes!
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Example for a closed-loop system.(
U
V

)
t

+

(
1 0
0 −1

) (
U
V

)
x

=

(
0
0

)

The solutions have the form U(t , x) = α(t − x), V (t , x) = β(t + x).

Together with the boundary conditions

U(t , 0) = k V (t , 0), V (t , L) = U(t , L)

where k ∈ (−1, 1) is a feedback parameter
(and initial data U(0, ·), V (0, ·)))
we have a closed loop-system.

For k = 0 it is finite time stable.

In the applications, often source terms play an essential role.

In our example, with a 2× 2 matrix M we get(
U
V

)
t

+

(
1 0
0 −1

) (
U
V

)
x

+ M
(

U
V

)
=

(
0
0

)
.

The source term can cause instability!
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The example by BASTIN and CORON: A single interval

In Stability and Boundary Stabilization of 1-D Hyperbolic Systems (2016),
BASTIN and CORON consider the diagonal system(

U
V

)
t

+

(
1 0
0 −1

) (
U
V

)
x

+

(
0 c
c 0

) (
U
V

)
=

(
0
0

)
with a real parameter c > 0.

Together with the boundary conditions

U(t , 0) = k V (t , 0), V (t , L) = U(t , L)

where k ∈ (−1, 1) is a feedback parameter (and initial data U(0, ·), V (0, ·))) we have a
closed loop-system.

Is it stable?

BASTIN & CORON construct product solutions of the form (separation ansatz)(
U(t , x)
V (t , x)

)
= exp(σ t)

(
f (x)
g(x)

)
.

If such a solution can be found with σ > 0,
the system is exponentially unstable and cannot be stabilized.
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The example by BASTIN and CORON

For σ ∈ (0, c) define ω =
√

c2 − σ2 > 0. The pde and f (0) = k g(0) imply

f (x) = (c + kσ) sin(ω x) −k ω cos(ω x),

g(x) = −(σ + kc) sin(ω x) −ω cos(ω x).

For k 6= −1 we have f (L) = g(L) if σ ∈ (0, c) is such that

(σ + c) tan(
√

c2−σ2 L)√
c2−σ2 = k−1

k+1.

For k = −1 we have f (L) = g(L) if σ ∈ (0, c) is such that

0 = cos(
√

c2 − σ2 L).

This is possible if c L is sufficiently large in the sense that

c L > π/2.

With σ = 0, this is possible if
c L = π/2.
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g(x) = −(σ + kc) sin(ω x) −ω cos(ω x).

For k 6= −1 we have f (L) = g(L) if σ ∈ (0, c) is such that

(σ + c) tan(
√

c2−σ2 L)√
c2−σ2 = k−1

k+1.

For k = −1 we have f (L) = g(L) if σ ∈ (0, c) is such that

0 = cos(
√

c2 − σ2 L).

This is possible if c L is sufficiently large in the sense that

c L > π/2.

With σ = 0, this is possible if
c L = π/2.
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The example by BASTIN and CORON

For k 6= −1, in terms of ω L, the condition for non–stabilizability is

[
c L +

√
(c L)2 − (ω L)2

] tan(ω L)

ω L
=

k − 1
k + 1

. (1)

So we analyze the range of the function on the left-hand side of (1)!
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The range of a function

We consider
F (c L) = sup

s∈(0,c L)

[
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(c L)2 − s2
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s
≥ 0.

We substitute y = c L. For y > 0, define F (y) = sups∈(0,y)
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y2 − s2

]
tan(s)

s .

If y ≥ π, then F (y) ≥ lim
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] tan(s)
s = 0.

For y > 0, define G(y) = infs∈(0,y)
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]
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s .

If y > π
2 then G(y) ≤ lim

s→π
2+

[
y +

√
y2 − s2

]
tan(s)

s = −∞.

Thus for y = c L ≥ π, the function on the left-hand side of (1) takes all values in (−∞, 0].

For all k ∈ (−1, 1], this implies the instability of the system

because equation (1) has a solution s = ω L ∈ (π/2, π) that corresponds by σ2 = c2 − ω2

to σ ∈ (0, c).
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The example by BASTIN and CORON

In fact, the following proposition is already proved by BASTIN and CORON:

Proposition:
If c L ≥ π,

there is no real value of k such that the closed loop system with the pde(
U
V

)
t

+

(
1 0
0 −1

) (
U
V

)
x

+

(
0 c
c 0

) (
U
V

)
=

(
0
0

)
and the boundary conditions U(t , 0) = k V (t , 0), V (t , L) = U(t , L)
is exponentially stable.

Boundary stabilization becomes impossible if the length or the (negative eigenvalue of
the) source term is too large!
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A sufficient condition for stabilizability

If λ > 0, we have λ L < π
2, and for ε = π

4 −
λ L
2 we have |k | ≤ tan2(ε) and c L < λ tan2(ε)

the system is exponentially stable.

This can be seen considering the quadratic LYAPUNOV function

L(t) =
1
2

∫ L

0
A cot(ε + λx) U2(t , x) + A−1 tan(ε + λx)) V 2(t , x) dx .

• Here the trigonometric weights give a better result (c L ≤ 0.177..) than the
trigonometric weights.
• The choice of the weights is due to the method presented in G. BASTIN, J.-M.

CORON, On boundary feedback stabilization of non-uniform linear 2× 2 hyperbolic
systems over a bounded interval, Systems Control Lett. 60 (2011), 900- 906.
See also Charlotte’s talk!

How is the situation on networks?
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A tree of strings

Now we consider a star-shaped networks of strings.

u -�
�
�
�
�
��

@
@
@
@
@
@
@
@
@R

�

Figure: A star-shaped network with N = 4 edges.

We consider feedback control at all boundary nodes except one.
Let N ∈ {2, 3, 4, ...} denote the number of strings.

For i ∈ {1, 2, ...,N} let ci > 0 and εi ≥ 0 be given and consider the wave equation

U i
tt = U i

xx − 2 εi U i
t − (ε2

i − c2
i ) U i = 0 (2)

on the space interval [0, Li ]. The edges are coupled at x = 0 by node conditions:
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A tree of strings

At the central node:

For i , j ∈ {1, ...,N}

U i(t , 0)− U j(t , 0) = 0,
N∑

k=1

Uk
x (t , 0) = 0.

At the boundary node of edge number 1 at x = L1 we have a homogeneous
DIRICHLET condition

U1(t , L1) = 0

and at the other boundary nodes for j ∈ {2, ...,N} at x = Lj we have a NEUMANN

velocity feedback
U j

x(t , Lj) = Kj U j
t (t , Lj)

with a real feedback parameter Kj .
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We have a video!

A movie



A tree of strings

The wave equation (2) can be transformed to a 2× 2 system:

For i ∈ {1, ...,N} define V i = − 1
ci

(
U i

t + U i
x + εi U i

)
.

Then due to the definition of V i and (2), the function (U i , V i) solve

(
U i

V i

)
t

+

(
1 0
0 −1

) (
U i

V i

)
x

+

(
εi c i

ci εi

) (
U i

V i

)
=

(
0
0

)
.

Also the node conditions and boundary conditions can be transformed similarly:
For example, at x = L1, we have

V 1(t , L1) = − 1
c1

(
U1

x + U1
t

)
.

For i ∈ {2, ...,N}, at x = Li , we have

V i(t , Li) = −1
ci

(
εi U i + (Ki + 1) U i

t

)
.
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Aim of this talk

• Also for our star of strings, boundary feedback stabilization is
not always possible!

• If one of the strings is too long, it can become impossible for all feedback
parameters!
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A tree of strings

Limits of stabilizability: Assume that for all i ∈ {1, ...,N} we have ci > εi .

1. Instability if ALL edges are sufficiently long:
If

c2
1 ≥ ε2

1 +
π2

L2
1

and for all i ∈ {2, ...,N} we have

ci = c1, εi = ε1, Li = L1, Ki = K2

there are no values of K2 ∈ (−∞, ∞) such that the closed loop system with the wave
equation (2), the node conditions and the boundary conditions is asymptotically
stable.
In fact, there are solutions with exponentially increasing norms in XN

i=1L2(0, Li).
2. Instability if ONE edge is sufficiently long:

If

c2
1 > ε2

1 + 9
4
π2

L2
1

and c1 − ε1 ≤ min
i∈{2,...,N}

{ci − εi}, (3)

there are no values of K2, ..., KN ∈ (−∞, 0] such that
the closed loop system is asymptotically stable.
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Limits of stabilizability: Assume that for i ∈ {1, ...,N} we have ci > εi = 0 and one of the
values of Li > 0 is sufficiently large.

• Due to the POINCARÉ–inequality, if the ci > 0 are sufficiently small, we can use the
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Thus if Ki ≥ 0, we have E ′(t) ≥ 0 and thus the energy does not decay.
• Thus there are no parameter vectors with components Ki ≥ 0 such that the system is

asymptotically stable.
• With the Result 2. above, this implies that there are no parameter vectors with

components of equal sign such that the system is asymptotically stable.
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A tree of strings

Limits of stabilizability - Result 3.: Instability for a large number of short edges

Assume that for i ∈ {1, ...,N} we have ci > εi and

ci = c1, εi = ε1, Li = L1, Ki = K2.

If
sin2(

√
c2

1 − ε2
1 L1) =

1
N

there are no real values of K2 ∈ (−∞, ∞) (j ∈ {2, ...,N}) such that the closed loop
system is asymptotically stable.
This implies

L2
1

(
c2

1 − ε2
1

)
=

(
arcsin(

1√
N

)

)2

.

Since we have limN→∞ arcsin( 1√
N

) = 0, for N sufficiently large we obtain arbitrarily small
values of the lengths Li > 0, for which the system is not exponentially stable!

So here the total length of the strings N L2
1 must be sufficiently large!
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A sufficient condition for stabilizability

Assume that ci = c1, εi = ε1, Li = L1, Ki = K2. If ε1 > 0 and

ε1 ≥ c1 ≥ 0

with K2 = 0 the closed loop system is exponentially stable.

• This can be shown by the analysis of the eigenfunctions of the system.
• For ε1 ≥ c1 ≥ 0, the matrix of the source term is positive semidefinite.

What happens for
cL ∈ (0.177.., π)?

Thank you for your attention!
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