H'-EXPONENTIAL STABILIZATION FOR THE INTRINSIC
GEOMETRICALLY EXACT BEAM MODEL

CHARLOTTE RODRIGUEZ

ABSTRACT. The geometrically exact beam model (or GEB) gives the position in R® of
a slender elastic beam that may undergo large displacements of its centerline and large
rotations of its cross sections. The intrinsic formulation of the GEB model is a first
order semilinear hyperbolic system of d = 12 equations, that arises when considering
as states the translational and rotational velocities and strains of the beam. Here,
applying a boundary feedback control a one end of the beam, we show that the steady
state v = 0 of the ntrinsic formulation of GEB is locally H' - exponential stable
(when the applied external forces and moments are set to zero), in the sense that if
the initial datum is sufficiently small then this model has a unique global solution
in C°([0,00); H*(0, L; R?)) whose H' - norm decreases exponentially with time. The
strategy relies on the study of the energy of the beam, as well as on [BC17, Th. 10.2]
which amounts to finding a quadratic Lyapunov function.
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Geometrically exact beam (GEB)

Reference straight configuration B = (x, X3, X3)T

w= At time ¢t > 0,

€3

€1

b=p(z,t)+ R(z,t)(Xoe2 + X3e3).

Unknowns:
» position of centerline
p=p(x,t) €R3
» rotation of cross sections
R = R(z,t) € R¥>3

Geometrically exact: any
magnitude of displacement
and rotation.

Small strains; isotropic material (Saint-Venant Kirchhoff); cross sections
plane, no change of shape, rotate independently from p; thin beam; lateral

contraction neglected.
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GEB problem?

Governing equations in (0, L) x (0,7):

padp = 0:[RM1(RT8,p — RIp.)] + f,
pd[RJIvec(RTO;R)] = 0,[RMaovec(RT,R — RIR.)]
+(a:tp) X (RMI(RTaxp - Rlpﬁ;)) + f27

+ Dirichlet B.C.at z =L: p=hP, R =hR,

—RM;(R78,p — RIp.) = I

+ Neumann B.C. at x = 0:
—RMsvec(RTO,R — RIR.) = ho,

+ initial conditions.

0 —v3 Vo U1
Notation: M= | vy 0 —vi| & vec(M)= |vy| i.e. Mz =vec(M) X z.
—V2 U1 0 V3

'REISSNER '81, SIMO '85, KAPANIA & LI '03, STROHMEYER '18
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Intrinsic beam problem? (IB)

Transformation:

GEB problem Transformation, | problem

R79;p velocity of centerline V']

_ | vec(RTO;R) angular velocity W
y= R70.p — RIp., translational strain I’
vec(RTO, R — RIR.) curvature T |

w semilinear hyperbolic system:

Oy + Adyy + B(x)y = §y) + 4,
... of characteristic form (v = Ly):

0w + DOyv + B(x)v = g(v) + q.

> d=12
> B indefinite
> gi(p) = TGFp with GF € R12x12,

2HoDGES 2003

€ R12
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Derived problem

More precisely,
The coefficients D, B, g are explicitly known.

Parameters: density p, cross section area a, shear modulus G, Young
modulus E, area moments of inertia contained in J € R3*3, correction
factors ko, k3. Strains before deformation: I'., Y. € C1([0, L]; R?).

About D € R%¥4: for D, pos. definite diagonal matrix

D = diag(—D+, D+)

: v_
w Notation: for v € R?, v = (v ) where v_, v, € RS,
+
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1-d first order hyperbolic systems

Existence and uniqueness:

> Cit solutions to 1-d quasilinear hyperbolic systems: WANG '06
(extension of L1 '10 to nonautonomous systems). Solution local and
semi-global in time.

» C9([0,T); H') solutions to 1-d semilinear hyperbolic systems:
BAsTIN, CORON '17 and '16.

Boundary feedback exponential stabilization: boundary condition
B(y(0,t),y(L,t),u(t)) = 0 with feedback control u(t) = u(y(0,t),y(L,t)).
See BASTIN, CORON '16.

Notation: H! = H*(0, L; R?) and C% , = C*([0, L] x [0,T]; R?).
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Local H'-exp. stabilization of IB

Assumption 1:

Let i1, 2 > 0. Assume f; = fo = 0, and the boundary conditions are
v_(L,t) = —vy (L, t), v4(0,t) = kv_(0, 1),

where k diagonal matrix depending on p1, o and s.t. x; € (—1,1) for
1 <4 <6.

o +Dov + B(z)v =g(v) in (0,L)x (0,7)

(1) v_(L,t) = —vy(L,t) fort € (0,T)
v4(0,t) = kv_(0,1) fort € (0,T)
v(x,0) = v9(z) for z € (0,L)
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Local H'-exp. stabilization of IB

Theorem:

The steady state v = 0 of (1) system is H' - exponentially stable,

. in the sense that 3¢ > 0, & > 0 and ¢ > 0 s.t., for any
00 € H'(0, L;RY) satisfying

HUDHHl(o,L;Rd) <e

and the C°-compatibility conditions at (z,t) = (0,0) and (z,t) = (L, 0),
the solution v to (1) belongs to C°([0, +o0); 1(0 L;R%)) and satisfies

o)l 0,5me) < ce™ [0l ro,Limeys Yt € [0,+00).
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Comments

About the boundary conditions:

The boundary condition are chosen as a result of the analysis of the beam
energy £ (which is the sum of the kinetic and strain energy).

About the proof:

The proof of the main theorem involves the general result for 1-d
semilinear hyperbolic system in BASTIN, CORON '17, as well as a study of
the structure of £.
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Future work

> Networks of beams: Write the boundary conditions for a network of
IB. Stability study.

» Add source terms fi # 0 and fy # 0: nontrivial steady state.
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