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Abstract. The geometrically exact beam model (or GEB) gives the position in R3 of
a slender elastic beam that may undergo large displacements of its centerline and large
rotations of its cross sections. The intrinsic formulation of the GEB model is a first
order semilinear hyperbolic system of d = 12 equations, that arises when considering
as states the translational and rotational velocities and strains of the beam. Here,
applying a boundary feedback control a one end of the beam, we show that the steady
state v = 0 of the intrinsic formulation of GEB is locally H1 - exponential stable
(when the applied external forces and moments are set to zero), in the sense that if
the initial datum is sufficiently small then this model has a unique global solution
in C0([0,∞);H1(0, L;Rd)) whose H1 - norm decreases exponentially with time. The
strategy relies on the study of the energy of the beam, as well as on [BC17, Th. 10.2]
which amounts to finding a quadratic Lyapunov function.
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Geometrically exact beam (GEB)

Reference straight configuration B = (x,X2, X3)
ᵀ

ß At time t ≥ 0, b = p(x, t) + R(x, t)(X2e2 +X3e3).

b

L0

B

e1

e2

e3 Unknowns:

I position of centerline
p = p(x, t) ∈ R3

I rotation of cross sections
R = R(x, t) ∈ R3×3

Geometrically exact: any
magnitude of displacement
and rotation.

Small strains; isotropic material (Saint-Venant Kirchhoff); cross sections
plane, no change of shape, rotate independently from p; thin beam; lateral
contraction neglected.
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GEB problem1

Governing equations in (0, L)× (0, T ):
ρa∂2t p = ∂x[RM1(R

ᵀ∂xp−Rᵀ
cp′c)] + f̄1,

ρ∂t[RJvec(Rᵀ∂tR)] = ∂x[RM2vec(Rᵀ∂xR−Rᵀ
cR′c)]

+(∂xp)× (RM1(R
ᵀ∂xp−Rᵀ

cp′c)) + f̄2,

+ Dirichlet B.C. at x = L: p = hp, R = hR,

+ Neumann B.C. at x = 0:

{
−RM1(R

ᵀ∂xp−Rᵀ
cp′c) = h1

−RM2vec(Rᵀ∂xR−Rᵀ
cR′c) = h2,

+ initial conditions.

Notation: M =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

⇔ vec(M) =

v1v2
v3

 i.e. Mz = vec(M)× z.

1Reissner ’81, Simo ’85, Kapania & Li ’03, Strohmeyer ’18
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Intrinsic beam problem2 (IB)

Transformation:
GEB problem

Transformation−−−−−−−−−→ IB problem

y =


Rᵀ∂tp velocity of centerline V
vec(Rᵀ∂tR) angular velocity W
Rᵀ∂xp−Rᵀ

cp′c translational strain Γ
vec(Rᵀ∂xR−Rᵀ

cR′c) curvature Υ

 ∈ R12

å semilinear hyperbolic system:

∂ty + A∂xy + B̃(x)y = g̃(y) + q̃,

. . . of characteristic form (v = Ly):

∂tv + D∂xv +B(x)v = g(v) + q.

I d = 12

I B indefinite

I gk(ϕ) := ϕᵀGkϕ with Gk ∈ R12×12.

2Hodges 2003
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Derived problem

More precisely,

The coefficients D, B, g are explicitly known.

Parameters: density ρ, cross section area a, shear modulus G, Young
modulus E, area moments of inertia contained in J ∈ R3×3, correction
factors k2, k3. Strains before deformation: Γc,Υc ∈ C1([0, L];R3).

About D ∈ Rd×d: for D+ pos. definite diagonal matrix

D = diag(−D+, D+).

å Notation: for v ∈ Rd, v =

(
v−
v+

)
, where v−, v+ ∈ R6.
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1-d first order hyperbolic systems

Existence and uniqueness:

I C1
x,t solutions to 1-d quasilinear hyperbolic systems: Wang ’06

(extension of Li ’10 to nonautonomous systems). Solution local and
semi-global in time.

I C0([0, T ];H1) solutions to 1-d semilinear hyperbolic systems:
Bastin, Coron ’17 and ’16.

Boundary feedback exponential stabilization: boundary condition
B(y(0, t), y(L, t), u(t)) = 0 with feedback control u(t) = u(y(0, t), y(L, t)).
See Bastin, Coron ’16.

Notation: H1 = H1(0, L;Rd) and Ckx,t = Ck([0, L]× [0, T ];Rd).
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Local H1-exp. stabilization of IB

Assumption 1:

Let µ1, µ2 > 0. Assume f̄1 = f̄2 = 0, and the boundary conditions are

v−(L, t) = −v+(L, t), v+(0, t) = κ v−(0, t),

where κ diagonal matrix depending on µ1, µ2 and s.t. κi ∈ (−1, 1) for
1 ≤ i ≤ 6.


∂tv + D∂xv +B(x)v = g(v) in (0, L)× (0, T )

v−(L, t) = −v+(L, t) for t ∈ (0, T )

v+(0, t) = κ v−(0, t) for t ∈ (0, T )

v(x, 0) = v0(x) for x ∈ (0, L)

(1)
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Local H1-exp. stabilization of IB

Theorem:

The steady state v = 0 of (1) system is H1 - exponentially stable,

. . . in the sense that ∃ε > 0, α > 0 and c > 0 s.t., for any
v0 ∈ H1(0, L;Rd) satisfying

‖v0‖H1(0,L;Rd) ≤ ε

and the C0-compatibility conditions at (x, t) = (0, 0) and (x, t) = (L, 0),
the solution v to (1) belongs to C0([0,+∞);H1(0, L;Rd)) and satisfies

‖v(t)‖H1(0,L;Rd) ≤ ce−αt‖v0‖H1(0,L;Rd), ∀t ∈ [0,+∞).
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Comments

About the boundary conditions:

The boundary condition are chosen as a result of the analysis of the beam
energy E (which is the sum of the kinetic and strain energy).

About the proof:

The proof of the main theorem involves the general result for 1-d
semilinear hyperbolic system in Bastin, coron ’17, as well as a study of
the structure of E .
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Future work

I Networks of beams: Write the boundary conditions for a network of
IB. Stability study.

I Add source terms f̄1 6= 0 and f̄2 6= 0: nontrivial steady state.
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