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Introduction Classical results

Framework

Linear controlled system

y'=Ay+Bu, forte(0,T), y(0) = yo.

e y = y(t) is the state.
o u € L?(0, T;U) is the control.
@ ) is the initial datum.

(H1) A generates a Cy semigroup on an Hilbert space H,
(H2) B is the control operator, € .Z(U; H), for an Hilbert space U.

{ Yo € H, = ye %o, T];H).

ue L?0,T; V)
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Introduction Classical results

y'=Ay+Bu, forte (0, T), y(0) = yo.

Some control questions: What states can be reached at time T7? J

Approximate controllability

For any yp,y1 € H and € > 0, find u such that the solution y
satisfies [|y(T) — y1lly < e.

| \

Exact controllability

For any yp, y1 € H, find u such that the solution y satisfies
y(T) =n.

Null controllability / controllability to trajectories

For any yo € H, find u such that the solution y satisfies y(T) = 0.
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Introduction Classical results

Classical approach

To solve these problems, one usually relies on duality theory.
Introducing

;
Fr:ue L0, T;V) I—>/ e(T=9ABy(¢) dt,
0

we have y(T) = e™yy + Fru. Therefore,

Approximate controllability < Ran Fr = H < Ker Fr = {0}.

Exact controllability & Ran Fr = H
< 3C>0,Vzr € H, ||z7| < Cl|FrzTl12(0,7;0)-

Null controllability < Ran Fr = Ran (e™)
& 3C>0,Vzr € H, |e™ z7|| < ClIFfz7 120, 7.0)-
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Introduction Classical results

Fizr = B*z(t),

where z is the solution of

Z/ + Atz — 0’ for t € (0, T)7 Z(T) = ZT.

Consequently,

Approximate controllability < Unique continuation property
Z + A*z =0, for t € (0, T),
z(T)=1zr € H, then zr =0.
B*z =0, for t € (0, T),
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Introduction Classical results

A constructive approach

Given yp,y1 € H, and € > 0, to find an approximate control, one
can minimize

o 1 T * 2 1 T 2
J(zr.f) =3 A 18"2(t)lly dt + 5 A 1 (2) [l dt

+ 0, 2(0))n — 1, zm)H +ellzrlly
for (zr,f) € H x L?(0, T; H), where z satisfies

Z+Az=f forte(0,T), z(T)=zr.

o Jis strictly convex and coercive on H x L2(0, T; H)
~ Consequence of unique continuation.

e If (Z7,F) is the minimizer, y = F and u = B*Z solves the
approximate control problem.

Sylvain Ervedoza

28/08/19

Control and linear constraints



Main result Approx. Proof Other results Summary

Our goal today

Control the linear system y’ = Ay + Bu at time T and impose
linear constraints on the control and the controlled trajectory.

(H3) ¥ is a closed vector space of L2(0, T; U), and Py is the

orthogonal projection on ¢ in L2(0, T; U).
(H4) # is a closed vector space of L2(0, T; H), and Py is the
orthogonal projection on # in L2(0, T; H).

Approximate controllability with constraints

For any yo,y1 € H, e >0, g. € 4, w, € #/, find a control function
u € L?(0, T; U) such that the control u and the controlled
trajectory y satisfy

IY(T) =nlly <e

]P)%’U = 8,
Pyy = ws.
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Main result Approx. Proof Other results Summary

Relevant unique continuation property is

Z+Az=w, forte(0,T),

zZT = 0,
z(T) =z, B
Bz =g, for te (0, T), fv__o’ (Uo)

with (zr,g,w) e H X 9 x W

Assume that # is of finite dimension.

Unique continuation property (UC)

< Approximate controllability with constraints
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Main result Approx. Proof Other results Summary

Proof of «<: If I(z7,g,w) € Hx ¥ x # \ {(0,0,0)} such that
Z+Az=w, forte(0,T),
z(T) =z,
B*z=g

then, for y’ = Ay + Bu, with y(0) = 0,

T T
0= (y(T), 2r)n - /0 (y(£), w(t)) b dit — /0 (u(t). g())u dt.

In particular, if one imposes Py y = w, Pyu = g, we should have
2
AT) + zrllp llzr iy = lzr 2+ 1wliao e + Bz 70y

hence y(T) cannot approximate —z7.
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Main result Approx. Proof Other results Summary

Proof of =: If we suppose that (UC) holds, let yp,y1 € H, £ > 0,
g €Y., and w, € #. Minimize

1 T . 1 T
Sarogw. )= [ 1820+ (o)l derg [ 170+ wie)lFy o

+ (0, 2(0)) 1 — (y1, zT)H + € |27l 4
T

+/0T<B*Z(t),g*(t)>u dt+/0 (F(t), wa(t)) 1 dt,

for (zr,g,w,f) € Hx Y x # x (0, T;H), and 2 + A*z = f,
z(T) = z7.

@ Unique continuation (UC) = J is coercive.

o If (Zr, G, W, F) is the minimizer of J, y = F + W + w,, and
u= B*Z + G + g, solves the control problem.
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Main result Approx. Proof Other results Summary

Exact controllability with constraints

For any yo,y1 € H, g. € 4, w, € ¥, find a control function
u € L2(0, T; U) such that the control u and the controlled
trajectory y satisfy

_)/(T):_)/l, ]P)%/u:g*a P///}/ZW*

v
Theorem

Assume the observability inequality: 3C > 0, such that for all z
satisfying 2/ + A*z = f, 2(T) = zr,

I(z7, 8, w, f)”HX%X“//XB(O,T;H)

<C (HB*Z"‘gHLZ(o,T;U) +|If + W||L2(077—;H)> . (ExObs)

Then Exact controllability with constraints holds.
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Main result Approx. Proof Other results Summary

Recall that classical exact controllability of y/ = Ay + Bu is
equivalent to

lz7ll < CIFrzT 20,750y = ClIB* 2l 120, 7;0),  (ClassExObs)

for z solving z/ + A*z =10, z(T) = z7.

If ¢ and # are of finite dimension,
Unique continuation (UC) + Classical Observability (ClassExObs)
= Observability inequality (ExObs).
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Main result Approx. Proof Other results Summary

Null controllability with constraints

For any yo € H, g. € 4, w. € #/, find a control function
u € L2(0, T; U) such that the control u and the controlled
trajectory y satisfy

y(T):O’ ]P)%/u:g*a ]P)///y: W

v
Theorem

Assume the observability inequality: 3C > 0, such that for all z
satisfying 2/ + A*z = f, 2(T) = zr,

1(2(0), &, w, F) | xw x12(0,T:H)

<C (HB*Z"‘gHB(o,T;U) + |If + WHLZ(OVT;H)). (NullObs)

Then Null controllability with constraints holds.
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Main result Approx. Proof Other results Summary

Lemma

If 4 and # are of finite dimension, and 3T € (0, T) s.t.

7+ Az=w, fortE(O,f), . _0

z('IN'):z~ S
I ~ =49 g=0

Bz =g, for t € (0, T), _ 9

with (zg,g,w) e HX G x ¥,
and 3C > 0 such that for z solving z/ + A*z=0in (0, T),

|2(7)

)H < ClIB* 2l 20,70 - (Ineq)

Then the observability inequality (NullObs) holds.

v

Rk: The observability estimate (Ineq) implies null-controllability of
y" = Ay + Bu at time T, and null-controllability of y' = Ay + Bu
at time T’ implies (Ineq).
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Main result Approx. Proof Other results Summary

Relevant unique continuation property is

Z+Az=w, forte(0,T),

ZT = 0,
z(T) =z, _
B*z =g, fort € (0, T), = i/_—% (U0

with (zr,g,w) e Hx G x W

Main remaining difficulty

How to check this unique continuation property in practice?
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Examples Ex. 1 Ex2 Ex. 3

Example 1

We consider a linear control system
y' = Ay + Bu

which is
@ approximately controllable in time Txc¢
@ exactly controllable in time Tgc
@ Tec > Thac.

Typical example

The wave equation. In the unit square observed from a
neighborhood of two consecutive sides, Taoc =2, Tegc = 2V/2.

We choose T = Tgc, and
G c{uecl?®0,T;U),u=00n (T —Tac, T)}, # =0,
Then (UC) holds.
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Examples

Q = (0,1)?, w = neighborhood of two consecutive sides:

8tty - Ay = UXw, for (t?X) € (07 T) X Q7
y(t,x) =0, for (t,x) € (0, T) x 09,
(¥(0,-),8ey(0,-)) = (y0,y1) € H3(Q) x L2(Q).

Let T > 2v/2, and ¢ be a finite dimensional subspace of
{ue®(0,T;L?w)), u=00n (T —2,T) x w},

Given any (yo,y1), (vg ,y1 ) € H(Q) x L2(Q), any g € ¥, there
exists u € L2(0, T; L?(w)) such that the solution of the wave
equation satisfies

(Y(T.-),0ey(T,-)) = (v ,7 ) and Pyu = g.

Rk: This theorem cannot be true when

¢ ={uecl?®0,T;[3(w)),u=00n(T—-2,T) xw}
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Examples Ex. 1 Ex.2 Ex. 3

Ex. 2: 4 = {0}, and B*z = 0 implies that w = 0.

Controlled heat equation in Q bounded domain of R, w open

subset of Q.
Oty — Ay = ux,, for (t,x) € (0, T) x Q,
y(t,x) =0, for (t,x) € (0, T) x 09,
y(0,-) = yo, in Q.

¢ = {0} and # a subspace of L2(0, T; L2(Q)) such that
My : f +— f|, satisfies Ker (M| ) = {0}.
Then (UC) holds:

Orz+ Az =w, for (t,x) € (0,T)xQ,
z(t,x) =0, for (t,x) € (0, T) x 09,
z(T,")=2zr, inQ,

z(t,x) =0 in (0, 7T) X w.

= w=0and z=0.
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Examples

In particular, if we further assume that # is of finite dimension,
Null controllability with constraint holds in time T.

@ Inspired by works on sentinels: [Lions '92, Nakoulima '04,
Mophou-Nakoulima '08, '09, Gao '15].

@ Can be done when 7 and ¢ are non zero under the condition

3 two linear operators K and L s.t.

K : L?(0, T; H) — H for some Hilbert space #,
L: 120, T;VU)—H,

K(0: + A*) = LB",

Ker((g,w) € 9 x # — Lg + Kw) = {0}.
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Examples

Example 3

Theorem

Let A be the generator of an analytic semigroup on H.
Let K € N, (k)keq1,.k} two by two distinct real numbers, Wy be
a family of closed vector spaces included in H such that

Vz e D(A*), (uk+A")z€ Wy, and B'z=0=2z=0,

and # = Span {e'*twy, k € {1,--- K}, and wy € Wy }.
Let J €N, (pj)jeq1,..sy two by two distinct real numbers, G; be a
family of closed vector spaces included in U such that

Vz € D(A*) satisfying (pj + A*")z =0, B'ze€ G =z =0,

and & = Span {e”i'gj, j € {1,--- ,J}, and g € G;}.

We also assume i, # pj for all j, k and the classical unique
continuation property (' + A*z=0& B*z=0) = z=0.
Then the unique continuation property (UC) is satisfied.
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Examples Ex. 1 Ex2 Ex. 3

Proof. If z satisfies
Z+Az=w, B'z=g,

with w € # and g € ¢, applying

K

J
P = H(at — k) H(at - Pj)7
k=1

Jj=1

we obtain (Pz)' + A*(Pz) = 0 and B*(Pz) = 0. By the classical
unique continuation property, Pz = 0, hence

K J
z(t) = sze““ + Z z;elt,
k=1 =1

with (ux + A*)zx € #x, and B*z, =0,
and (pj+A")z;=0, and Bz €Y.

Therefore, z =0, and thus w =0 and g = 0.
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Examples Ex. 1 Ex2 Ex. 3

This idea was used in the context of Navier-Stokes equations:
Q=T x(0,1), where T = R/277Z.
Oy +(y - V)y—Ay+Vp=0, in(0,00) x Q,

divy =0, in (0,00) x Q,
y(t,x1,0) = (0,0), on (0,00) x T,
y(t,x1,1) = (0, u(t, x1)), on (0,00) x T,
y(0,x1,x2) = yo(xl,xz), in €.

o y = y(t,x1,x2) € R? is the velocity.

e p = p(t,xi,x2) is the pressure.

e u = u(t,xp) is the control function, acting on the normal
component only.

Theorem: Stabilization at any exponential rate [Chowdhury SE 19].

For any w > 0, 3¢ > 0, Vyo € VZ(RQ) satisfying |lyo[ls < e,
Ju € L?(0,00; L2(0,1)), such that ly ()| o) < Ce™@t.
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Examples Ex. 1 Ex2 Ex. 3

Here, the control system is of the form
/
y' = Ay + F(y) + Bu,

where
@ F is a quadratic term.

o The space H = L2(Q) can be decomposed into H = Hy © Hy,
and

o = Aoyo Yo = Pryy
"= A +Bu<:){y0 070, where 07
Y Y y1 = Aiy1 + Bru, y1 = Ppy.

In fact, Ho = {y € L2(Q), y = y(x2)}, and Hy = Hj".
Consequently, the projection yp cannot be controlled on the
linearized equations.
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Examples Ex. 1 Ex2 Ex. 3

Strategy: Expand y = ea + €23 and use the non-linear term to
control the projection in Hy.

Inspired by [Coron Crépeau '04, Cerpa '07, Cerpa Crépeau '09,
Coron Rivas '15].

@ ¢ > 0 small.
@ «, 3 of order 1.

@ o€ Hi.

Up to lower order terms,

{ o = Ara + Byu, { B = AB + Bu+ F(a),
a(O) =ap € Hh ﬁ(O) = up — Q.

Difficulty: Controlling Py = .

{ B = AoBo + Fo(a),
Bo(0) = Boo € Ho.
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Examples Ex. 1 Ex2 Ex. 3

In particular, our arguments rely on the following construction: Let
Ho ., = Span {W eigenvector of Ay corresponding to eigenvalue A > w}.

This space is of finite dimensional in our case.

Lemma

For any hg € Hp ., there exists a control function u such that the
solution (a, By) of

{ o = Ara + By, { By = AoBo + Fo(a),
a(0) =0, Bo(0) =0,

satisfies
a(T) =0 and PHOMﬁO(T) = ho.

Indirect controllability result through a non-linear coupling.
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Examples Ex. 1 Ex2 Ex. 3

Intermediate result

If W is an eigenvector of Ay corresponding to an eigenvalue A,
there exist two controls vy such that the solutions (a4, 5o, +) of

{ oy = Arag + Byug, { Bo+ = Aobo+ + Fo(ax),
O[j:(O) - 07 /Bo,ﬂ:(o) — 07

satisfies
ax(T)=0 and (Bo+(T),V) = =£1.
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Examples

Proof

When taking two controls u, and up, such that

o), = Ara, + Bru,, o)y = Arap + Brup,
a,(0) =0, ap(0) =0,

satisfy a,(T) = ap(T) =0, for all a,b € R, if 5y satisfies

{ B = AoBo + Fo(aa, + bay),
Bo(0) = 0,

satisfy
(Bo(T), W) = > Q(ua, us) + 2abQ(us, up) + b* Q(up, up),

where @ is a bilinear form.
A structure result: If u is odd or even in space, Q(u,u) = 0.
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Examples Ex. 1 Ex2 Ex. 3

~» We look for uy = u,(t)sin(xy) odd, up = up(t)cos(x1) even
and Q(ua, up) # 0.

)
QP ub) = /2 / ua(£)qs(t.1) dt,

0
where gj, is obtained by solving

—8th + Zb — 8222b + < ang > = Fb(t,Xz), in (0, T) X (0, 1),
~Z1p+ 02Zrp =0, in (0, T) x(0,1),
Zb(ta 0) = Zb(t7 1) = (07 0)7 in (0? T)7
Zb(T,Xg) = 0, in (O, 1).
with Fu(t, xp) = cos(mxp)e™ ¢ ( a2,5(t, ) ) , and
a1,p(t, x2)
= < ap(t, x2) sin(x1) )
Oég’b(t,X2) COS(Xl)

solves oy, = Aap + Bup,.
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Examples Ex. 1 Ex2 Ex. 3

Two steps:

e Find a control function up such that ap(T) =0 and gp(t,1)
non-zero.

e Find a control function u, such that a,(T) =0 and
fo us(t)gp(t, 1) dt # 0.

This further requires gp(t,1) to be such that we can impose the
projection on qgp(t,1).

We do that by imposing a(t) = e#*a and up(t) = e#* on some
subinterval ( Ty, T2) of (0, T) for a suitable choice of u
guaranteeing that

qb(t 1) = Coe(/L+7T2)t + Z aje(Aj+7r2)(t_T1) + Z bJeAJ(TQ_t)

for \; in the spectrum of A, and ¢y # 0.
Then our argument applies if 1 ¢ {)\;, —\; — 7°} and a null

control u, exists for which we have fOT ua(t)gp(t, 1) dt = 1.
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Further
Comments

@ Time-dependent coefficients: Provided well-posedness is
ensured, the control system y’ = A(t)y + Bu can be
controlled with linear constraints on v in ¢ and y in #
provided the following unique continuation property holds

Z+A(t)z=w, forte(0,T),

z(T) = z7, N ZT__OO’

B*z =g, for t € (0, T), g__o’

with (zr,g,w) e Hx 9 x W w=e
(UQ)

@ Unbounded control operators: The same results and proofs
apply when B is an admissible control operator.
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Further
Open problem

o Quantifying the cost of controlling in ¢ and #'.
Similarly as the discussion in the work [Fernandez-Cara,
Zuazua '00] for controlling the state exactly on some
finite-dimensional space E C L?(Q) in the context of
approximate controllability of the heat equation:

Pey(T)=Pey1 and  [|y(T) = yill2iq) < &

Estimates of the cost:

exp <C(1 + exp(Tu(E))) 7

9

IVl

where f(E) = max ——5——.
PeE\0} loll2(q
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Thank you for your attention!

Comments Welcome

Reference:
Control issues and linear constraints on the control and on the

controlled trajectory.
Sylvain Ervedoza, 2019.
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