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1. Quantum observers
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Quantum observers

What is an observer? In general, it could be defined as any
system with the ability to perform measurements.
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Quantum observers

What is an observer? In general, it could be defined as any
system with the ability to perform measurements.

@ Special relativity: Observer ~ inertial reference frame.

@ Quantum mechanics: Observer ~ any system with the
ability to perform quantum measurements. In particular, any
system is a quantum system.
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Figure: Observer in special
relativity - Inertial observer
(Apollo 11, 16 July 1969)
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Figure: Quantum mechanical
observer - Quantum system
(Schrédinger's cat)

Figure: Observer in special
relativity - Inertial observer
(Apollo 11, 16 July 1969)

5/35



Figure: Quantum observer - Inertial observer described by quantum
mechanics
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2. Observers as oriented time-like geodesics
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However, we need something more concrete to work with. We take
the idea of observer from special relativity (SR), so for us

Definition (Classical observer)

Given a predetermined spacetime M (smooth manifold endowed
with a Lorentzian metric and the associated Levi-Civita
connection), a classical observer in M is just an oriented
time-like geodesic.

It is clear that oriented time-like geodesics in M are exactly
worldlines of free particles, so this definition agrees with the one
from SR. We denote the space of oriented time-like geodesics in M
by L(M).
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In particular, in (14+1)D Minkowski (flat) spacetime, time-like
geodesics are just straight lines inside the light cone.

— Lightcone

—— Observer 1: atrestin O
—— Observer 2

oo s < 5w Observer 3
Observer 4
s Observer 5

Figure: Lightcone and time-like geodesics

Any two observers inside the lightcone are causally connected.
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Unfortunately, the space of oriented time-like geodesics L(M) for a
general spacetime M is a very complicated object . For example:

e L(M) is a topological space, but not necessarily Hausdorff.

e Even if L(M) is Hausdorff, the topological manifold could not
admit an smooth atlas (and thus not be a smooth manifold).

However, if M is a simply connected Lorentzian space of
constant curvature, then the space L(M) is a smooth manifold 2.
Moreover, L(M) is a homogeneous space.

In particular, we are interested here in (3+1)D Minkowski
spacetime M3*1 which satisfies this condition. So both M3t and
L(M3*1) are homogeneous spaces.

!Beem, 1991.

2Alekseevsky, Guilfoyle, Klingenberg, 2011.
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Let us briefly recall the notion of action of a Lie group on a
manifold and of a homogeneous space.

Definition

An action of a Lie group G on a smooth manifold M is a
homomorphism « : G — Diff(M) such that the map

a(g) : M — M;m — a(g) m is smooth for all g € G. We say that
an action « is transitive if for all m, n € M, there exists at least
one element g € G such that a(g)m = n. A manifold endowed

with a transitive Lie group action is called a homogeneous space.
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Homogeneous spaces are identified with certain coset spaces in the
following sense:

Theorem

Let « be a transitive action of a Lie group G on a smooth
manifold M. Then for any m € M the map

Bm:G/Hn— M
gHm — ag(m)

is a diffeomorphism which commutes with the action of G. (It is
assumed that the group G acts on G/H,, by left translations.)
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3. M**! and L(M>'!) as homogeneous spaces
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Let g = Lie(G) the Lie algebra of the Poincaré Lie group, with
commutators

[J37 Jb] - Eachm [Ja7 Pb] - 6abCIDC7 [J37 Kb] - 6‘f,ibcl{Cv
[K37 'DO] = P,, [K37 Pb] = 5ab'DOa [Kaa Kb] = —€abcJe,
[P07Pa]:07 [Pa,Pb]:O, [PO?Ja]:O‘

where P, are the generators of translations, J, of rotations and K,
of boosts.

G acts transitively in both M3*1 and L(M3*1), with the stabilizer
of a point (Lorentz subalgebra [ >~ s0(3,1)), given by

[J37 Jb] = 6acha [J37 Kb] = 6achzry [K37 Kb] = _fachc'
Also, the stabilizer of a worldline h ~ s0(3) x R is

[POa Ja] =0, [Jaa Jb] = €abcJc-
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Minkowski spacetime M3+!

We define local coordinates
(x¥,£2,07): Uc G — R
on the Poincaré group G by the inverse map of

Gm = exp x° Py exp x* Py exp x% Py exp x3 P3 x
X exp §1 K1 exp £2K2 exp §3K3 X exp 0 ) exp 6°J, exp 03J3 ,

and so the Lorentz subgroup L is parametrized by
L = exp&tKy exp £2Ko exp £3 K3 exp 0 Jy exp 6 Uy exp 63 J.
So, Minkowski spacetime is M3*! = Gy, /L with coordinates
x*: U cM =G/L - R
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Space of worldlines L(M3*1)

We define local coordinates
(%, y*,07): U C Gy — RO
on the Poincaré group G by the inverse map of

Gy = exp 771K1 exp ylPl exp n2 Ky exp y2 P> exp 173 K3 exp y3 P3x
X exp qlel exp &> Jp exp ¢> J5 exp yO Po.

and so the stabilizer of a worldline H is parametrized by
H = exp ¢* Jy exp ¢ o exp &> Jz exp y° Py.

The space of worldlines is W = L(M3*1) = Gy, /H with
coordinates
(y*n): U cW=G/H—R®
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Change of coordinates between M3™! and L(M3*1)

The explicit diffeomorphism on the Poincaré Lie group G in both
parametrizations is

X — foc( 5’773)’ fa — na’ 92 — ¢a7
where

FO(y*,n°) = y*sinhn'+

cosh n? (y2 sinh 2 4+ cosh ?(y° cosh 2 + y3sinh 173)) ,
1 (y®n°) = y* coshn'+

sinh n? (y2 sinh 2 + cosh n?(y° cosh7® 4 y3 sinh 773)) ,
f2(y®,n?) = y? coshn? + sinh n?(y° cosh ® 4 y> sinh ),
F3(y*,n?) = ysinhn® + y3 cosh .
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Metric structure in M3t! and L(M3*1)

Both spaces M3*1 and L(M3+1) are naturally endowed with a
metric structure. However, while the (pseudo) Riemannian metric
(Minkowski metric) in M

ds? = (dx%)? — (dx1)? — (dx?)? — (dx®)?,

is well-known, the space L(M3*!) presents an invariant
foliation, with a "'main’ metric

dsfyy = (coshn?)*(cosh)(dn")? + (cosh®)*(dr)? + (dn*)?,
and a ’'subsidiary’ in each leaf
dstyy = (dy')? + (A + (y*)% n =,
so each leaf is isometric to three-dimensional Euclidean space.
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Metric structure in M3t! and L(M3*1)

The geodesic distance 3 is given by
cosh y = cosh n* cosh n? cosh 3.

This metric structure shows how the three-velocity space of
special relativity is hyperbolic.

In the low rapidity regime (i.e. take ¢ — c0) we recover the
well-known expressions of classical mechanics

dstyy = (dn')? + (dn*)? + (dn®)?,
X2 =)+ (P + ()

3Herranz, Santander, 1998.
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3. Noncommutative observers from Poisson
geometry
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Until now, we have only treated the space of classical observers. In
order to introduce quantum observers in noncommutative
spacetimes, we need the following definition.

Definition

A Poisson-Lie group is a Poisson manifold (G, 7¢g) such that the
Lie group multiplication p: (G x G,mg ® 7g) — (G, 7g) that is a
Poisson map.

The Poisson-Lie group # condition can be restated in terms of the
Poisson bivector on G alone, and it is just

m6(1(g1,82)) = (Lg )« (82) + (Rgy)«mc(81)-

*Drinfel'd, 1987.

Chari, Pressley, 1994.
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The tangent counterpart of a Poisson-Lie group is a Lie bialgebra
(g,0) where the cocommutator 0 : g — g A g satisfies

i) (Co-Jacobi condition)
Y0 ®id)od(X)=0 VX eg
i) (1-cocycle conditon)
I([X,Y]) =adxd(Y)—adyd(X), VX,Yeg

Particular cases of 1-cocycles are 1-coboundaries
d(X)=adxr ¥Xeg

with r € g ® g a skew-symmetric solution of the modified
classical Yang-Baxter equation (mCYBE).
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Theorem

Let G be a Lie group and g its Lie algebra. Consider a
skew-symmetric solution of the mCYBE r € \? g defining a
coboundary Lie bialgebra (g,0) by 6(X) = adxr for all X € g.
Then the unique Poisson-Lie structure on G whose tangent
space is (g,0) is defined by the Poisson bivector

WG:ZrU(XiL(@)(jL_XiR@)(jR)-

i

where XiL and X,-R are left- and right-invariant vector fields on G.

23/35



The Poisson version of a homogeneous space is

Definition

A Poisson homogeneous space is a Poisson manifold (M, )
endowed with a transitive Lie group action
a:(Gx M,me®mnm) — (M, my) that is a Poisson map.

This can be expressed in terms of the Poisson bivectors on M and
G, by
mv(alg, m)) = (ag)imm(m) + (am)sme(g)-

Using the diffeomorphism M ~ G/H,, for some m € M and an
appropriate parametrization of the Lie group G (as previously
shown) we have that

™ = p«(7G)

where p : G — G/H,, is the canonical projection.
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Let (G/H, ) be a Poisson homogeneous space and g = Lie(G)
and ) = Lie(H). A sufficient condition to have a well-defined
Poisson homogeneous space is the coisotropy condition

d(h) ChAg.

If moreover H is a Poisson subgroup of G, so

d(h) ChAb,

then we say that the Poisson homogeneous space is of Poisson
subgroup type.
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4. Important example: x-Poincaré
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Consider the skew-symmetric solution of the mCYBE
1
r:E(KlAP1+K2AP2+K3/\P3)Eg®g

which defines the quantum universal enveloping algebra °
(QUEA) Uy ,.(g) with deformed commutation relations

[J87 Jb] = 6achCa [J87 Pb] = 6abc'DCa [J87 Kb] = 6acha

[KEH PO] = Paa [K37 Pb] = 6abP0a
[P07Pa]:07 [Pa7Pb]:0a [P07Ja]:07
[Kas Pb) = 6ap E(lfe*2P°/”)+iP2 flppb
@ P\2 2K k27

and coproduct
A(P)=Py@1+1® Py, A(L)=L01+1®,
AP)=P,@1+e P/ g P,

1
AK) =K, @1+e P/FoK, + EeabCPbQ@JC.

5Lukierski, Nowicki, Tolstoi, 1991.
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The Lie bialgebra (g, d) is just the first order of the previous
QUEA, with cocommutator

d0=R~Apg—0colAg:g—>gAg
taking the explicit form
1
d(Po) = d(J2) =0, o(P,) = EPa A Py,

1
5(K1) = ,(Kl ANPy+ b AP3—JzA Pz),

K
1

5(K2) = E(K2 ANPy+ AP — 1 A Pg),
1

(5(K3) = E(Kg, ANPy+ L NAPy— A Pl),

which completely defines the x-Poincaré Poisson-Lie group,
which is just the semiclassical counterpart of the xk-Poincaré
quantum group.
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r-Minkowski spacetime

The coisotropy condition is satisfied for the Lorentz subalgebra
() ClAg,

so M3t = G/L is a well-defined Poisson homogeneous space,
defined by

1

{x% x} = —=x7, {x? xP} =o0.

K

It can be straightforwardly quantized

h
[£0,%] = —=%°,  [#°,%"]=0.
K
This is the famous x-Minkowski spacetime ©, extensively used in
quantum gravity models, where the quantum parameter & is
related to the Planck length.

6 ukierski, Nowicki, Tolstoi, 1991.
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r-space of worldlines

In this case H is a Poisson-Lie subgroup:

é(h)=0ChAg,
so L(M3*1) = G/H is well-defined and
12 1/, . 1 y'tanhp?
== hpt — Y &N7
'y =y sinhny cosh P
1
Oy = - (y3 sinhn' — y' tanh 173) ,
{}’27}/3} = 1 (y3 cosh ' sinhn? — y? tanh 773) ,
K
{11}_1@%Mfwﬁn%me—D
yomr=y cosh 1?2 cosh n3 ’
{22}_1@%Mfw%n%me—U
Yoy =i coshn3 ’
1
{)’37773} = (cosh n' cosh 772 cosh 7]3 — 1) ,

{ya777b} =0, a#bh, {778777b} =0.
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r-space of worldlines

The diffeomorphism

g = cosh n? cosh 73 ) P = !
coshnl coshn?coshn3 —17 7 ’
3
2 _ coshn 2 2 _ 2
7= coshnlcoshnzcoshn3—1y ' pe=1
1

3 _ 3 3_ .3
T~ osh nl coshn?coshn3 — 1 v pe=1

shows that the space of worldlines is symplectic (outside
(n*,m%,n°) # (0,0,0))
1
{a°,a"} ={p"p*} =0, {a".p"} = du.
and so, similarly to the spacetime, it can be straightforwardly

quantized

A A A h
[qa’ qb] = [pa, pb] =0, [qa’ pb] = ; dapll.
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5. Final remarks
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@ We have showed a completely new idea for introducing
noncommutativity in the space of worldlines.

@ This can be interpreted as noncommutative quantum
observers arising from quantum group symmetries.

@ Hopefully, this can produce testable results from a
quantum gravity perspective.

@ The construction presented is completely general and can be
applied to any quantum deformation.

@ Details in: Ballesteros, G-S, Herranz, Phys Lett B. 792,
175-181 (2019).

e Work is in progress for the case of the x-(A)dS
noncommutative spacetime (non-vanishing cosmological

constant) recently constructed (see Ballesteros, G-S, Herranz,
Phys Lett B. 796, 93-101 (2019)).
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@ Physical consequences from a quantum gravity perspective in:
Ballesteros, Gubitosi, G-S, Herranz, Mercati (In preparation),
giving rise to 'fuzzy’ worldlines:

Figure: Fuzzy worldlines arising from the model.
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Thanks for your attention!
T TR

Figure: Photo by Aydin Biyiiktas.
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