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Definitions
Properties
Pauli and Dirac Hamiltonian

Supersymmetric quantum mechanics

Hilbert space: H
N self-adjoint supercharges: Qi = Q†i , i = 1, 2, . . . ,N
Hamiltonian: H
Superalgebra: {Qi ,Qj} = δij H

N = 1: In general no grading operator, H = 2Q2
1

N = 2: Grading operator always exists

W :=
2

H
QQ† − 1 =

[Q,Q†]
{Q,Q†}

= W †, W 2 = 1

Complex supercharges: Q := 1√
2

(Q1 + iQ2), Q† = 1√
2

(Q1 − iQ2)

Superalgebra: [H,W ] = 0, {W ,Q} = 0,H = {Q,Q†},
Q2 = 0 = (Q†)2, [H,Q] = 0 = [H,Q†].

Grading: H = H+ ⊕H−, where W = ±1 on H±
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Definitions
Properties
Pauli and Dirac Hamiltonian

N=2 SUSY in matrix representation

Operators:

W =

(
+1 0

0 −1

)
,H =

(
H+ 0
0 H−

)
=

(
AA† 0

0 A†A

)
,

Q =

(
0 A
0 0

)
,Q† =

(
0 0
A† 0

)
States: ψ+ =

(
φ+

0

)
, ψ− =

(
0
φ−

)
, φ± ∈ H±

SUSY transformations: H±φ
±
E = Eφ±E

Aφ−E =
√
Eφ+E , A†φ+E =

√
Eφ−E for E > 0

Ess. iso-spectral: specH+\{0} = specH−\{0}
Unbroken SUSY: E = 0 eigenvalue of H− and / or H+
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Definitions
Properties
Pauli and Dirac Hamiltonian

Pauli and Dirac Hamiltonian with magn. field

External magnetic field: ~B = ~∇× ~A

Pauli: HP = 1
2m

(
~p − e

c
~A
)2
− g

2
e~
2mc~σ · ~B on H = L2(R3)⊗C2

N = 1 SUSY: HP = 2Q2
1 with Q1 := 1√

4m
~σ ·
(
~p − e

c
~A
)

iff g = 2

Dirac: HD = c~α ·
(
~p − e

c
~A
)

+ βmc2 on H = L2(R3)⊗ C4

N = 2 SUSY: HD = Q1 + WM =

(
mc2 A
A −mc2

)
, where

W = β =

(
1 0
0 −1

)
, M =

(
mc2 0

0 mc2

)
, Q1 =

(
0 A
A 0

)
,

and A := c~σ ·
(
~p − e

c
~A
)

, Q2 = −iWQ1.

But HD is a supercharge, not a SUSY Hamiltonian.
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Definition
SUSY structure
Spectral properties
The Dirac oscillator

General SUSY Dirac Hamiltonian

Definition: HD := Q1 + WM =

(
M+ A
A† −M−

)
is called generalized supersymmetric Dirac Hamiltonian if

M± = M†± ≥ 0, AM− = M+A, A†M+ = M−A
†

Matrix representation:

W =

(
1 0
0 −1

)
, M =

(
M+ 0

0 M−

)
, Q1 =

(
0 A
A† 0

)
,

with {Q1,W } = 0, [M,W ] = 0, W 2 = 1, [Q1,M] = 0.

Note: H2
D = Q2

1 +M2 =

(
AA† + M2

+ 0
0 A†A + M2

−

)
has the form of a SUSY Hamiltonian
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Definition
SUSY structure
Spectral properties
The Dirac oscillator

N = 2 SUSY structure

Let: m > 0 be an arbitrary mass-like parameter and

H := 1
2mc2

(
H2

D −M2
)

= 1
2mc2

(
AA† 0

0 A†A

)
=

(
H+ 0
0 H−

)
Q = 1√

2mc2

(
0 A
0 0

)
, Q† = 1√

2mc2

(
0 0
A† 0

)
SUSY: H = {Q,Q†}, {Q,W } = 0 = {Q†,W }, Q2 = 0 =

(
Q†
)2

As A is linear in ~p, H± is quadratic in ~p =⇒ non-rel. Hamiltonian

Example: A := c~σ ·
(
~p − e

c
~A
)

, M± = mc2 =⇒

HD = c~α ·
(
~p − e

c
~A
)

+ βmc2, H± = 1
2m

(
~σ ·
(
~p − e

c
~A
))2

= HP
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Definition
SUSY structure
Spectral properties
The Dirac oscillator

Spectral properties

Diagonalize with U = a+ + a−W sgnQ1 and a± =
√

1
2 ±

M
2|HD| .

H̃D := UHDU
† =

 √
2mc2H+ + M2

+ 0

0 −
√

2mc2H− + M2
−


Let: H±φ

±
n = εnφ

±
n =⇒ H̃Dψ̃n = E±n ψ̃n where

6

−M−

M+

spec HD E±n = ±
√

2mc2εn + M2
±, ψ±n = U†ψ̃±n ,

ψ̃+
n =

(
φ+n
0

)
, ψ̃−n =

(
0
φ−n

)
Qψ̃−n =

√
εnψ̃

+
n , Q†ψ̃+

n =
√
εnψ̃

−
n

E+
0 = M+ iff ε0 = 0 ∈ specH+

E−0 = −M− iff ε0 = 0 ∈ specH−
Spectral problem of rel. HD =⇒ Spectral problem of non-rel. H±
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Definition
SUSY structure
Spectral properties
The Dirac oscillator

Example: The Dirac oscillator

Dirac oscillator: HD :=

(
mc2 c~σ · (~p − imω~r)

c~σ · (~p + imω~r) −mc2

)
SUSY with A := c~σ · (~p − imω~r), M± := mc2

SUSY partners: H± = ~p2

2m + m
2 ω

2~r2 ± ~ω
(
K + 1

2

)
Spin-orbit operator: K := 1 + ~σ · ~L/~, specK = ±(j + 1/2)

Spectrum of SUSY partners:
ε+n,j ,s = ~ω(2n + 2 + j + sj), n = 0, 1, 2, 3, . . ., j = 1

2 ,
3
2 , . . ., s = ±1

ε−n,j ,s = ~ω(2n + j + 1 + s(j + 1)),

ε−n,j ,s = ε+n−1,j+1,−s , ess. iso-spectral

ε−0,j ,1 = 0 unbroken SUSY

Georg Junker and Akira Inomata Path integral representation for SUSY Dirac resolvents



HD =

Supersymmetric quantum mechanics
General SUSY Dirac Hamiltonian

Path integral representation of resolvent
2D Dirac and Pauli systems

1D Dirac systems
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Path integral representation
The free particle
Generalised Dirac Oscillator

Resolvent and iterated resolvent

Resolvent: G (z) :=
1

HD − z
, z ∈ C\specHD

Iterated res.: g(ζ) :=
1

H2
D − ζ

, ζ ∈ C\specH2
D

Note: g(ζ) =

(
g+(ζ) 0

0 g−(ζ)

)
, g±(ζ) =

1

2mc2H± + M2
± − ζ

G (z) = (HD +z)g(z2) =

(
(z + M+)g+(z2) Ag−(z2)

A†g+(z2) (z −M−)g−(z2)

)

g±(ζ) =
i

2mc2~

∫ ∞
0

dt exp
{
−itHeff

± (ζ)/~
}

,

with effective non-relativistic Heff
± (ζ) := H± +

(
M2
± − ζ

)
/2mc2
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Path integral representation

Let: g±(~r ′′, ~r ′; ζ) := 〈~r ′′|g±(ζ)|~r ′〉 =
i

2mc2~

∫ ∞
0

dt P±ζ (~r ′′, ~r ′; t)

Promotor: P±ζ (~r ′′, ~r ′; t) := 〈~r ′′| exp
{
−itHeff

± (ζ)/~
}
|~r ′〉

Path integral representation:

P±ζ (~r ′′, ~r ′; t) =

∫ ~r(t)=~r ′′

~r(0)=~r ′
D~r exp

{
i

~

∫ t

0
ds L±eff(~̇r , ~r)

}
Here L±eff represents effective Lagrangian associated with Heff

± (ζ)
If non-rel. L±eff is path integrable =⇒ g±(~r ′′, ~r ′; ζ) =⇒ G (~r ′′, ~r ′; z)
Also applicable to non-SUSY HD iff H2

D is of block-diagonal form

Georg Junker and Akira Inomata Path integral representation for SUSY Dirac resolvents



HD =

Supersymmetric quantum mechanics
General SUSY Dirac Hamiltonian

Path integral representation of resolvent
2D Dirac and Pauli systems

1D Dirac systems

Resolvent and iterated resolvent
Path integral representation
The free particle
Generalised Dirac Oscillator

Example: The free particle

SUSY Dirac: A = c~σ · ~p, M± = mc2, H± = ~p2/2m

=⇒ Heff
± (ζ) =

~p2

2m
+

m2c4 − ζ
2mc2

=:
~p2

2m
− µ(ζ)2

2m

=⇒ L±eff(~̇r , ~r , t) =
m

2
~̇r2 +

µ(ζ)2

2m

P±ζ (~r ′′, ~r ′, t) =
( m

2πi~t

)3/2
exp

{
i

~

(m
2t

(~r ′′ − ~r ′)2 +
t

2m
µ2(ζ)

)}
g±(~r ′′, ~r ′, ζ) =

1

4π|~x |~2c2
exp {iµ(ζ)|~x |/~} , ~x := ~r ′′ − ~r ′

G (~r ′′, ~r ′, z) =
eiµ(z2)|~x |/~

4π|~x |~2c2

(
i~c

~α · ~x
|~x |2

+ cµ(z2)
~α · ~x
|~x |

+ βmc2 + z

)
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Resolvent and iterated resolvent
Path integral representation
The free particle
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Example: Generalised Dirac Oscillator

SUSY Dirac: A = c~σ · (~p − i~~erU ′(r)), M± = mc2, U = U(r)

=⇒ H± =
~p2

2m
+

~2

2m
U ′

2
(r)± ~2

2m
U ′′(r)± ~2U ′(r)

mr
K

Partial wave exp.:

P±ζ (~r ′′, ~r ′, t) =
∑
j ,s

P±ζ`(r
′′, r ′, t)

j∑
mj=−j

ϕ
(s)
jmj

(θ′′, φ′′)ϕ̄
(s)
jmj

(θ′, φ′)

Pauli spinors:

ϕ
(s)
jmj

(θ, φ) = 〈θ, φ|j ,mj , s〉 =

 √
`+smj+1/2

2`+1 Y
mj−1/2
` (θ, φ)

s
√

`−smj+1/2
2`+1 Y

mj+1/2
` (θ, φ)


~J2|j ,mj , s〉 = j(j + 1)|j ,mj , s〉, j = 1

2
, 3
2
, 5
2
, . . .

Jz |j ,mj , s〉 = mj |j ,mj , s〉, mj = −j, . . . , j

K |j ,mj , s〉 = κ|j ,mj , s〉, κ = s(j + 1/2) , j = ` + s/2 , s = ±1
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Path integral representation
The free particle
Generalised Dirac Oscillator

Example: Generalised Dirac Oscillator

Radial promotor:

P±ζ`(r
′′, r ′, t) =

∫ r(t)=r ′′

r(0)=r ′
Dr exp

{
i

~

∫ t

0
ds L±eff(ṙ , r , s)

}

Eff. Lagrangian: L±eff = m
2 ṙ

2 − ~2`(`+1)
2mr2

− V±(r) + µ(ζ)2

2m

Potential: V±(r) = ~2
2mU ′2(r)± ~2

2mU ′′(r)± ~2U′(r)
mr κ,

Explicit results:

U(r) = mω
2~ r

2 V±(r) = m
2 ω

2r2 ± ~ω(κ+ 1/2)

U(r) = r
a V±(r) = ~2

2ma2
(1± 2κa

r )

U(r) = γ ln(r/a) V (r) = ~2
2mr2

[
γ2 ± γ(κ− 1)

]
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Graphene
2D Pauli system

Graphene

Dirac cones characterize band structure of spinless electron/hole
near K (+) and K ′(−) edge of Brillouin zone.

H
(±)
D =

(
meffv

2
F A(±)

A†(±) −meffv
2
F

)
meff ≥ 0 introduces band gap at K and K ′

A(±) := vF [p1 ∓ ip2]

Fermi velocity: vF ∼ 106m/s

Orth. magn. field: ~B = B(x1, x2)~e3, B(x1, x2) = ∂a2
∂x1
− ∂a1

∂x2

SUSY structure:
M± = meffv

2
F, A(±) := vF

[
(p1 − e

c a1)∓ i(p2 − e
c a2)

]
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Graphene
2D Pauli system

2D Pauli system

Non-rel. partner Hamiltonians: m arbitray mass parameter

H
(±)
+ =

1

2mv2F
A(±)A

†
(±), H

(±)
− =

1

2mv2F
A†(±)A(±)

2D Pauli Hamiltonian:

H
(±)
± =

1

2m

(
~p − e

c
~a
)2
∓ g (±)

2

e~
2mc

B(x1, x2)

where g (±) = ±2

Two-dimensional Pauli Hamiltonian exhibits a SUSY structure for
g = 2 as well as for g = −2.
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1D Dirac systems

HD =

(
mc2 A
A† −mc2

)
on L2(R)⊗ C2, A = cp − iW (x)

SUSY pot.: W : R 7→ R cont. diff.
Witten model: W (x) =

√
2mc2Φ(x)

H± =
p2

2m
+ Φ2(x)± ~√

2m
Φ′(x)

For all exactly solvable H± =⇒ exact solutions for HD

Eff. Lagrangian:

L±eff =
m

2
ẋ2 − 1

2mc2
W 2(x)∓ ~

2mc
W ′(x)− µ2(ζ)

2m

Similar, all path integrable L±eff =⇒ resolvent for HD
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Quasi-classical approximation

The free particle

SUSY potential: W (x) = 0 , µ2(ζ) = ζ/c2 −m2c2

Promotor:

P±ζ (x ′′, x ′; t) =

√
m

2πi~t
exp

{
i

~

(m
2t
|x ′′ − x ′|2 +

t

2m
µ2(ζ)

)}
Iterated res.: g±(x ′′, x ′; ζ) =

i

2µ(ζ)c2~
exp

{
iµ(ζ)|x ′′ − x ′|/~

}
Resolvent:

G (x ′′, x ′; z) =
i

2µ(z2)c2~
exp

{
iµ(z2)|x ′′ − x ′|/~

}
×
[
icµ(z2)sgn(x ′′ − x ′)σ2 + mc2σ3 + z

]
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The harmonic oscillator

SUSY potential: W (x) = mcωx , µ2(ζ) = ζ/c2 −m2c2

Eff. Lagrangian: Leff =
m

2
ẋ2 − m

2
ω2x2 ∓ ~ω

2
+
µ2(ζ)

2m

P±ζ (x ′′, x ′; t) =

√
mω

2πi~ sin(ωt)
e∓iωteitµ2(ζ)/2m~

× exp

{
imω

2~

[
(x ′′

2
+ x ′

2
) cot(ωt)− 2x ′′x ′

sin(ωt)

]}
Iterated res.: By integration or alternatively

g±(ζ) = 1
2mc2

1

H0−
(
µ2(ζ)
2m
∓ ~ω

2

) with H0 = p2

2m + m
2 ω

2x2

g±(x ′′, x ′; ζ) = 1
2mc2

g0
(
x ′′, x ′; µ

2(ζ)
2m~ω ∓

1
2

)
harm. osc. resolvent
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The free particle
The harmonic oscillator
Quasi-classical approximation

Quasi-classical approximation

Non-relativistic SUSY-WKB formula: (unbroken SUSY)∫ xR

xL

dx
√

2m (ε− Φ2(x)) = nπ~

results in a

Relativistic SUSY-WKB formula:∫ xR

xL

dx
√
E 2 −m2c4 −W 2(x) = nπ~c

exact for all shape-invariant SUSY potentials W .
Similar for broken SUSY with n→ n + 1/2

Georg Junker and Akira Inomata Path integral representation for SUSY Dirac resolvents



HD =

Supersymmetric quantum mechanics
General SUSY Dirac Hamiltonian

Path integral representation of resolvent
2D Dirac and Pauli systems

1D Dirac systems

The free particle
The harmonic oscillator
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Summary and outlook

SUSY Dirac Hamiltonians appear in many physical systems

Closely related to non-rel. Schrödinger-type Hamiltonians

Relativistic spectral properties follow for non-rel. ones

May result in closed expression for the Dirac resolvent

Allow for a path-integral formalism a la Feynman

Non-rel. methods (e.g. quasi-classical approx.) applicable to
SUSY Dirac Hamiltonians
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