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I will review results on classification of quantum superintegrable systems
on twodimensional Euclidean space with higher order integrals. I will
discuss the connection with exceptional orthogonal polynomials, Painlevé
transcendents and the Chazy class of equations. I will discuss how their
symmetry algebras are associated with polynomial algebras and how
these algebraic structures and their Casimir operators can be used to
obtain the energy spectrum algebraically.
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Integrable and superintegrable, part 1

Definition

A Hamiltonian system (in n dimensions) with Hamiltonian H

H =
1

2
g ikpipk + V (~x)

is integrable if it allows n integrals of motion that are well defined,
in involution {H,Xa}p = 0, {Xa,Xb}p = 0, a,b=1,...,n-1 and
functionally independent.

A system is superintegrable if it admits n + k (with
k = 1, ..., n − 1) functionally independent constants of the motion
(well defined). Maximally superintegrable if k = n − 1.

QM : {H,Xa,Yb} are well defined quantum mechanical operators
and form an algebraically independent set.

Ian Marquette Superintegrability, special functions and representations



Integrable and superintegrable, part 2

A systematic search for superintegrable systems was started
some time ago.

The best known examples are the Kepler-Coulomb system
V (r) = α

r and the harmonic oscillator V (r) = αr2

representations, obtained algebraic derivation, Casimir related
to subalgebras

Pauli (1926), Fock (1935), Bargmann (1936), Sudarshun,
Mukunda, Raifeartaigh (1965), Barut (1965), Louck (1972),
Rasmussen, Salano (1979)

Jauch and Hill (1940), Baker (1956), Moshinsky (1962),
Barut (1965), Fradkin (1965), Louck (1965), Budini
(1967),Hwa (1966)
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H =
1

2
p2 − c0

r

With the following integrals

Mj =
1

2

N∑
i=1

(Ljipi − piLij)−
c0xj
r
, Lij = xipj − xjpi

i , j = 1, 2, ...,N. Moreover, [Lij ,H] = [Mj ,H] = 0

Mj , Lij generate a Lie algebra to so(N + 1)/so(N, 1)/e(N)

[Lij , Lkl ] = i(δikLjl + δjlLik − δilLjk − δjkLil)~
[Mi ,Mj ] = −2i~HLij , [Mk , Lij ] = i~(δikMj − δjkMi )
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Quadratically superintegrable systems : systematic
approach E2

Winternitz, Smorodinsky, Uhlir and I.Fris, (1966,1967)

H =
1

2
~p2 + V (x , y)

Aj =
2∑

i ,k=1

{f ikj (x , y), pipk}+
2∑

i=1

g i
j (x , y)pi + φj(x , y), j = 1, 2

Integrability is related to separation of variables in Cartesian,
Polar, Elliptic and Parabolic,

Superintegrability, 2 such integrals

Properties : multiseparability, exact solvability, degenerate
spectrum
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Results and generalization , part 1

VI = α(x2+y2)+
β

x2
+
γ

y2
, VIII =

α

r
+

1

r2
(

α

1 + cos(φ)
+

β

1− cos(φ)
)

VII = α(x2 + 4y2) +
β

x2
+
γ

y2
, VIV =

α

r
+

1

r
(βcos(

φ

2
) + γsin(

φ

2
))

Since 20 years many results and various generalizations,
Miller, Post and Winternitz (2013)

magnetic field, spin, families in n-dimensional curved spaces,
Dunkl, Calogero type, position mass dependent

One of the main aspect is the relation with algebraic
structures, special functions/orthogonal polynomials
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Quadratic algebras and superintegrable systems, part 1

Granovskii, Zhedanov and Lutzenko (1991, 1992), Vinet and
Letourneau (1995), Grunbaum, Vinet, Zhedanov (2016),
Sarah Post (2007,2009)

Daskaloyannis (1993, 2001, 2006, 2007, 2011), Quesne (2007)

Plyushchay, parafermion, deformed Heisenberg, hidden
nonlinear superalgebra, reflection, (1996,2000)

Miller, Kalnins, Kress (2005), ( structure theory ), Post
(2010) ( models, representations )

[A,B] = C , [A,C ] = αA2 + γ{A,B}+ δA + εB + ζ

[B,C ] = aA2 − γB2 − α{A,B}+ dA− δB + z .
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Quadratic algebras and superintegrable systems, part 2

There is a cubic Casimir operator, which can be exploited to
obtain algebraically the spectrum

K = C 2 − α{A2,B} − γ{A,B2}+ (αγ − δ){A,B}+ (γ2 − ε)B2

+(γδ − 2ζ)B +
2a

3
A3 + (d +

aγ

3
α2)A2 + (

aε

3
+ αδ + 2z)A .

It allows to get algebraic derivation of the spectrum via
various approaches
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Quadratic algebras and superintegrable systems, part 3

Construction of higher rank quadratic algebra

De Bie, Genest, Lemay, Vinet, Bannai-Ito algebra (2016), De
Bie, Genest, van de Vijver, Vinet, higher rank Racah algebra
(2016)

lliev (2016,2017) generic superintegrable system on the sphere
and symmetry algebra, Post (2015,2017) recoupling QR(9)

Hoque, Marquette and Zhang (2014,2015,2016,2017),
algebraic derivation of spectrum, Casimir operators and finite
dimensional unitary representation, Liao, Marquette and
Zhang (2018) , Marquette, Zhe, Zhang (2019)

The quantum energy levels display accidental degeneracy
explained by the finite dimensional unitary representations
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Quadratic algebras and superintegrable systems, part 4

The complex spaces admitting at least three 2nd order
symmetries, flat space, complex 2-sphere, the four Darboux
spaces, eleven 4 parameter Koenigs spaces

There are 59 2nd order superintegrable systems in 2D, under
the Stackel transform, the systems divide into 12 equivalence
classes

6 with nondegenerate 3-parameter potentials
(S9,E1,E2,E30,E8,E10), 6 with degenerate 1-parameter
potentials (S3,E3,E4,E5,E6,E14)

Contraction of the symmetry algebra of a 2D 2nd order
superintegrable system and connection with the the Askey
scheme, Wigner-Inonu contractions of the Lie algebras e(2,C)
and o(3,C), Miller, Kalnins, Post (2013,2014)

Quadratic algebras related by geometric contractions, Bocher
contractions of the conformal Lie algebra so(4,C) to itself ,
Escobar Ruiz, Kalnins, Miller and Subag (2016,2017)
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Summary

Many results on the classification 2nd order superintegrable
systems, many properties which make them interesting from
point of view of physics and mathematics

Conserved quantities which lead to quadratic algebras,
representations and spectrum can be calculated

Higher order superintegrable systems are also very exciting
and have connection to polynomial algebras, Painlevé
transcendents, exceptional orthogonal polynomials and rich
pattern of degeneracies

Before some results on Painlevé transcendents
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Summary

I. Marquette, M. Sajedi, and P.Winternitz, Fourth order
Superintegrable systems separating in Cartesian coordinates I.
Exotic quantum potentials, J.Phys.A Theor. and Math 50
315201 (2017)

I. Marquette, M. Sajedi, and P.Winternitz. Two-dimensional
superintegrable system from operator algebras in one
dimension, J. Phys. A : Math. Theor. 52 115202 (2019)

I Marquette and P. Winternitz, A New Painlevé conjecture,
Springer, Integrability, Supersymmetry and Coherent States,
103 (2019)

I.Marquette, Higher order superintegrability, Painlevé
transcendents and representations of polynomial algebras, J.
Phys. : Conf. Ser. 1194 012074 (2019)

Ian Marquette Superintegrability, special functions and representations



The Painlevé transcendents, part 1

The Painlevé transcendents arise in the study of ordinary
differential equations.

Painlevé found 50 equations whose only movable singularities
are poles. d2w

dz2 = F (z ,w , dwdz )

The most interesting of the fifty types are those which are
irreducible and serve to define new transcendents (Painlevé
transcendents )

The other 44 can be integrated in terms of classical functions
and transcendents or transformed into the remaining six
equations.

Painlevé (1900, 1902, 1910), Fuchs (1905), Gambier (1910)
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The Painlevé transcendents, part 2

P ′′1 (z) = 6P2
1 (z) + z

P ′′2 (z) = 2P2(z)3 + zP2(z) + α

P3(z)′′ =
P′3(z)2

P3(z) −
P′3(z)
z +

αP2
3 (z)+β
z + γP3

3 (z) + δ
P3(z)

P
′′
4 (z) =

P
′2
4 (z)

2P4(z) + 3
2P

3
4 (z) + 4zP2

4 (z) + 2(z2 − α)P4(z) + β
P4(z)

P ′′5 (z) = ( 1
2P5(z) + 1

P5(z)−1 )P ′5(z)2 − 1
zP
′
5(z) + (P5(z)−1)2

z2 (
aP2

5 (z)+b
P5(z) )

+ cP5(z)
z + dP5(z)(P5(z)+1)

P5(z)−1

P ′′6 (z) =
1
2 ( 1

P6(z) + 1
P6(z)−1 + 1

P6(z)−z )P ′6(z)2 − ( 1
z + 1

z−1 + 1
P6(z)−z )P ′6(z)

+P6(z)(P6(z)−1)(P6(z)−z)
z2(z−1)2 (γ1 + γ2z

P6(z)2 + γ3(z−1)
(P6(z)−1)2 + γ4z(z−1)

(P6(z)−z)2 )
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The Painlevé transcendents,part 3

Many of their properties have been studied in particular their
particular solutions

They find many applications in domain of mathematical
physics

Statistical mechanics, quantum field theory, relativity,

Symmetry reduction of various equations (Kdv, Boussineq,
Sine-Gordon, Kadomstev-Petviashvile, nonlinear Schrodinger).

The connection with quantum models and superintegrable
systems is much more recent
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Integral of Nth order

1D, Ranada (1997), Tsiganov (2000), Hietarinta (1984,1998)
2D, Drach (1935), Gravel and Winternitz (2002)
Post,Winternitz (2015), Escobar-Ruiz, Lopez Vieyra,
Winternitz, Yurdusen (2018)

X =
1

2

bN2 c∑
l=0

N−2l∑
j=0

{fj ,2l , pj1p
N−2l−j
2 }

Y = Y (N) +

bN2 c∑
l=1

N−2l∑
j=0

Fj ,2lP
j
1P

N−j−2l
2

Y (N) =
∑

0≤m+n≤N
ΛN−m−n,m,nL

N−m−n
3 Pm

1 Pn
2

Constrain, compatibility equation, other form for the integrals
in polar
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2D Superintegrable : 2nd and Nth, ongoing clasification

Cartesian : N=3, Gravel (2004), Marquette
(2006,2009,2009,2010), Marquette Winternitz (2007,2008)
N=4 : Marquette, Sajedi, and Winternitz (2017) ( exotic, non
exotic)
N=5 : Cartesian : Abouamal, Winternitz (2017), (doubly
exotic case)

N=3, polar : Tremblay and Winternitz (2010)
N=4, polar : Escobar-Ruiz, Lopez Vieyra, Yurdusen,
Winternitz (2017,2018) (exotic and non exotic)
Parabolic : Popperi, Post, Winternitz (2012), Marchesiello,
Post, Snobl (2015)

Families with integrals of arbitrary order : Marquette (2011)
(doubly exotic), two-dimensional anisotropic P4 and P5

Classification using 1D operator algebras, (N=2,3,4,5) :
Marquette, Sajedi, and Winternitz (2019)
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Cartesian and N = 3, part 1

B =
∑

i+j+k=3

Aijk{Li3, p
j
1p

k
2}+ {g1(x , y), p1}+ {g2(x , y), p2}

The constants Aijk and functions V, g1 and g2 are subject to :

(g1)x = 3f1Vx + f2Vy , (g2)y = f3Vx + 3f4Vy ,

(g1)y + (g2)x = 2(f2Vx + f3Vy )

g1Vx + g2Vy =
~2

4
(f1Vxxx + f2Vxxy + f3Vxyy + f4Vyyy )

+8A300(x1Vy − x2Vx) + 2(A210Vx + A201Vy )

The functions fi are polynomial involving the constants Aijk .
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Cartesian and N = 3, part 2

The 10 constants and 3 functions determined from a
(overdetermined ) systems of 4 equations.

The classical and quantum cases differ !

5 potentials are written in terms of Painlevé transcendents

Va(x , y) = ~2(ω2
1P1(ω1x) + ω2

2P1(ω2y))
Vb(x , y) = ay + ~2ω2

1P1(ω1x)

Vc(x , y) = bx + ay + (2~b)
2
3P2

2 (( 2b
~2 )

1
3 x , 0)

Vd(x , y) = ay + (2~2b2)
1
3 (P ′2((−4b

~2 )
1
3 x , α) + P2

2 ((−4b
~2 )

1
3 x), α)

Ve(x , y) = ω2

2 (x2+y2)+ ~2

2 P
2
4 (
√

ω
~ x , α, β)+2ω

√
ω~P4(

√
ω
~ x , α, β)

+ ε~ω
2 P

′
4(
√

ω
~ x , α, β) + ~ω

3 (ε− α)
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Cartesian and N=4, part 1

Y =
∑

j+k+l=4

Ajkl

2
{Lj3, p

k
1p

l
2}+

1

2
({g1(x , y), p2

1}

+{g2(x , y), p1p2}+ {g3(x , y), p2
2}) + l(x , y)

The quantities fi , i = 1, 2, .., 5 are polynomials

set of 6 linear PDEs for the functions g1, g2, g3, and l

If V is not known, system of 6 nonlinear PDEs for gi , l and V .

g1,x = 4f1Vx + f2Vy g2,x + g1,y = 3f2Vx + 2f3Vy

g3,x + g2,y = 2f3Vx + 3f4Vy g3,y = f4Vx + 4f5Vy
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Cartesian and N=4, part 2

`x = 2g1Vx + g2Vy +
~2

4

(
(f2 + f4)Vxxy

−4(f1 − f5)Vxyy − (f2 + f4)Vyyy + ...

`y = g2Vx + 2g3Vy +
~2

4

(
− (f2 + f4)Vxxx

+4(f1 − f5)Vxxy + (f2 + f4)Vxyy + ...

compatibility equation is a fourth-order linear PDE for V (x , y)

7 are written in terms of Painlevé transcendents

∂yyy (4f1Vx + f2Vy )− ∂xyy (3f2Vx + 2f3Vy ) + ∂xxy (2f3Vx + 3f4Vy )

−∂xxx(f4Vx + 4f5Vy ) = 0
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Cartesian and N=4, part 3

Va =− ~2δ(x2 + y2) +
a

x2
+ ~2

( γ

P5(y2)− 1

+
1

y2
(P5(y2)− 1)(

√
2α + α(2P5(y2)− 1) +

β

P5(y2)
)

+ y2(
P ′25 (y2)

2P5(y2)
+ δP5(y2))

(2P5(y2)− 1)

(P5(y2)− 1)2
+ ...

Vb =c2(x2 + y2)− 4

√
8c3

2~2yP4(− 4

√
2c2

~2
y)

+

√
c2

2
~(εP ′4(− 4

√
2c2

~2
y) + P2

4 (− 4

√
2c2

~2
y))

...

Vh =c1x +
~2

2
(
√
αP ′3(y) +

3

4
α(P3(y))2 +

δ

4P2
3 (y)

+ ...
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Connection with Chazy class, part 1

Equation of fourth order are obtained, can be integrated

Chazy-I equation, Chazy (1911), Cosgrove (2000), (2006)

Chazy studied the Painlevé type third order differential
equations in the polynomial class and proved that they have
the form

W ′′′ = aWW ′′ + bW ′2 + cW 2W ′ + dW 4 + A(y)W ′′ +
B(y)WW ′ + C (y)W ′ + D(y)W 3 + E (y)W 2 + F (y)W + G (y)

where a, b, c , and d are certain rational or algebraic numbers,
and the remaining coefficients are locally analytic functions of
y

Chazy classified the reduced equations into 13 classes,
denoted by Chazy class I-XIII
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Connection with Chazy class, part 2

Canonical form for Chazy-I equation and its first integral

W ′′′ =− f ′(y)

f (y)
W ′′ − 2

f 2(y)

(
3k1y(yW ′ −W )2 + ...

+ 2k7W
′ + k8y + k9

)
(W ′′)2 =− 4

f 2(y)

(
k1(yW ′ −W )3 + k2W

′(yW ′ −W )2 + ...

+ k9W
′ + k10

)
Bureau (1964) initiated a study of ODEs of the form

A(W ′,W , y)W ′′2 + B(W ′,W , y)W ′′ + C (W ′,W , y) = 0,
A, B and C are polynomials in W , and W ′

with coefficients analytic in y
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Connection with Chazy class, part 3

Cosgrove and Scoufis (1993) give a complete classification of
Painlevé type equations of second order and second degree

W ′′2 = F (W ′,W , y) where F is rational in W ′, and W and
analytic in y

integrating all of these equations in terms of known functions
(including the six original Painlevé transcendents)

There are six classes of them, denoted by SD-I, SD-II,...,SD-VI

The equation SD-I equation, splits into six canonical subcases
(SD-Ia, SD-Ib, SD-Ic, SD-Id, SD-Ie, and SD-If)

N=5, 5 of doubly exotic potentials in terms Painlevé type, one
confining type
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Polynomial algebra integrals 2nd and Nth order

Isaac, Marquette (2014)

[A,B] = C , [A,C ] =

bN2 +1c∑
i=1

αiA
i + δB + ε+ β{A,B}

[B,C ] =
N∑
i=1

λiA
i + ρB2 + ηB +

bN2 c∑
i

ωi{Ai ,B}+ ζ

Constraints from the Jacobi equation [A, [B,C ]] = [B, [A,C ]]

Realization as deformed oscillator algebras and Casimir

Recover for example quartic, Marquette (2013)

Applied to obtain spectrum of Lissajous models (EOP Jacobi),
Marquette, Quesne (2016), Integral of arbitrary order
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Cubic case ( N=3), part 1

[A,B] = C

[A,C ] = αA2 + β{A,B}+ γA + δB + ε

[B,C ] = µA3 + νA2 − βB2 − α{A,B}+ ξA− γB + ζ .

The Casimir operator

K = C 2 − α{A2,B} − β{A,B2}+ (αβ − γ){A,B}+ (β2 − δ)B2

(+βγ−2ε)B+
µ

2
A4+

2

3
(ν+µβ)A3+(−1

6
µβ2+

βν

3
+
δµ

2
+α2+ξ)A2

+(−1

6
µβδ +

δν

3
+ αγ + 2ζ)A

Ian Marquette Superintegrability, special functions and representations



Cubic case ( N=3), part 2

Daskaloyannis (1991,1993), Realization of the cubic algebra
by means of a deformed oscillator algebra {b†, b,N}

[N, b†] = b†, [N, b] = −b, b†b = Φ(N), bb† = Φ(N + 1)

There is a realization of the form :

A = A(N), B = b(N) + b†ρ(N) + ρ(N)b
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Cubic case ( N=3), part 3

Case β = 0 and δ 6= 0

A(N) =
√
δ(N + u), b(N) = −α(N + u)2 − γ√

δ
(N + u)− ε

δ

ρ(N) = 1, Φ(N) =
µδ

8
(N + u)4 + ...

Case β 6= 0

A(N) =
β

2
((N + u)2 − 1

4
− δ

β2
), b(N) =

α

4
((N + u)2) + ...

Φ(N) = 384µβ10N10 + ...
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N=3, Fourth Painlevé transcendent model, part 1

The integral A and B, A related to separation of variables in
Cartesian and B of order 3

[A,B] = C [A,C ] = 16ω2~2B

[B,C ] = −2~2A3 − 6~2HA2 + 8~2H3

+
ω2~4

3
(4α2 − 20− 6β − 8εα)A− 8ω2~4H + ~5c(α, β, ε)

The Casimir operator is given in term of the general formula,
but it needs to be rewritten in terms of the central element
only

K = −16~2H4 +
4~4ω2

3
(4α2 − 8α + 4− αβ)H2 + ...
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N=3, Fourth Painlevé transcendent model, part 2

Φ(x , u,E ) = 4ω2~4(−x−u+(
E

2~ω
+

1

2
))(x+u−(

−E
2~ω

+c1(α, β, ε)))

(x + u − (
−E
2~ω

+ c2(α, β, ε)))(x + u − (
−E
2~ω

+ c3(α, β, ε)))

We have to distinguish the two cases β < 0 and β > 0

Φ(0, u,E ) = 0, Φ(p + 1, u,E ) = 0

solutions of the form Ei = ~ω(p + 1 + di (α, β, ε))

unirreps correspond to physical solutions not for all values of
α, β

Marquette and Quesne (2016) : Connection between Hermite
EOP and generalized Hermite and Okamoto polynomials
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Constructive approaches

Direct approaches, lowest order integrals obtained do not
necessarily allow algebraic derivation

Many new constructive approaches have been proposed :

Integrals in terms of building blocks, factorized form,

Facilitates the construction of algebraic structures

Based on recurrence relations of special functions and
orthogonal polynomials, Kalnins, Miller and Kress
(2011,2012,2013), Marquette (2010), Vinet and Post (2012),
building block are ladder and shift operators

classical analog Miller, Kalnins and Kress (2010), Marquette
(2010,2012), Tsiganov (2008)
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1D operator algebra,part 1

Marquette, Sajedi, Winternitz : Constructive approaches to
generate superintegrable systems ( Cartesian )

Lx operator of nth order

Four types of 1D systems : Abelian (a), Heisenberg (b),
Conformal (c), Ladder (d)

[Hx , Lx ] = 0

[Hx , Lx ] = αx I

[Hx , Lx ] = αxHx

[Hx , Lx ] = αxLx
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1D operator algebra,part 2

Case (a) Hietarinta (1989,1998), for third order operators,
pure integrability (quantum)

Case (b) : Fushchych and Nikitin (1997), Gungor, Kuru,
Negro, Nieto (2015) (quantum/classical)

Case (c) Doebner and Zhdanov 1999 (quantum)

Case (d) Veselov and Shabat (1993), Andrianov, Cannata,
Ioffe and Nishnianidze (2000), Carballo, Fernández, Negro,
and Nieto (2004),Marquette (2011) (quantum), Marquette
(2010,2012) (classical)

role play these operators in context of superintegrability

also classical analog
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1D operator algebras, part3

H = Hx + Hy =
p2
x

2
+

p2
y

2
+ V1(x) + V2(y), A = Hx − Hy

Lx =
∑

fnxpx , Ly =
∑

fnypy

(b, b) : B = αyLx − αxLy

(c , b) : B = αyLx − αxHxLy

(d , d) : B = B+ − B− = (L†x)m(Ly )n − (Lx)m(L†y )n

(c , c) : B = αyHyLx − αxHxLy
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Recover : First, second, fourth, fifth Painlevé transcendents
potentials ( operator L up to order 5 ), equation of order 6 for
(d5), case with (P3)

Another type of reducibility, role of Painlevé property,
complementarity ( direct and constructive ), at order three all
are reducible, at order four most are directly connected to
these construction

already know that constructive approach do not provide the
lowest possible order integrals, here the nonlinear differential
equation can take different form ( also many ways to look at
ladder operators )

Abouamal, Winternitz (2017) ( another case not in term of
Painlevé transcendent)
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Construction type (d,d), part 1

A 2D system with separation of variables in Cartesian :

H = Hx + Hy = − d2

dx2
− d2

dy2
+ Vx(x) + Vy (y)

ladder operators that satisfy PHA

[Hx , L
†
x ] = αxL

†
x , [Hx , Lx ] = −αxLx

LxL
†
x = Q(Hx + αx), L†xLx = Q(Hx)

[Hy , L
†
y ] = αyL

†
y , [Hy , Ly ] = −αyLy

LyL
†
y = S(Hy + αy ), L†yLy = S(Hy )

αx and αy are constants while Q(x) and S(y) are polynomials

integrals of motion ( k1n1 + k2n2 )

n1αx = n2αy = α, n1,n2 ∈ Z∗
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Construction type (d,d), part 2

A =
1

2α
(Hx − Hy ), B− = Ln1

x L†n2
y , B+ = L†n1

x Ln2
y

ladder operators of a given order, the method allows to
generate integrals of motion of an arbitrary order in a
factorized form

taking b† = B+, b = B− and N = A− u (where u is a
representation dependent parameter that is determined using
further constraints)

[N, b†] = b†, [N, b] = −b,

b†b = Φ(N), bb† = Φ(N + 1), Φ(H, u,N) = Fn1,n2(A,H).
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Fourth Painlevé transcendent model : ladder and susy

Andrianov, Cannata, Ioffe, and Nishnianidze (2000),
Marquette (2009)

studied using two supersymmetric quantum mechanics

construction of a third order ladder

At most three of the six possible states annihilated by a− (ψi )
and a+ (φi ) in total, only three can be square integrable

ψi = f1(P4,P
′
4)e

∫
g1(P4,P′4), i = 1, 2, 3

φi = f2(P4,P
′
4)e

∫
g2(P4,P′4), i = 1, 2, 3

For some ranges of α and β values, H1 may admit one, two,
or three infinite sequences of equidistant levels, or one infinite
sequence of equidistant levels with either one additional
singlet or one additional doublet.
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Fifth Painlevé transcendent model : ladder and susy

Carballo, Fernandez, Negro and Nieto (2004), Willox and
Hietarinta (2003), Marquette (2011)

studied using two supersymmetric quantum mechanics

construction of a fourth order ladder

At most three of the six possible states annihilated by a− (ψi )
and a+ (φi ) in total, only three can be square integrable

ψi = f1(P5,P
′
5)e

∫
g1(P5,P′5) , i = 1, 2, 3, 4

φi = f2(P5,P
′
5)e

∫
g2(P5,P′5), i = 1, 2, 3, 4

For some ranges of α and β values, H1 may admit one, two,,
three, four infinite sequences of equidistant levels, or
combination infinite sequences of equidistant levels with
multiplet
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Example, part 1

Case α = 5, β = −8, f (z) = 4z(2z2−1)(2z2+3)
(2z2+1)(4z4+3)

and ε = 1.

V (x , y) =
ω2

2
(x2 + y2)− 8~3ω

(2ωx2 + ~)2
+

4~2ω

(2ωx2 + ~)
+

2~ω
3

From the cubic algebra we get unitary representations

φ(x) = 4~4ω2x(p+1−x)(x+3)(x+2), E = ~ω(p+
8

3
), p = 0, 1, ...

φ(x) = 4~4ω2x(p + 1− x)(x − 3)(x − 1), E = ~ω(p − 1

3
), p = 0

φ(x) = 4~4ω2x(p+ 1−x)(x + 1)(x−2), E = ~ω(p+
2

3
), p = 0, 1
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Example, part 2

The eigenfunctions for the x part consist of an infinite
sequence and a singlet state

ψn(x) = Nn(a†)ne
−ωx2

2~
x(3~ + 2ωx2)

(~ + 2ωx2)
, χ(x) = C0

e
−ωx2

2~

~ + 2ωx2

aψ0(x) = 0, aχ(x) = 0, a†χ(x) = 0 .

a = (∂ + W1(x))(∂ + W2(x))(−∂ + W3(x))
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Example, part 3

g(x) = ~(~ + 2ωx2)(3~2 + 4ω2x4)

W1 = −(−~+ 2ωx2)(9~3 + 27~2ωx2 + 12~ω2x4 + 4ω3x6)/g(x) ,

W2 = −(~− 2ωx2)(3~2 + 3~ωx2 + 2ω2x4)/g(x) ,

W3 = −ωx(−9~3 + 22~2ωx2 + 20~ω2x4 + 8ω3x6)/g(x) .

ψn,k = ψn(x)e−
ωy2

2~ Hk(

√
ω

~
y), E = ~ω(n + k +

8

3
)

φm = χ(x)e−
ωy2

2~ Hm(

√
ω

~
y), Em = ~ω(m − 1

3
)

This problem occurs for states related to 1-step,2-step
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I.Marquette and C. Quesne, New families of superintegrable
systems from Hermite and Laguerre exceptional orthogonal
polynomials, J. Math. Phys. 54 042102 (2013).

I.Marquette and C. Quesne, New ladder operators for a
rational extension of the harmonic oscillator and
superintegrability of some two-dimensional systems, J. Math.
Phys. 54 102102 (2013).

I. Marquette and C. Quesne, Combined state-adding and
state-deleting approaches to type III multi-step
rationally-extended potentials : applications to ladder
operators and superintegrability, J. Math. Phys. 55 112103
(2014).

I.Marquette and C. Quesne, On connection betwen quantum
systems involving fourth Painleve transcendent and k-step
extension related to EOP, J.Math. Phys. 57 101063 (2016)
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Ladder type (d) , factorization and EOP

Case (d) is rich and ladder operator for a given system are not
unique ( even for the same order )

Marquette and Quesne (2013,2014,2015,2016), Hermite and
Laguerre type III

Hoffmann, Hussin, Marquette, Zhong, (2017,2018,2019)

Carinena, Plyushchay (2016,2017), ABC ladder operators,
Inzunza, MS Plyushchay (2019,2019) extended in conformal
and superconformal

Intertwine with two nth-order differential operators A and A†

AH(1) = H(2)A, A = A(n) · · ·A(2)A(1)

A(i) =
d

dx
+ W (i)(x), W (i)(x) = − d

dx
logϕ(i)(x), i = 1, 2, . . . , n,

Ian Marquette Superintegrability, special functions and representations



Exceptional orthogonal polynomials

y0,y1, y2,.... are polynomials with deg yn = n

p(x)y ′′i + q(x)y ′i + r(x)yi = λiyi , i = 0, 1, 2, ...

p,q, r polynomials deg p ≤ 2, deg q ≤ 1, deg r = 0

Bochner (1929), Lesky (1962) : {yi} are Hermite, Laguerre
and Jacobi polynomials

Odake, Sasaki, Kamran, Milson, Gomez Ulate, Quesne,
(2008-2010), Post, Tsujimoto, and Vinet (2012), Gomez
Ulate, Grandati, Milson (2018) : Complete set of orthogonal
polynomials with gaps

Darboux-Crum, Krein-Adler transformation of differential
equation in context of quantum mechanics
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Families of superintegrable models

superintegrable systems from k-step rational extension

They can be combination of harmonic oscillator and singular
oscillator or themselves, 7 families of systems was generated

Here only 2D ”isotropic”, but in fact N-dimensional
generalizations exist ( and ”anisotropic” version )

Ha = − d2

dx2
− d2

dy2
+x2+y2−2k−2

d2

dx2
logW(Hm1 ,Hm2 , . . . ,Hmk

),

Ei ,N = 2N, N = νx + νy + 1

νx = −mk − 1, . . . ,−m1 − 1, 0, 1, 2, . . . , νy = 0, 1, 2 . . . .
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Degeneracies

direct calculation leads

deg(EN) =


k − j + 1 if N = −mj ,−mj + 1, . . . ,−mj−1 − 1,

for j = 2, 3, . . . , k,

k if N = −m1,−m1 + 1, . . . , 0,

N + k if N = 1, 2, 3, . . ..

pattern of degeneracies , bands of levels

recovered from polynomial algebra and finite-dimensional
unirreps

need to combine solution for total number of degeneracies,
there are as well non physical states that are obtained
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A second 1D Hamiltonian H(2), related by SUSYQM with H(1)

f (H(1)) = A†A, f (H(2)) = AA†,

AH(1) = H(2)A, A†H(2) = H(1)A.

A† and A ( n-th order ) H(2) admits a PHA ( b = AaA† )

ψ
(1)
ν+1

a
��

A //
ψ

(2)
ν+1

A†
oo

b
��

ψ
(1)
ν

a†

OO

A //
ψ

(2)
ν

A†
oo

b†

OO

we come back by the same path ( also for a† )

H(1)a 88
A -- H(2)

A†
mm
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Higher order SUSYQM

We consider nth-order SUSYQM

From seed solution ϕi (x) of the Schrödinger equation
associated with H(1)

ϕ(1)(x) = ϕ1(x), ϕ(i)(x) =
W(ϕ1, ϕ2, . . . , ϕi )

W(ϕ1, ϕ2, . . . , ϕi−1)
, i = 2, 3, . . . , n.

Here W(ϕ1, ϕ2, . . . , ϕi ) denotes the Wronskian of ϕ1(x),
ϕ2(x), . . . , ϕi (x)

V (2)(x) = V (1)(x)− 2
d2

dx2
logW(ϕ1, ϕ2, . . . , ϕn),
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State adding

V (1)(x) = x2, −∞ < x <∞,

State-Adding case : n = k seed functions among the
polynomial-type eigenfunctions φm(x) of H(1) below the

ground-state energy E
(1)
0

Associated with the eigenvalues Em = −2m − 1

φm(x) = Hm(x)e
1
2
x2
, m = 0, 1, 2, . . . ,

(ϕ1, ϕ2, . . . , ϕn)→ (φm1 , φm2 , . . . , φmk
)

Partner potential nonsingular if m1 < m2 < · · · < mk with mi

even (resp. odd) for i odd (resp. even)

V (2)(x) = x2 − 2k − 2
d2

dx2
logW(Hm1 ,Hm2 , . . . ,Hmk

).

Ian Marquette Superintegrability, special functions and representations



State deleting equivalence

E (2)
ν = 2ν+1, ν = −mk−1, . . . ,−m2−1,−m1−1, 0, 1, 2, . . . ,

ψ(2)
ν (x) ∝ W(φm1 , φm2 , . . . , φmk

, ψν)

W(φm1 , φm2 , . . . , φmk
)
, ν = 0, 1, 2, . . . ,

ψ
(2)
−mi−1(x) ∝ W(φm1 , φm2 , . . . , φ̌mi , . . . , φmk

)

W(φm1 , φm2 , . . . , φmk
)

, i = 1, 2, . . . , k .

State deleting : (at least) n = mk + 1− k bound-state
wavefunctions of H(1) as seed functions : (ϕ1, ϕ2, . . . , ϕn) to
(ψ1, ψ2, . . . , ψ̌mk−mk−1

, . . . , ψ̌mk−m2 , . . . , ψ̌mk−m1 , . . . , ψmk
)

V̄ (1)(x) = V (1)(x)

ψ̄(2)
ν (x) = ψ(2)

ν (x), V (2)(x) + 2mk + 2 = V̄ (2)(x)
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Ladder from Krein-Adler, Darboux-Crum

can go from H(2) to H(2) + 2mk + 2 along the following path

H(2)

c

66
A† //H(1) = H̄(1) Ā //H̄(2) = H(2) + 2mk + 2

The (mk + 1)th-order differential operator,
c = ĀA†,c† = AĀ†aPHAof mkth order, Q(H(2)) is indeed a
(mk + 1)th-order polynomial in H(2)

[H(2), c†] = (2mk + 2)c†, [H(2), c] = −(2mk + 2)c ,

[c , c†] = Q(H(2) + 2mk + 2)− Q(H(2)),

Qko(H(2)) =
k∏

i=1

(H(2) + 2mi + 1)

mk∏
j=1

j 6=mk−mk−1,...,mk−m1

(H(2)−2j −1),
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Pattern of the zero modes

ψ
(2)
ν wavefunctions are related to Xm1,...,mk

multi indexed
Hermite EOP of type III

The action of the lowering and raising operators can be
calculated

The action of c is given in both cases by

cψ(2)
ν = 0, ν = −mk − 1, . . . ,−m1 − 1, 1, 2, . . . ,mk −mk−1 − 1,

mk −mk−1 + 1, . . . ,mk −m1 − 1,mk −m1 + 1, . . . ,mk ,

cψ
(2)
0 ∝ ψ(2)

−mk−1,

cψ
(2)
mk−mi

∝ ψ(2)
−mi−1, i = 1, 2, . . . , k − 1,

cψ(2)
ν ∝ ψ

(2)
ν−mk−1, ν = mk + 1,mk + 2, . . . .
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unirreps, part 1

unirreps may be characterized by (N, s) and their basis states
by |N, τ, s, σ〉
σ = −s,−s + 1, . . . , s and τ distinguishes between repeated
representations specified by the same s( integer or
half-integer)

b†|N, τ, s, s〉 = b|N, τ, s,−s〉 = 0.

The σ is associated with each state forming this sequence

Using notation N = λn1n2 + µ with appropriate values of α
and µ, |N, νx〉 = |νx〉1|N − νx − 1〉2
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unirreps part 2

λ µ 2s N deg(EN)
−1 1, . . . ,mk −mk−1 0 1 1
−1 mk −mj + 1, . . . ,mk −mj−1 0k−j+1 k − j + 1 k − j + 1
−1 mk −m1 + 1, . . . ,mk 0k k k
0 0 0k k k

0 1, . . . ,mk −mk−1 1 µ+ k − 1 N + k

0µ+k−2

0 mk −mj + 1, . . . ,mk −mj−1 1k−j+1 µ+ j − 1 N + k

0µ−k+2j−2

0 mk −m1 + 1, . . . ,mk 1k µ N + k

0µ−k
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unirreps, part 3

λ µ 2s N deg(EN)

1, 2, . . . 0 λk mk + 1 N + k

(λ− 1)mk−k+1

1, 2, . . . 1, . . . ,mk −mk−1 λ+ 1 mk + 1 N + k

(λ)µ+k−2

(λ− 1)mk−µ−k+2

1, 2, . . . mk −mj + 1, . . . ,mk −mj−1 (λ+ 1)k−j+1 mk + 1 N + k

(λ)µ−k+2j−2

(λ− 1)mk−µ−j+2

1, 2, . . . mk −m1 + 1, . . . ,mk (λ+ 1)k mk + 1 N + k

(λ)µ−k

(λ− 1)mk−µ+1
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Concluding remarks 1

Higher order superintegrable systems are interesting , many
very nice algebraic structures, quadratic and more generally
finitely generated polynomial algebras, they share many
properties of the Lie algebras.

Classification, their Casimir would need to be obtained ( PBW
basis Jarvis ), Calogero models, generalized Coulomb (
Correa), models on surved spaces and Racah algebras ( Kuru
and Negro), Post and Ritter, tensor, realizations, differential
operators

Solution/Classification : special functions, exceptional
orthogonal polynomials which admit holes in the sequence of
polynomials, Painlevé transcendents, new transcendental
functions ( beyond )
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Concluding remarks 2

Many schemes of higher order analog of Painlevé,
classification of superintegrable systems related to these work
Chazy, Bureau, Cosgrove and Scoufis

Post and Ritter, P6 models still unsolved, Jacobi, Laguerre
EOP and P6 models

Berntson, Miller, Marquette, A new approach to analysis of 2D
higher order quantum superintegrable systems ; Notes on 3rd
order superintegrable systems on the 2-sphere ; ( P6 models )

Quesne, Marquette, extend using polynomial deformation
osp(2|2), osp(2m|2), generalization and construct their
Casimir operators,
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