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many paper of (C)PT-symmetric Quantum field theory

(2) In Non-Hermitian theory, there is something called
exceptional points and this is where all the interesting
things happens (e.g in classical optics).

Key observation (what we will talk about)

(1) Physical region in the parameter space (section 2)

(2) Explicit forms of Goldstone fields at exceptional points
(section 3)
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L CPT = ¢i(x) = (—1)1161(~x)

. Generalisation of [Alexandre, J.,Ellis,J.,Millington,P.,

Seynaeve,D.(2018).PhysRevD,98(4),045001.],
[Mannheim,P.D.(2019).PhysRevD,99(4),045006.]
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Comment

Some comments

n
Lo = Y1062+ amPle] — G012 + k(676151 — 67419)
i=1

(1) Our CPT is not standard. It is standard after Similarity
transformation.

(2) Different CPT if parameters are complex.

(3) Using similarity transformation = current is conserved
= Goldstone theorem holds for all n.

Another proof of Goldstone theorem for Non-Hermitian model is
in [Alexandre, J.,Ellis,J.,Millington,P., Seynaeve,D]
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(2) What is similarity transformation:

. From PT—-QM, nHn~' = hwhere h! = h, same energy
spectrum.

. We use generalisation of n in [Mannheim]
0 =1, ps 2] FNEFE0en(X0)gF [ a5 (X.0)xn(X0),

. M? is a canonical momenta of ¢.
. Need to assume equal time commutation relation.
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Standard Goldstone theorem
Our Model and procedure

(3) Why real?

(3) How do we know M? has real eigenvalues?:
. Standard argument from P7-QM.
. Given [PT,M?] =0 and PTv = &*v. PT =CPT.
N6y = MRPTv =PTM2v = PTAv = M*PTv = \ey
. In PT-QM, this is enough but in QFT we want positive
eigenvalues.

. Question: Positive region (Physical region) in parameter
space exist?(not done before). Can our model be empty?
(i.e no physical region)
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Parameter space U(1)-invariant vacuum
U(1)-broken vacuum

Recall our procedure

Complex Real
Expand around ’
Lalpinxi) = Lor  ——  Lop +0(¢%)
l
06 + M =0

(1) So we get different M? for each vacuums.
(2) We will focus on £3. so M? is 6 x 6.

(3) Parameters of L3 are
{my, mo, mg, iy, 12, g, €1, C2, C3, ki, ko }. We will fix all of
them except for o when plotting the eigenvalues.
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eigenvalues (Two 3 x 3 Jordan blocks with same eigenvalues).

16/30



Parameter space U(1)-invariant vacuum
U(1)-broken vacuum

U(1)-invariant vacuum

Let’s take the trivial vacuum ¢(®) = 0 (This is the only U(1)
invariant vacuum). At this vacuum we have 3 degenerate
eigenvalues (Two 3 x 3 Jordan blocks with same eigenvalues).
Here are some examples

16/30



Parameter space U(1)-invariant vacuum
U(1)-broken vacuum

U(1)-invariant vacuum

Let’s take the trivial vacuum ¢(®) = 0 (This is the only U(1)
invariant vacuum). At this vacuum we have 3 degenerate
eigenvalues (Two 3 x 3 Jordan blocks with same eigenvalues).
Here are some examples

Eigenvalues
Physical Region

I\ Physical Region

16/30



Parameter space

U(1)-invariant vacuum

Let’s take the trivial vacuum ¢(®)

U(1)-invariant vacuum
U(1)-broken vacuum

= 0 (This is the only U(1)

invariant vacuum). At this vacuum we have 3 degenerate
eigenvalues (Two 3 x 3 Jordan blocks with same eigenvalues).

Here are some examples

Eigenvalues Eigenvalues
f/ | o |
. J )
N R A

— (g Ty T 662,02 )=(1.4.5,2.0.8,1.-1.1)

— (my.mz.my.p.c.Cz.62)=(14.52.15-1-1.1)

16/30



Parameter space

U(1)-invariant vacuum

Let’s take the trivial vacuum ¢(®)

U(1)-invariant vacuum
U(1)-broken vacuum

= 0 (This is the only U(1)

invariant vacuum). At this vacuum we have 3 degenerate
eigenvalues (Two 3 x 3 Jordan blocks with same eigenvalues).

Here are some examples

Eigenvalues Eigenvalues
[ )
. J )
N R A

— (g Ty T 662,02 )=(1.4.5,2.0.8,1.-1.1)

— (my.mz.my.p.c.Cz.62)=(14.52.15-1-1.1)

. No physical region for left one — theory is empty.

16/30



Parameter space U(1)-invariant vacuum
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U(1)-invariant vacuum

Let’s take the trivial vacuum ¢(®) = 0 (This is the only U(1)
invariant vacuum). At this vacuum we have 3 degenerate
eigenvalues (Two 3 x 3 Jordan blocks with same eigenvalues).
Here are some examples

Eigenvalues Eigenvalues
— R — R
/ I r/ I \
|‘ 1ol \ ( 10F \I
= = M2 = M2
— (my.m3.m3,10,64.62.63)=(1.4.5,2.0.81.-1,1) — (my.mz.my.p.c.Cz.62)=(14.52.15-1-1.1)

. No physical region for left one — theory is empty.

. Where are physical regions?
16/30
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U(1)-invariant vacuum
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Parameter space U(1)-invariant vacuum
U(1)-broken vacuum

U(1)-invariant vacuum

Eigenvalues

g e = Eigenvalues
5 N
Ve - N\ 20
/ ‘\‘ 15
[ E \ )
w\ = | 10F
>

35 H2

r
o
!

w

Physical Region Physical Region
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Parameter space U(1)-invariant vacuum
U(1)-broken vacuum

U(1)-invariant vacuum

Eigenvalues

. = ~S Eigenvalues
/ \
yd anl N 20k
/ \
/ \ 5F
I} E \ o Exceptional Point
| i | 10
\ /
N A 5F CPT broken
n n - R e
.= o T2 A | M2
L i i ko 25 30 35 N2

. So at exceptional point and beyond, [PT,M?] # 0 or
PTv #e%v
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Put a constraint on the parameter ;.1 so that two eigenvalues
are always zero.
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U(1)-invariant vacuum

Put a constraint on the parameter ;.1 so that two eigenvalues
are always zero.

Eigenvalues
205 B .,
10F
ef Zero Exceptional Point
] 2 e 4 ,U2

Physical Region

. CPT is broken at ZeroEp, EP and beyond EP.
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Parameter space U(1)-invariant vacuum
U(1)-broken vacuum

U(1)-invariant vacuum

Put a constraint on the parameter ;.1 so that two eigenvalues
are always zero.

Eigenvalues
251 )
a0f B
150 \‘\,‘ Exceptional Point
0L
Zero Exceptional Point
1 2 > ol 27
Physical Region|

. CPT is broken at ZeroEp, EP and beyond EP.

. Mass matrix is NOT diagonalisable at EP and Zero EP,
This will give us headache in section 3
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Next we look at U(1) broken vacuum.
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Parameter space

U(1) broken vacuum

U(1)-invariant vacuum
U(1)-broken vacuum

Next we look at U(1) broken vacuum. We have one zero
eigenvalues (Goldstone) and 5 distinct eigenvalues so we see
more intricate diagrams. Here are some examples.

Eigenvalues Eigenvalues
— TaH2
Eigenvalues Eigenvalues
L — |
‘ ‘
I S A DX
> o L L
‘ ‘
Eigenvalues Eigenvalues
‘
//
s o e 2

Eigenvalues

)

S

e | I

Eigenvalues

‘ e e )
i i b

and more ...
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Parameter space

U(1) broken vacuum

U(1)-invariant vacuum
U(1)-broken vacuum

Next we look at U(1) broken vacuum. We have one zero
eigenvalues (Goldstone) and 5 distinct eigenvalues so we see
more intricate diagrams. Here are some examples.

Eigenvalues Eigenvalues Eigenvalues
C — ) o
R T N )
'/ | [
1 —E =k [ I
w2 Eigenvalu Eigenval
Eigenvalues igenvalues igenvalues
L —— & I
| ] - )
e e
‘ ‘
Eigenvalues Eigenvalues
| - = and more ...
) 7//
o w e

Let’s focus on one.
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U(1) broken vacuum

Eigenvalues
10

Eigenvalues

. Bounded between two EP.
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U(1) broken vacuum

Eigenvalues
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Eigenvalues
he 0845 0.550 08 1-5-34-12
5 e
e e oy e SR SEELEPP
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. Bounded between two EP.
. Does not contain Zero EP in the physical region.
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Eigenvalues
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. Bounded between two EP.

. Does not contain Zero EP in the physical region.

. Recall, Goldstone theorem is proven for non-Hermitian
model.
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Parameter space U(1)-invariant vacuum
U(1)-broken vacuum

U(1) broken vacuum

Eigenvalues
10

Eigenvalues
©l 0 -.< 0.550 [ 5'55 0 :'-SJJZ
0 § /_,/
ey o sy e ]
i =E 052 l.?f< :Ifl 058 080 o062 ose f‘JZ

. Bounded between two EP.

. Does not contain Zero EP in the physical region.

. Recall, Goldstone theorem is proven for non-Hermitian
model.

. Question: Can we define Goldstone field everywhere in

the parameter space?
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Goldstone bosons at exceptional points

Diagonalising mass matrix

Recall that the action after similarity transformation and
expansion around some vacuum looks like

’
S = /Zauqﬁzaﬂcb —~ %CDTIMZCD + O(9®)
- /—;chI(D + MO + ...
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Diagonalising mass matrix

Recall that the action after similarity transformation and
expansion around some vacuum looks like
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— /_;qﬂz(m + MO + ...

Let’s say we can write the mass matrix like M? = TJT ' then
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Goldstone bosons at exceptional points

Diagonalising mass matrix

Recall that the action after similarity transformation and
expansion around some vacuum looks like

s = /;auqﬂzaﬂcb — JOTIM + O(6?)

— /_;qﬂz(m + MO + ...
Let’s say we can write the mass matrix like M? = TJT ' then
STT(O+ M)y =" IT(O+NT o = (WHT (O + J)0"

Forms of J, ¥f and ¥t at (zero) exceptional points are
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0
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Diagonalising mass matrix

R L
J Y Y
PT-Symmetric | Diagonal PR ol
Contains R L i no Jordan block
EP Jo&dan block ¢R x ¢L f/f rgwgr c%llumkn
ontains if no Jordan blocl
Zero EP Jordan block @Z} X d}l at i row or column

Where J = diag(0, }, .. .)

0
Jep =

So we can define g, = /¥yl everywhere except at zero

exceptional point! recall Wg, = (6¢(9))7Z¢ from proof of

Goldstone theorem
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Defining Goldstone

Explicit forms of Goldstone at PT-symmetric regime and at the

EP are
symmetric | ¥Gb = ﬁ(*f@a — Cakim3p2pp + Kikop?12xs)
At EP wa KCams)\e( X1 — m3u26g02 + M§V2X3)
symlinTetric Det(T) = koA A (N4 — A—)N?Hg
At EP Det(T') = kmg)e
Where k = cocsmam3 + v* and pe is a value of p when
. Yap is ill-defined when Ay = 0,A_ = 0, = A_ g = O or
p2 =0

. g, is ill-defined when x = 0, m3 =0 0r A\e =0
. These Goldstone fields are related to symmetry generators
vab = 3y (60(0)TT0.
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Eigenvalues Eigenvalues
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Goldstone bosons at exceptional points

Where is it?

Good News: One can avoid the zero exceptional point if we
consider the following theory

Eigenvalues Eigenvalues
1000 100

800

[ eoop

apo b

There is no zero exceptional point within the physical region so
for this theory we can define Goldstone everywhere (even at
edges) in the physical region.
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Goldstone bosons at exceptional points

Where is it?

But if you are interested in the zero exceptional points, then one
can consider the following theory.

10

In this theory we have zero exceptional point within the physical
region (at the edge). Eigenvalues at up = 1.2 are
{0.441699, 3.40854, 3.40857,0.0704341,0.431723}
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bounded between (zero) exceptional points and singularity.
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Conclusion

(1) We found that the physical region in the parameter space
exist in the non-Hermitian theory but they are usually
bounded between (zero) exceptional points and singularity.

(2) Goldstone fields can be defined in the CPT-regime and at
the exceptional point but not at the zero exceptional point.

(3) We can avoid zero exceptional point in some physical
region.
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Future work

(1) Non-abelian symmetry

(2) Local symmetry (Higgs Mechanism)
(3) More complicated interaction term
(4) Different similarity transformation
(5) Different CPT

(6)

6) And many more ...
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Conclusion/Future work

Thank you

Thank you for your attention
Gracias
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