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Stationary Systems and
Factorization Method
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Factorization method

e Initial system

d ELAM):E,” E(AM):E, n:o,l,....
H=——5+V(x), Hign) =Eldn), ™ ’
H=AA+¢ A:—i-FﬂM(X)
? dx ’ . °

e<E, B:R-R. . .
e Final system
Hy, = AAT+e,  Hy,loam) = EQW|gam) | A

d’ /
H>\M = d 2+VAM(X) VAM(X) (X)+2/8M

Spectral information

1
VE,—€

)
o) = Algny, Aflge™) =0, A
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Example: Harmonic oscillator

It is well known that the harmonic oscillator potential
Vi(y) = w2y? has finite-norm eigenfunctions and eigenvalues of
the form

e—W1y2/2
on(y) = ———=Hn(vVw1y), E,=wi(2n+1), n=0,1,...,

2nnly /7 /wy

along with the general non-physical solutions u(y) associated with
an eigenvalue ¢,

— w22 1— 1 33— 13
U(y):e iv°/2 |:1F1 (TG’E’WIy2)+)\VW1yIF1( 46 §,§,W1y2):| .

Jr
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New potential and eigenfunctions

Figure: (a) New stationary potential potential Vl(’\)(y) for e = —1 and
A =1,-1,0. (b) Density distribution for ¢ = —1 and A = 1.
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Time-dependent phenomena




Time-dependent Darboux transformation

Consider the Schrodinger operators
S1 =100 + 0xx — Vi(x,t), Sp=i0t + Oxx — Va(x, t),
altogether with the respective solutions
S16(x,t) =0, Sp(x,t)=0.
There exists a operator L such that the intertwining relation !
LS, = S,L,

holds, where

L="¢ [ax - UX} , L=L(t), u=1u(x,t), (0= —Tu+Vi(x, t)u.
u

1Bagrclv, Samsonov and Shekoyan, Russ. Phys. 38 (7) 1885.
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The intertwining relation allow us to relate the potentials and the
solutions as

Va(x, t) = Vi(x, t) + i% — 2(InT) e

V0o t) = Lol 1), T= .

Imposing the reality condition on the potential Vi(x,t) we get

<In ;)Xxx =0, /(t)=-exp <2/dt|m [(In U)xx]> :

Va(x, t) = Vi(x, t) — 20 In [T].
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Time-dependent oscillators

The initial potential Vi(x,t) = Vi(x) = x? and a seed function? of
the form

U(x, t) = B(t)eW¥F(x,t), f(x,t) = f(b(t)x), f(x,t):R =R,

leads to

b(t)2x?

flx,t)=e "7~ [kalFl (u, %; b2(t)x2) + kp b(t)x 1F1 (1/+ ; b2(t)x ﬂ

Thus, the new time-dependent potential, and its solutions are found
through

Vo(x, t) = Vi(x, t) + i% —2(InT)xx

Yoot = Lo 1), T=

2K. Zelaya and O. Rosas-Ortiz, J. Phys.: Conf. Ser. 833 {2017} 012022,
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For v = 1/2 the new potential is given by

2 0 e~ HB%
1(x, t) = x (1) — 4kob(t) 5 2k, + /TkpErf(b(t)x) | ’
b(t)I* 2ka>\/Ekb, 6122’72+Cg, Co,Cla’YG]R-

Ve + vy cos(4t)

Notice that v = 0 leads to

0
b(t)=1, Vi(x)=x*-2-— 4k"$

e
2k, + ﬁkbErf(X)] ’

which is the potential obtained by Mielnik 3.

3B. Mielnik, J. Math. Phys. 25 (1984) 3387.
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Non-symmetrical case

X
(a) (b)

(=)be(+)

Figure: (a) Time-dependent potential Vi(x, t) and (b) wavefunction
modulus |1y(x)|? (solid-blue), |11(x)|? (dashed-green), |t/2(x)|?
(dotted-red) for k, =2, ky =1, cg =1 and ¢; = 10 at several times t.
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Symmetrical case

A PT symmetrical potential is obtained for k, = 0,

G 1, 5
f(x,t)=e "2 ky1Fy I/,E;b(t)X .

10F— T T Dz 1 IF
0_ ,,,,,,,,,,, S~ L R l |
e
L s e
Y S S SN N
-4 -2 2 4 -4 2 2 4

X
(@) (b)
(=)br(+)

Figure: (a) Time-dependent potential Vi(x, t) and (b) wavefunction
modulus |1y(x)|? (solid-blue), |11(x)[? (dashed-green), |2 (x)|?
(dotted-red) for v =2, k, =2, ky =0, ¢ =1 and ¢; = 10 at several
times t.
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Point Transformations |
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Form-preserving point transformation

Consider the dimensionless Schodinger equation of the form

.Ou 0%u
o T Ty +Vily)u, uv=u(y,7).
By using the appropriate geometrical transformation*, the previous
equation can be mapped into
oY 1 0%
— = ————— 4+ Wo(x, t = t).
Iat m(t) 8X2 + 2(X7 )1/}7 ¢ w(x7 )
The latter is achieved by means of the general transformation
functions

y=y(xt), 7=7(x,t), U(y,7)=K(x, t;).

45. Willi-Hans, Invertible Point Transformations and Nonlinear Differential Equations, World Scientific
Publishing, 1993, Singapore.
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By computing the total derivatives dv/dx, di/dt and d?¢/dx?
we obtain the following relations:

dp 0Ky 0K dydp Ot oy
dx  ovox  ox  oxdy oxor
dp 0Ky 0K dydp Ot oy
a9t _op ot Lot otoy  otor
dx? oYOx Ox  O? o) Ox2  Ox?

Ox
2.7 2 g2 2 g
_28y87'8¢ +<8y> 3¢+<8T> 0%

T Toxoxoxdr | \ox) ay?  \ox) or2
Py oy 0% oY

Yooy Toor
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From the latter we obtain that the conditions 92K /91? = 0 and
O071/0x = 0 remove the undesired term, leading us to the simplified
transformation functions

K(x,t, ) = f(x,t), 7=r1(t).

After some arrangements we obtain the partial differential equation
of the form

2
Oy 1 0% + [,’yt _ (2& _ yXX)] oy + Vo(x, t)y,

I@t 2 0x? Vs Y2 f oy Ox
where
fr . o\ K Tt fx
Va(x, t) = _’ft + <’j:: +7_t})//):?> i é? + e Vi(y(x,t)).




Form-preserving point transformation

By comparing both Shrodinger equations we obtain the necessary
conditions to compute f(x, t), y(x, t) and 7(t), leading us to®

Wty =00 = [

(o 1
U(x, 1) = el axte) f u(y (. £),7(1)).
o
W = O-;Y - M’y’
with o(t), v(t) and &(t) determined from the relation held

between the potentials,

Vily(x,t)) | uW, ,
02 + 4o X 20
Moreover, the inner product is such that

(WP (D)W (7)) = (P ()M (1)) .

5 . . . . .
K. Zelaya and O. Rosas-Ortiz, Quantum Nonstationary Oscillators: Invariants, Dynamical Algebras and
Coherent States via Point Transformations, Submitted to Physica Scripta.
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An invariant operator

From the eigenvalue equation associated with the stationary
potential Vi(y), we can easily obtain an invariant operator
related with the time-dependent potential V,(x,t). That is,
92 o W2 oW 52
2 @2" i —— = ——x + —x? ©n
Ox

+o(iox —iW) Oen

8X 2 4 2 4

+ Va(y(x, t))en = Enen,

nW, 2
onlx, £) = ,( 52 4 W x+77 /¢n (x, 1))

Alternatively, the latter can be written as h(t)|¢on(t)) = En|en(t)),
with /(t) an invariant operator of the form

7 w2 X
b(t) = 2P X2 70X Py T X o WP e Vs (”) ,
g

with {X, P} = XP 4+ PX the anticommutator.
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10:0,(y,0) == 0, () + V1 (VT (¥,7)

Ui(n=e 7

B e Point
Un(y,0=e """ $u(y) Transformation.
=08, )+ VI Y)=End(Y)
Point
V Transformation v
Unx=e 7 Vg, (x0)
L(OG(X,D=Endn(x,t) 100 (3,0 ==0 (X0 Va(X,00(x,0)

Kevin Zelaya Joint work with O. Rosas-Ortiz and V. Hussin 19 /31



Non-stationary oscillators

Consider Vi(y) = w2y? as the initial potential and the
eigenfunctions

—wiy?/2
only) = —— o Hy(Vwiy), En=w(2n+1), n=0,1,..,
2nnl\/m/wy

with ¥, (y,7) = e=™(@n+1)74 (). By using the point
transformation, and after some arrangements, we obtain the new
time-dependent potential

Va(x, t) = 4Q%(t)x® + F(t)x,
together with the conditions held by the transformation functions
. 2 W12
F(t) + 4Q°(t)o(t) = 403(t) ,

w0 =20 -5 [ e FEn().

(1) + 4Q% (e (1) = 2F (1),
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Invariant and solutions

The solutions for the parametric oscillator are given by
_ i (2nt1)r(e) _ 1 " Wo bt 2c®
Yn(x,t) = e on(x,t), 7(t) o arctan {4W + o)l
where
. . X+
onl 1) = el G-t -2 (e [T VI C)]
g 2nnly /7 /wa

ey

are eigenfunctions of the Invariant operator

2 2
0”2 W, 2l 2, Wuol oW
h(t) =—=P, —£ =) x XP + PX) + —P,
b (t) e X+< 2 tw U2> + 2 ( + PX) + .

A 2 Y W2 59
*( 3o T ) X+ (Wi )

with eigenvalue wi(2n + 1).
It is worth to mention that the parametric oscillator® is recovered by fixing
V(t) = F(t) = 0.

6H. R. Lewis and W. B. Riesenfled, J. Math. Phys. 10 (1863) 1458
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New family of time-dependent potentials |
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New family of time-de
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Family of time-dependent oscillators

Initial Stationary model:

Vi(y) = wiy’ +28u(y), Bu=—=,
— _ 7w12y2/2 1—c¢ 1 2 3—¢ l § 2
v(y)=e A= 5wy ) AV R (== 5 5wyt )|

Time-dependent counterpart:
2

Vo(x,t) = Qz(l‘)x2 + F(t)x — 2% log v(y(x,t)),

Y(th):%’:)(t)'

2 52 ag wy 2 oo

. 2 2
+ (2% - %))@ (%+WT) + 207 F(X, t),

2

19} _
]:(X7t):_ﬁlnv(y(x7t)) )
x—X
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Frequency profiles. Case Q%(t) = Q3

e Case 4Q%(t) = Q%

o*(t) = ¢ + a1 cos(4Qt + ¢) ,

with ¢, co,c1 € R and ¢ > ¢ to produce a zeroes—free and real-valued
function o(t) at each times.

Figure: Time—dependent potential for 4Q%(t) = Q* =1, co =3, a1 = 2,
e =—5and A = 1.2. In the panel (a) we have considered the values ~(t) =0,
whereas in (b) we used o =1, 71 =0and in (c) %0 =0, 1 = 1.
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Figure: (First row) The solid—blue, dashed—green and dotted—red curves
represent the times t = /4,7 /2,37/4 for (a), t = 7/8, /4,37 /8 for
(b) and t = 0,7/8,7/4 for (c). (Second row) Probability densities
1p$) (x, £)[? for n=0(solid—blue), n=1(dashed—green) and
n=2(dotted-red).
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Case Q2(t) = Q; + Qtanh(kt)

e Case 40°(t) = Q1 + Qo tanh(kt).

2
o?(t) = 2aRe(52(t)) + 24/ + 15 |51,
kg2

i _i —ip, 1—ip|1—z
51(t) = (1 — z) 25+ (1 + z) " 25~ 1 F; ,
G1(t) =(1—2) 2 (1+2) 21<l—ig+(t) 3 )
Q, 1 Ql—l—\/Q%—Q%
=+ =/ 2tV e = tanh(kt
ge =nE s H=Y 3 , z=tanh(kt),

with »Fi(a, b; ¢; z) the Hypergeometric function.

Figure: Behavior of ¢(t) (solid-blue) for 4Q3(t) = Q1 + Qatanh(kt) with
k=1/2, 9 =15 Q=10 and a = 1/2.
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(d)

Figure: Parameters fixed at wy =1, Q3 =15, Q, =10, vo =y = 1/2,
A=1,a=k=1/2 and e = —5.
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Conclusions

@ A simple and elegant method to construct time-dependent
models has been achieved through the point transformations.
In this form, the spectral information, among other properties,
of a given stationary initial system are inherited to the new
time-dependent model in a straightforward way.

@ The transformation can be applied in a similar fashion to
non-Hermitian models like the Swanson oscillator’” both in the
stationary and non-stationary regime.

o By considering different constrains on the transformation, it is
possible to construct time-dependent mass models® such as
the Caldirola-Kanai oscillator, among others. PDM models are
also achievable by considering more complex constrains.

@ Point transformations can be extended to construct nonlinear

models such as the Schrodinger-Eckhaus equation®.
7M. S. Swanson, J. Math. Phys. 45 (2004) 585.

K. Zelaya, Non-Hermitian and Time-dependent systems: Exact solutions, generating algebras and
nonclassicality of states, PhD Thesis.

9F. Calogero and S. De Lillo, J. Phys. A: Math. Gen 25 {1%32) L287.
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Thanks
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