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Introduction

Discrete symmetries in 1-d QM: Discrete transformations which
preserve the 1-d Schrodinger equation shape.

i) Time reversal symmetry.
Some quantum systems have: i) Parity symmetry.

iif) Charge Conjugation

Applications: They give us new solutions!— New systems by
means of Darboux transformation (DT)?.

Motivation!

Study and apply discrete symmetry in the Alfaro, Fubini and
Furlan model with harmonic term?, in the context of D.T.

2. V. B. Matveev and M. A. Salle, (Springer, Berlin, 1991).

3. V. de Alfaro, S. Fubini and G. Furlan, Nuovo Cim. A 34, 569
(1976).



Darboux transformation (D.T)

Construct a new system in base of a well known problem...

Hi=—L Vi Hpy=—3 + Vi 200" (W, .., ¢n))
_ W@, thnbn) _
Uy — Vi = V(V(im,...,wn)n = Apa
E\— E[n],)\:E)\v E[nL,-IOI'Il,...,n

Where A[n] = AnAn_l .. A1 and A,‘ = Ai—lwi%ﬁ:
i=0,1,2...,nand Ag = 1.

ker A[n] = span{¢1,...,¥n}

Intertwining relations

— 1 — T
A[n] H1 = H[n]A[n] and A[H]L[n] = HlA[n]-




(0 + 1) Classical conformal mechanics

The (0 + 1) conformal mechanics model

1/, &
= _ = > _1/4.
S= /Edt L 2(q q2>’ g 1/4

Noether charges:

D= %—Hgt, K:%—2Dt—Hgt2,
The Conformal algebra #
{D,Hg;} = Hg, {D,K} =—-K, {K,Hg} =2D,

4. S. Fedoruk, E. lvanov and O. Lechtenfeld, J. Phys. A 45, 173001
(2012) [arXiv:1112.1947 [hep-th]].



Introducing an scale

By doing the change of variables °

q dt

- . dr=—
vu+ vt + wt? u—+ vt + wt?

The conformal action becomes in
g
S(ly]) = /dT <y’2 — Wy y2> +B.T.
with w? = (4wu — v2) > 0.

5. S. J. Brodsky, G. F. de Teramond, H. G. Dosch and J. Erlich, Phys.
Rept. 584 (2015) 1 [arXiv:1407.8131 [hep-ph]].



Noether charges
(p +w?y +f) p=y,

(ypcos(2wT) + (2wy? — Hgw 1) sin(2wT))

He =

I\)Il—l

D=

l\)ll—l

K= % (y2 cos(2wT) — ypw ™t sin(2wT) — Hgw ™2 (cos(2wT) — 1)).

4

They satisfies the Newton Hooke algebra ©7

{Hg, D} = —(Hg — 2w°K),  {Hg K} =-2D

{D,K} = -

6. A. Galajinsky, Nucl. Phys. B 832, 586 (2010) [arXiv:1002.2290
[hep-th]].

7. K. Andrzejewski, Phys. Lett. B 738, 405 (2014) [arXiv:1409.3926
[hep-th]].



The “regularized” quantum conformal mechanics model

Quantum generators (h=1,x = \/wy ,w = 2)

d? ,  v(v+1)

HV:—@—FX +T7 1/2_1/2,
2
1
et (Lgx) LoD
dx X2

These generators satisfies the s[(2,R) algebra

[H,,CE] = +4CF, [C,,Cl]=8H,.

_ 2n! v+1 p(v+1/2) —x2/2
. m Yy, n(x) = \/rur%)x Lh (x)e :

B Yyn(x) = Yo [* ﬁ

with E, , =4n+42v 4+ 3.
8. A. M. Perelomov, Theor. Math. Phys. 6, 263 (1971).

Solutions



The discrete Klein-4 group in the AFF model

The time dependent Schodinger equation

0? 5, v(r+1) .0
<_ax2 X7+ X2> o(x, tiv) = igo(x. tiv),
preserve its form under the transformations

pr:v—-—v—1, p2:(X,t)—>(iX,—t),

P3 = P1p2 = P2p1 -

which satisfies
pi=p=p3=1.
— Ky = {1, p1,p2,p3} is a Klein-4 group.

At the level of stationary Schrodinger equation

p2: (x, E) = (ix,—E).




Action of the K-4 Group on the eigenstates

* p1(tny) = r(n#ril/z)ﬁg—u—l/2)(xz)e_xz/z =1y 1,

pl(En,l) =4/ - 2v + 1.

* po(thny) = \/%ﬁgﬁl/z)(_%)exz/z = Y
) =

P2(En,u _En,u
* p3(7/1n7u) - ﬁﬁg’_y_l/m(_X2)eX2/2 = w—n,—l/—lv

P3(En,7u71) = *En,fz/fl-

Careful!: In the case v = ¢ — 1/2 with £ = 0,1, ..., the factor
Mn—v—1/2) - cowhenn<(—1/2. J




The special case v = ¢ —1/2

By means of the identity

I gy = C plo=my),

m! nl m

on can show the relation
p1(Yne—1/2,m) = (=1)"1_1/2.n—0, n>4¢,

P1(En b —1/2) = Ep_yy_1/2-

Figure: Action of p; on eigenstates. The red states are “annihilated”.



If we ignore the normalization constant, we can construct the
non-physical solutions

r 3/2
Yme—1/2 == p1 (\/Ww¢m,Z—1/2> ;

2m!

m=0,1...,¢—1.

and we had also the relation
Yo—1/2,0-1-m < p2(Vo—1/2,n) 5

723—1/2,,1 o p2(VYo—1/2,0-1-m) 5



Conformal symmetry as a Darboux chain

For the case v > —1/2 the kernel of the ladder operators are

ker CE = span{t, 40, %140} ,

On the other hand, by using D. T.

Scheme System | Intertwining operator
(Yv0.¥—v—10) | Ho+4 -
(wy7_07¢_l/—1,—0) Hl/ — 4 _Cl‘j‘l‘

which implies
Cop=— W (40¢—v-1,0,9)
Y W(@u00—v-10)
W@ —0,¢-v-1,-0,9)
W(y,—0,%—1-1,—0)

where ¢ is an eingestate of H,,.

Cro=



The case v = —1/2 and the Confluent Darboux

transformation (C.D.T)

In this case the kernel of the ladder operators are

ker Cli/2 = span{t1/2 10, Q-1/2 40}

where

Q12,40 = (a+ — In(x))¥_1/2,+0

are Jordan states (a1 is a constant) which satisfies

HVQV,:EI‘I = wu,in

By using the (C.D.T)°

Scheme System | Intertwining operator
(V12,0 Q1/20) | Hipp +4 —Ci )
(Y1/2,-0,2-1/2-0) | H1ijo — 4 —C;,

9 A. Schulze-Halberg, Eur. Phys. J. Plus 128 (2013) 68.




The action of CF on the complete set of eigenstate

The picture is summarized in the following diagram

b) Case v #0—1/2
@ - N
(ONO) [
Sz N
N ¢\ v\
(D LDeee| @ OO
A L Mot
X N N
QRO 0 @ @
& N NN — — — =
&
N S ? e 2?
Hsnd -t O
s NG N —>

Figure: Action of CI on the states. The red/blue market states are
annihilated by red/blue arrows.



Rational extended potentials and selection rules

Selection Rules of states:

) {afY = (Vo Yot 1s - YotV fmt1)-
i) {al°} = (Vy—sys- -1 Pr—sp)-
i) {7} = (V= (uem)—tn0> Cptmom—mms - - - O~ (tm)—1,nys Cptm,ny—m)-
where —1/2 < ¢4 <1/2.

* When 1 = 0 we have deformations of the half-harmonic
oscillator.

* When 11 =1/2 we have {v,} = {a,’f’f\rl/z} with
/,' =ni—m-— 1.
* When p = —1/2 we have W(y_1/2) = 0 — Repeated states!.

V.




By means of D.T we obtain the systems

Scheme System gaps
(Y T Hyom +4m+g,(x) | 12+ 8k
{a°} | Hogm +2m+1f,(x) 0
{v} | Hugm+4n+hyim | 8+4k

where k is the number of adjacent pairs of states in the scheme,
and f,, g, and h, , are rational functions.

Vis)
\ o
300\
\ /6/
P — —=
10 \ A C& A-B
VA o av "o
| 00 I WY A ‘ -
1\\/ N3 4 5 *
_10,

Figure: A rationally extended potential obtained by {af4} = (v,,.2, 1, 3).



The corresponding rational functions has the following proprieties
* gy, f,, and h;+m does not have zeros in RT.
* g, f,, and h, 4, are zero in x = 0 and in x = oo.
* f, is a convex function.

h,+. does not vanish when ;= —1/21.

hy . should by

W({7.}) = Cons(u) W, m(x) where Cons(su = —1/2) = 0
Wism(x) # 0.




The transformation which provide us the system

H_1joxm+4n+h_1oim,
in reality correspond to the C.D.T with the scheme

{’Y} = (¢—1/2+m,n17 Q—1/2+m,n1—ma o 77p—1/2+m,nNQ—1/2+m,nN—m) )

and one can show that

W(tyt)
el (p+1/2)N x WHh-



The scheme (¢, 12,%,2) with —1/2 < v < 1/2 in blue and
(Y_1/22,2_1/2,2) in red

Vi) o,
40 7 B
v=0
2 5 — v=1/2
X
1 2 3 3
-20 .
x
-40 | 5 .
Vin o,
150 7 — =048
v=0.495
5
— v=0.499
T
1 2 3
1
B x
150 - - -

Figure: Potential and ground state in dependence of v.



Darboux duality

In the non-half-integer v case! , for a given scheme

{A+} = (wl/,kl) o 771Z)V,kNl ’ ¢—V—1,l17 ey w—u—l,h\b)

exist a “dual scheme” A_ (states p,(ty,n) with a = 2,3 only)
which satisfies

W(AL) o e D WALY, N = max(Ng, Np).

A_ is constructed using diagrams like the following

) 5 o 1 1 2 2 b) 6 o 1 1 2 2 3 3
o000 @ @ OO0 00O e @
o O 0 0 o O 0 0 0 o
2 2 1 1 0 0 3 3 2 2 a1 1 0 0

Figure: "Mirror diagrams”. The numbers n indicate states ¢, , and i
indicate states ¢)_,_1 , states.

!In the half integer v case we include Jordan states.



Spectrum generating operators

By means of D.T we have

Scheme | System | Intertwining operator
+
{A} H(-i-) A(+)
{A_} Hio A(f)

Intertwining operators satisfies
- _ - + _ +
A =HwAL), At =HAL),
and the relation

Hy — Hoy = AE(ny + 1), AE =4.



One can construct the operators

— _ pa— pEat — _a— oAt
A =ALGAL), Bl =AGGAG),

- _ A At +_ A at
C=ALAL, CT=ALAL),
which satisfies

M), F5il = FRFSE,  [Fo, FS1=Pa(H),

al| FFf R,
1] A AE
2 | B AE
3] CF | AE(ny +1)

and P,(¢) are polynomial function in (.



Non-linear Newton-Hooke algebras

Constructing dynamics integrals of motions by

FE— e Mot Fretot = ¢TRFE,

By take the linear combinations

(]-';‘ - F;) & f;' -l—f; + 2H(i)

Da= R 2= R?
we obtain
R2
[H(+), Da] =i < H(i)) [H(x), Ra] = —2iD,,
[Da, Ra] = 7(733(7'[( )) - 2RaH(i) + 3R3ﬁa)'

The commutators [D,, D], [Da, 8| and [Ra, Rp| are in general
different of O!. J




Darboux duality and super conformal algebra

By means of D. T. we have

Scheme System Intertwining Operators
1/11/70 Hyr1+2 A(_+) = (g( +x— V;rl
¢u,—o Hysm—2 A(_) = dix — X — VTH

we can construct

fo_
He _ A(+)A(+) = 7‘[”+1 —2v—1 0
v 0 AlgAs =M, —2v=3 |’
b _ AAL) = Hy +2v+1 0
v 0 AAC =H,+2v+3 |7

Er=4n, Er=4n+4v+6.



H: — Exact supersymmetry.

7'[,[3 — Broken Supersymmetry.

They are not independent

L gy 03
RV—4(HV Hu)_2

The rest of the generators of the osp(2,2) algebra are given by 1

0 A 0 A
Ql S- —
v ( 4+ (0+) > ) 5 ( 4+ (0) > )

(+)

(v+1)I.

2 1_ - 1
Q= IO‘3Q S, =io3S,,

ct 0
+ v+1
9o = (o c,,i)'



The Lie superalgebraic relations

(17, Ro] = [H7, Q71 =0,

[Hs,G1=+4G,,  [G,.G)]=8H; —16R,,
[Hs, S]] = —4ie*S.,  [R., Q)] = —ie*Qy,
[R,, 8] = —ie?bSP
G, , Q1 = 2(S] +ie?*Sp), G, Q)] = 28] — ie®*Sy),
G, S]] = 2(Q) — i Q?),
G, 851 = —2(Q) + i Qp),
{Q2, 08} = 20%PHE . {S82,8°} = 20°°(HE — 4R,),
{90, 80 =6°°(G,) +G,) +ie®(G) = G,).



The Klein-4 group and superconformal mechanics

Transformation p; First, one can see that f = f~! defined as

HE - HE—4R, =HE, R,—-R,,
Gt —gf, ol -s;,
Q12/_>837 Sié_in 83_>Ql2/7

is an automorphism. Then, the application on the generators p;
correspond to

p1(0,) = 01f(Op-1)01 .

* For v # —1/2, the transformed generator satisfies de
superconformal algebra, but the new Hamiltonian is in broken
phase.

* For v = —1/2 the transformed Hamiltonian is just
al(Hi1/2)01 which is in unbroken phase.




Transformation p;: By directly application we have

pa(H) = =MD, pa(Gr) =-GF, p(R)=R,,
IOZ(Qll/) = _i857 p2(Q12/) = —I.Sg,

The generators satisfies the conformal algebra, but the
“Hamiltonian” of the system has negatives energies (not physical).




Klein 4 group is related with the conformal symmetry.

The action of ladder operators on eigenstates (conformal
symmetry) can be understood as Darboux transformations.
Half integer values of v have special proprieties at the level of
eigenstates.

Application: new rationally extended potentials and spectrum
generating ladder operators.



Figure: The mountain and the man...



Thank you very much!
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