TOPOLOGICAL NANOPHOTONICS VINCENZO GIANNINI

EM www.GianniniLab.com

Acknowledgments

Paloma Arroyo Huidobro

Derek Lee

Peter Haynes

My INTERESTS

Phonon Polaritons

Topological Nanophotonics

Quantum Plasmonics

Condensed Matter Theory

TOPOLOGICAL NANOPHOTONICS

Topological Quantum Dots

Experimental evidences

Topological Plasmonic Chain

Protected Hot-Spots

MOTIVATIONS

Robustness of <u>subwavelength</u> modes against:

- 1. Unidirectional light propagation
- 2. Low threshold lasing
- 3. No scattering from sharp bending
- 4. Disordered domain

A perspective on topological nanophotonics: Current status and future challenges

TOPOLOGICAL PLASMONIC CHAIN...

$$\frac{1}{\alpha(\omega)}\mathbf{p}_n = \sum_{j=1}^N \mathbf{G}(\mathbf{r}_n, \mathbf{r}_j)\mathbf{p}_j$$

$$G_{\text{long}}(r_{nj},\omega) = \frac{2e^{ikr_{nj}}}{4\pi\epsilon_0} \left(\frac{1}{r_{nj}^3} - \frac{ik}{r_{nj}^2}\right)$$

$$G_{\text{trans}}(r_{nj},\omega) = \frac{-e^{ikr_{nj}}}{4\pi\epsilon_0} \left(\frac{1}{r_{nj}^3} - \frac{ik}{r_{nj}^2} - \frac{k^2}{r_{nj}}\right)$$

SSH MODEL: PLASMONIC CHAIN

$$\alpha^{-1}p_n = \begin{cases} \frac{2}{4\pi\varepsilon_0} \left[\frac{p_{n-1}}{(d-t)^3} + \frac{p_{n+1}}{t^3} \right], & \text{for } n \text{ is even} \\ \frac{2}{4\pi\varepsilon_0} \left[\frac{p_{n-1}}{t^3} + \frac{p_{n+1}}{(d-t)^3} \right], & \text{for } n \text{ is odd} \end{cases}$$

$$p_n(k) = \begin{cases} p_A(k)e^{ik\frac{n}{2}d}, \\ p_B(k)e^{ik\left(\frac{n-1}{2}d\right)} \end{cases}$$

1

CW Ling et al., Opt. Express 23, 2021 (2015)

SSH MODEL: PLASMONIC CHAIN

Chiral Symmetry $\sigma_z H \sigma_z^{-1} = -H$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\begin{bmatrix} p_A \\ p_B \end{bmatrix} \quad \begin{array}{c} \text{Eigenvector with} \\ \text{eigenvalue } E \\ \hline \\ \hline \\ \hline \\ p_A \\ -p_B \end{bmatrix} \quad \begin{array}{c} \text{Eigenvector with} \\ \text{eigenvalue } -E \\ \end{array}$$

SSH MODEL: PLASMONIC CHAIN

TOPOLOGICAL PLASMONIC CHAIN

Article

Topological Plasmonic Chain with Retardation and Radiative Effects

Simon R. Pocock,^{*,†}[©] Xiaofei Xiao,^{†©} Paloma A. Huidobro,[†] and Vincenzo Giannini^{†,‡,§}

- TE and TM are different
- Long range interaction break the chiral symmetry
- Not Hermitian Hamiltonian
- Band are complex
- Retardation Induced Phase Transitions

TOPOLOGICAL PLASMONIC CHAIN

Pocock et al., ACS Phot. 5, 2271 (2018)

TOPOLOGICAL PLASMONIC CHAIN

Joined chains with 20% rms disorder

Pocock et al., ACS Phot. 5, 2271 (2018)

PLASMONICS WITH TOPOLOGICAL INSULATORS

Light Topological Insulator Nanoparticle

- Bulk insulator
- Topological protected conducting states on the surface

WHAT DO WE EXPECT...

- Strong THz EM enhancements
- Protected particle plasmons
- Nano-sources for non-local and non-dipolar transitions
- Topological Quantum dot

LIGHT + TOPOLOGICAL INSULATOR NANOPARTICLE

LIGHT + TOPOLOGICAL INSULATOR NANOPARTICLE

...the perturbation (light) **induces a time dependent surface charge density**!

$$\sigma_{abs} = 4\pi R^3 \frac{2\pi}{\lambda} Im \left(\frac{\varepsilon_{in} + \delta_R - 1}{\varepsilon_{in} + \delta_R + 2}\right) = \left[\int_{AR} \frac{t}{t} \int_{R} \frac{1}{1} \int_{R} \frac$$

Fermi Energy and Radius dependence Siroki et al., Nature Comms., 12375, (2016)

SURFACE TOPOLOGICAL POLARITON

Siroki et al., Nature Comms., 12375, (2016)

EXPERIMENTAL EVIDENCE OF STOP MODES

Stefano Lupi, Sapienza University of Rome Cecilia Mattevi, Imperial College London

Under Review

TOPOLOGICAL NANOPARTICLE LESING

RETARDATION INDUCED TRANSITIONS PHASE

PLASMONIC CHAIN: PROTECTED HOTSPOTS

TOPOLOGICAL QUANTUM DOTS

TOPOLOGICAL PHOTONICS: RICH PHYSICS

Thank You

TOPOLOGICAL QUANTUM DOTS (STOP MODE)

TOPOLOGICAL NANOPARTICLES

- Topological surfaces states are a bulk property!
- Do we have enough bulk in a nanoparticle?

PHYSICAL REVIEW MATERIALS 1, 024201 (2017)

Protection of surface states in topological nanoparticles

Gleb Siroki,^{1,*} Peter D. Haynes,^{1,2} Derek K. K. Lee,¹ and Vincenzo Giannini^{1,3}

TOPOLOGICAL INSULATOR NANOPARTICLE

Quantized Bands

A is a constant entering surface Dirac equation that determines the energy spacing of surface states

PHYSICAL REVIEW B 86, 081303(R) (2012)

Fan Zhang,* C. L. Kane, and E. J. Mele

PHYSICAL REVIEW B 86, 235119 (2012)

Spherical topological insulator

Ken-Ichiro Imura,¹ Yukinori Yoshimura,¹ Yositake Takane,¹ and Takahiro Fukui²

...+LIGHT

- A simple system (Sphere, Bi₂Se₃)
- A simple perturbation (circularly polarized light)
- Time dependent Perturbation Theory to the Imura simplified four-band Hamiltonian of Bi₂Se₃

SURFACE TOPOLOGICAL POLARITON (STOP MODE)

SToP mode:

Interaction of α phonon and surface states

Siroki et al., Nature Comms., 12375, (2016)

SURFACE TOPOLOGICAL POLARITON (STOP MODE)

- Rabi Splitting (g>0.1)
- Total Screening
- Quantum behaviour at room temperature...???

Siroki et al., Nature Comms., 12375, (2016)