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Brief review of the flavour structure of the Standard Model

G. C. Branco and D. Emmanuel-Costa hep-ph/1402.4068

Gsm = SU(3)e x SU(2)L x U(1)y
Gauge interactions determined by covariant derivative

Dy = 9y —igL*GY —igT'Wj| —ig'yB,,

i = (’j;j) (3,2.1/6)

Uir (37172/3)
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e; .

e (1,1,—1)

There are no right-handed neutrinos:

Weak hypercharge Y = 0 — T3
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Brief review of the flavour structure of the Standard Model

Spontaneous breakdown of electroweak gauge symmetry into
electromagnetism

SU(3)e xSU2)L x U(1)y — SU(3)c x U(1)em. Higgs scalar field:

Most general gauge invariant renormalisable scalar potential

2
V(e)=n"9"9 +A(¢"9)
For A >0 the potential is bounded from below

For u*>0 onehas (0/¢|0)=0

0
For  u2<0 onehas 0[910) = (_)
V2

Spontaneous breaking of electroweak symmetry



Brief review of the flavour structure of the Standard Model

V(|2]) Vii®l)

||

||

(@) A >0, u>>0 b) A >0, u> <0

U(1) of electromagnetism remains unbroken:

1 1
oz e ((8)+ 6069
0
owo- (2
V2
ei“Q<10>:[1+iaQ+---] <10>:<10>
\/EV %V ﬁv

Electric charge is conserved in the SM



Brief review of the flavour structure of the Standard Model

In the 2HDM electric charge is not automatically conserved. In general

(0[91]0) = <%V1) ’ 0192107 = (\%vzem) T.D. Lee

Need to choose a region of parameter space of the potential that does
not violate electrical charge.

The same applies to Supersymmetric models

Comment: hypercharge is chosen in such a way as to lead to the correct electric charges

1 1 1
37376

Puzzle



Brief review of the flavour structure of the Standard Model

Convenient parametrisation to describe SSB

G+
d) B \%(V + H + iG())
The scalar fields G* and G, are massless states, the so-called Nambu-Goldstone bosons.

Brout-Englert-Higgs mechanism:

The charged bosons are absorbed in the longitudinal components of Wf ‘

The neutral boson becomes the longitudinal component of Zu
/
My = % Zy :cOSGWWi—sinGWBu tan By = &
8
1% MW
M, = 2 12— —
“ \/g T8 2 cos By

State orthogonal to Zy

Ay = cosOy By + sinGWWﬁ

photon remains massless



Brief review of the flavour structure of the Standard Model

Fermion masses and mixings

Bare mass terms for fermions are not allowed due to gauge symmetry
m(V Vg + Ul

Suppose that one builds a Grand Unified Theory G containing the SM
G could be for instance SU(5) or SO(10)

Since fermions masses are not invariant under the gauge group of the SM fermions do
not acquire mass in the breaking of G into the gauge group of the SM

This breaking usually occurs at a very high scale and the gauge bosons associated to
the broken symmetry acquire mass at this high scale V>>v

Within the SM all fermion masses are protected by gauge symmetry



Brief review of the flavour structure of the Standard Model

Fermion masses and mixings (cont.)

In the SM fermions acquire mass through the Yukawa interactions

Yukawa interactions

~% = (Ya);; Qi Quir + (Ya),;; Gir $ dir + (Vo) lir ¢ eig + Hee.,

O = iTQQbT

Y., Y; and Y, are arbitrary complex matrices in flavour space




Brief review of the flavour structure of the Standard Model

Fermion masses and mixings (cont)
Once a gauge transformation is performed in order to absorb the
Nambu-Goldstone bosons

— 2y = (my);; wiguig + (mg),;
(Yu)ij _ | (Yd)ij — | (Yé)ij _

€;
\/i L

Exercise: In the Standard Model there are no Higgs mediated Flavour changing neutral
currents. Explain why.

e,-RH —+ H.c.

Quark and lepton mass matrices

v
mg = —=Yg, my=—2Y

% 1%
m, = —=Y,, =
V2 V2 V2

arbitrary complex matrices

Gauge invariance does not constrain the flavour structure of the
Yukawa couplings



In the SM there are no Higgs mediated
Flavour Changing Neutral Currents at tree level



Brief review of the flavour structure of the Standard Model
Fermion masses and mixings (cont)

Yukawa couplings are the only couplings that can be complex

Mass terms:

0.0 —=0 ;0 0 0
—Zn = () wigu; g + (ma);; dipdi g + (me),; @ipei g

the mass terms are diagonalised through biunitary transformations

The charged weak current is of the form:

— e = [P + VI ed] Wi + He..

V2

We are still in what is called a weak basis

Weak basis transformations are transformations that leave

the kinetic energy terms invariant as well as the gauge
couplings of the fermions. The mass terms look different.

THE PHYSICS IS THE SAME



Brief review of the flavour structure of the Standard Model
Fermion masses and mixings (cont)

—0 _
_ogm — (mu)lj Mlgqu + (md) diLd?R T (mg)ij eige?R

A \/_ [ulLy“d + V,-L}/“ e,ﬂ W,f + Hec..

Most general weak basis (WB) transformation
up =Upuy;  up="Up f.é
d) =Up dy;  dy=Ug u
e%teeL,, ey = U B;

The mass terms and the Yukawa couplings change but the physics does not change. Why?
You will soon see why.

Important to note that textures zeros imposed in the mass matrices are no longer visible.
Symmetries are no longer apparent. This renders the use of WB invariants very important

Exercise: Show that there is no loss of generality in choosing a WB where the mass
matrices are Hermitian

Exercise: Show that there is no loss of generality in choosing a basis where up quark mass
matrix is real diagonal (the same applies separately to the down quark mass matrix)



Brief review of the flavour structure of the Standard Model
Fermion masses and mixings (cont)

_ —0 _
—Ln = (mu);; uigu?R + (ma);; diLszR + (my);; eige?R

Diagonalisation of the mass terms:

ut u __ Aq;
uig = Ui‘u,-L; uig = U}éu,-R, ny > Ur'm, Up = diag (muamcamt) 3
0 d . 0O _ 7/ T .
diL — UL diLa diR — UR diRa mg — Ug mdUg = dlag(md,ms,mb) ,
0 e . 0 __ gye .
ei; = Uy eir; eip = Ugeir, my — UmegUﬁ = diag (mg,mu,mf) .

The fields uy r,dr r,er g are thus the mass eigenstates

In the mass eigenstate basis the charged currents become:

oo = S u UL UL dp + VR U en| Wi+ Hee, v = Urug

V2
V is the Cabibbo-Kobayashi-Maskawa matrix

U; is physically meaningless why?



In the SM neutrinos are strictly massless,
as a result there is no leptonic mixing



Brief review of the flavour structure of the Standard Model
Fermion masses and mixings (cont)

Answer: Since neutrinos are massless in the SM one can always redefine them in
such a way that this matrix is rotated away

vi — v =Uf vy
The electromagnetic and the neutral currents are not affected by the transformations that
diagonalise the mass terms
In a weak basis:

2 _ I 1—0 —0 _ _
T =5 (WP ) + T ] — 5 |V d) + dp v df | — [E 7" el + 2 ef]

In the mass eigenstate basis:

2 1 1— _
JH == {EL}/“Ui‘TUi‘uL—I—ﬁR}/“U}éTUﬁuR} —§ {dL’)/uUzﬂUgdL—FdR’}/ngTUng}

c.m. 3

— (@' Ut U ew + ek ¥ U Uger |



Brief review of the flavour structure of the Standard Model
Fermion masses and mixings (cont)

Neutral currents Lagrangian in a weak basis

8

Neutral Currents Lagrangian in the mass eigenstate basis

Flavour Changing Neutral currents are naturally absent at tree level in the SM



No tree level Z-mediated Flavour Changing Neutral Currents

Example 1. The decay Kg — Wt U~ has a branching ratio extremely suppressed, with respect to
the decay Kg — e V,. If FCNC existed they would have branching ratios of the same order of
magnitude which are shown in figure 2.

e
d uw-
_ ¢ Ve
-~ ¢
s > > u
d : d s ut

(a) KB —s e v, (b) Does not exist at tree-level in SM



In summary

In the SM there are no Z mediated Flavour Changing neutral currents at tree level

As we have seen there are also no Higgs mediated FCNC at tree level

FCNC appear at loop level and are, therefore, suppressed. They have played a
crucial role in testing the Standard Model and in putting bounds on New Physics
through meson mixing, rare K decays, rare B decays and CP violation.

All flavour changing transitions in the SM are mediated by charged weak currents
with flavour mixing controlled by the CKM matrix

CKM has small off-diagonal elements



Fundamental properties of the CKM matrix

G. C Branco, L. Lavoura, J. P. Silva "CP Violation" Oxford University Press 1999

Vid Vus Vup d
Fec=(aci) 1" Ve Ves Voo | | s| Wi +He

Via Vis Vip bJ,

The CKM matrix is complex but not all its phases have physical meaning

ug = e'%u, . d, = e'%d|

There is freedom to rephase the mass eigenstate quark fields. As a result:
V(;Ck p— i(@k—gDa) VOCk

Only rephasing invariant quantities have physical meaning.
The simplest rephasing invariants of the CKM matrix are moduli and "quartets”

‘VOCk| Q(xiﬁj - Vaivﬁj V;]Vﬁ*l with a # B and i # j.

Higher order Invariants can in general be written in terms of these .



Fundamental properties of the CKM matrix (cont)

Example of the construction of quartets

Vud Vus Vub
( \ Vus Vcb Vu*b V;; — Quscb

V= Vcd Vcs Vcb ?

Vcd Vts Vt;k[ V;; — chts

\Vt/ v, Vi

Exercise: Show that Vai Vg Vyi V&‘j ng V;‘i = Qmﬁ/j Q|fiaj :
Bi

CP Violation

Within the SM the only source of CP violation is the phase of the CKM matrix



There is a large redundancy in the number of parameters contained in
mass matrices of the up and down quark still in a weak basis

Each 3X3 complex mass matrix will contain 18 parameters

A weak basis transformation: wd = Uy, u?; Wl = U% oY

L> uR
0o 0. 0o d 0
0O  gre 0. 0  7171e 0O
e;, = Uy er; er = Ug €g

allows to choose a weak basis where one of the matrices is real diagonal
and the other is Hermitian

. mipy miz mi3
1.C. My = diag(m,, m., m;) my 1S Hermitian mg = | mj, my mo3

L | miz Mz M33
the only rephasing invariant phase 1s

(p — arg(m12 mj3 m>1k3)

Number of independent parameters: three up quark masses, six moduli in the down
quark mass and one phase. This equals the number of physical parameters.



CP Violation
L = og(cp) + &

CP can be investigated in the fermion mass eigenstate or in a weak basis

In the fermion mass eigenstate

m, = diag (m,,mq,m;) ,

my = diag (mg,mg,myp) , (COW™(1,7) (CP)™ = _eicﬁvw_u(t’_?)’
(CP)WH(t,7) (CP)™' = —e oW+t (s, —7),

Most general CP transformation (CP) ug(t,7) (CP)~! = %P Ccul (r,—7),

(CP) di(t,7) (CP)™" = ey Ci] (1,—7),

Constraint: Vi, = w+a—baly,

There is CP violation in the SM if and only if any of the rephasing
functions of the CKM matrix V is not real



CP Violation

Orthogonality between the first and third column of V

Vua Vi +Vea Vi + ViaVy, = 0

Unitarity triangle

The internal angles:

o = arg
p = arg
’}/E arg |
and:

The area of the triangle is given by A = |v,,V} | >

—Via Vb Vaa Vip) = arg(—Qubra)
—VeaVib Vi, Vigl = arg(—Orpea)
—Vua Ve Vo, Vi = arg(—Qepud) are rephasing invariant
a+p+y=arg(—1)=n (mod 7) by definition
h

h=1V,qV,|siny using the above definition of gamma, we obtain:

1

A= > Im Qyqcp| Since all |Im Q| are equal then all triangles have the same area.



CP Violation

Experimentally we know that:

1 A A° .
Verm| =~ | 4 1 22 with A ~ 0.22
A3 A% 1
The six unitarity triangles are: (only two are not squashed)
: : - 20 A3 4 A?
ViaVis + Vea Vg + ViaVis = 0, Tys .
23 23 ¥ ImQ| = | Via Vs Vea Ve | siny.
VgV + Vo Vi + Vi VEi=0, T,
dﬂub + Cd)ﬂcb + rciL zrb db (small)
Vus Vu*b + Vcs ng + Vts Vt}; — O, Tvb _ _
R X 23 Maximal possible ImQ:
Vud Vcti + Vcs V;; + Vub VCZ — O, Tuc 1
13* 7L3* 13* ve |1 o o
Vua Via + VusVig + YV Vig = 0, Ly V3o o
A4 A2 A2
V.a Vttl + Vi V;; + Vip V;}; =0, 1. with @ = exp(i27/3), yielding

1
ImO = —— ~ 0.096
0 6v/3



CP Violation

Convenient parametrisation of CKM (standard parametrisation)

1 0 O C13 0 s13 e 1013 crp S O
V(612,013,6023,013) = | 0 c23 s23 0 1 0 —s12 ¢12 0
0 —s73 €23 —S513 013 () C13 0O 01

C12C13 $12C13 size o

_ 0 0
= | —S12Cc23 —C12523513€'°3  C12023 — 812523 513€'°8  $93C13
To) 0
S12523 — C12C23513€'°3  —C12823 — S12C23813€"°1 Cr3C13

the sines are related in a simple way to measurable quantities,
all data then has to fit a single parameter



CP Violation

Invariant approach

Bernabeu, Branco and Gronau, 1986

most general CP transformations which leave £ (cp) invariant

. —T
(CP) ug (CP)_1 — oW KLYOCug :

(CP) d; (CP)
i K m, K4 = m’
(CP) up (CP)~ ! = K&y Cul conditions: ; p )
KLde :md
(CP) dg (CP)~! = Kzy’Cdyy
K HK —H =—H'
For H, = mumz, H; = mdmjl ? uldL u l/-tr
o K H;K, = H"' = H,
implying:
K'[H,H;)K, = [H H]| = —[H,,H;|" Tr[H,,H;]" = 0.  (r odd)

in the SM CP invariance implies Tr|H,,H;]” = 0 The minimal non trivial case is for r=3
Necessary and sufficient condition for CP conservation in the SM with three generations:

Tr[H,, Ha)* = 6i(m; —mZ) (mi —mg) (mg — miy)

(3 —m?) (m — m3) (m? —m3) Im 0

s s

1
det[H,., Hy] = 5 tr[Hy, Hg]?

J =Im Quscy =Im (Vus Vs Vi Vi) = c12812¢73513C23523 sin d13
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Wolfenstein Parametrisation of CKM

See PDG
1—\2/2 A AN (p — in)
Vorm = —A 1—\2/2 AN? + O\
AN (1 —p—in) —AN 1
Definitions: S12 = A = Vs 53 = ANZ = )| 2t
- \/|Vud‘2+ |Vu:5|27 + Vus |

AN (p +in)V1 — AZ)\4
V1= A2[1 — A2)\4(p +47)]

3136i5 =V = AX?’(,O +1in) =

These relations ensure that p+if = —(Vy,qV. ) /(VeqV ) is phase convention independent,
and the CKM matrix written in terms of A\, A, p, and 7 is unitary to all orders in .
(p.1)
ViaVe
Vea Ve

Viud Vap + Vea Vap + Via Vi, = 0

(0,0) (1,0)

Figure 12.1: Sketch of the unitarity triangle.

Each side is divided by the best know side of the UT: Vg4 (;Z
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excluded area has CL>0.95 |,

1.0

0.5

-0.5

-1.0

(excl.'atCL > 0.95) —

| | | | | — From PDG
_1 -5 | I I | I I | | I I | | I I | I Y | | I I |
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
P

Figure 12.2: Constraints on the p, 7 plane. The shaded areas have 95% CL.




The CKM elements can be most precisely determined using a global
fit to all available measurements and imposing the SM constraints (e.qg.
three generation unitarity). The fit must also use theory predictions for
hadronic matrix elements which sometimes have significant uncertainties.
There are several approaches to combining the experimental data CKM
fitter, UT fit (see references in PDG)

A =0.2245340.00044, A =0.836+0.015
p=0.122700:5 7= 0.355"0017 -

Fit results for the magnitudes of all nine elements of CKM

0.22438 +0.00044  0.973597000017  0.04214 + 0.00076

0.97446 + 0.00010 0.22452 + 0.00044 0.00365 £+ 0.00012
VokM =

0.008961 000035 0.04133 +0.00074  0.999105 4 0.000032



Violating 3X3 unitarity

F. J. Botella, G, C. Branco, M. Nebot, MNR, 2003

What is the best strategy to perform precision test of the SM mechanism of
flavour mixing and CP violation, while at the same time searching for New Physics?

Throughout the paper, we will assume that the tree level weak decays are dominated by
the SM W-exchange diagrams, thus implying that the extraction of | V|, |Vup| and |Vep|
from experiment continues to be valid even in the presence of New Physics (NP). We will
allow for contributions from NP 1n processes like Bg—l?c(l) mixing and BS—ESO mixing, as
well as 1in penguin diagrams. Since the SM contributes to these processes only at loop
level, the effects of NP are more likely to be detectable. Examples of processes which
are sensitive to NP, are the CP asymmetries corresponding to the decays Bg — J/VK;

and Bg — 7t~ which are affected by NP contributions to Bg—E c? mixing. Significant

contributions to Bg—l? C? and B?—ESO mixing can arise in many of the extensions of the
SM, such as models with vector-like quarks [11,12] and supersymmetric extensions of the

SM



Violating 3X3 unitarity (cont)

Alternative approach to the one presented before: choose a complete set
of rephasing invariant phases and use 3x3 unitarity of CKM to derive a set
of exact relations written in terms of measurable quantities, namely moduli
of CKM and and arguments of rephasing invariant quartets.

Since all relations are exact and written in terms of measurable quantities,
they are particularly suited to perform precise tests of the SM

Suppose one drops the requirement of 3x3 unitarity, how many
parameters are there in the 3x3 CKM matrix?

Vud Vus Vub "o
Vcd Vcs Vcb "o
Via Vis Vip -+

9 moduli and 4 rephasing invariant phases (9-5)



A convenient choice for the four independent rephasing invariant phases is

p = arg(—VeaVisVep Via) -
y = arg(—V, Ve V., Vo)

X = Bs = arg(—Vep Vis Ve Vi)
X' = arg(—VisVea Vo V)

It is useful to adopt the following phase convention (no loss of generality):

(0 2 —v
arg(V)=1 n 0 O
\-Br+x O

We are left with four phases



Exact relations

From six unitarity relations corresponding to orthogonality of different

rows and of different columns

. ’ |Vub| | Vcbl .
(uc) smy = sin
| Vl/lS | | VCS |

t)  [Vual|Vial sin B — [ Vis|| Vis| sin(x" — x) — [Vup || Vip| siny =0,

9

. |th||Vcd| .
(ct) siny = sin 3,
| Vis|| Ves|
(db) [Vunl _ S%nﬁ IthI,
[Vial  siny [Vi4l
. |th||Vts| .
(ds) siny = sin(B + x),
|Vud||vus|
(Sb) . SiIlX / :|Vus||Vub|,
sin(y + x") | Vis|| Vil
A few additional relations: (b)) (Vis| = |Vedl|Vep|  sinp
’ Vual  sin(y +B)’
by (v VedllVarl _siny
t — . ’
|Vib|  sin(y + p)
VsV,
(sb) sinx—| us | ub'sin(—x—l—x’—l—y).

B |Vcs||Vcb|



Given the experimental knowledge on the size of the various moduli of
the CKM matrix elements, some of the above relations can be, to an
excellent approximation, substituted by simpler ones

An interesting relation is obtained by combining:

siny  |[Vus! Vsl V| = |VedllVep|  sin B
- —_— ’ = u - . 9
sin(y + x/) Vsl Vip| with Vial  sin(y + B)

ny = | Vus || Veall Ven| SiIl,BSiIl(y_|_X/)
VislVibl[Vaal — sin(y +8)

This equation is the exact version of Aleksan-London and Kayser relation (1994):

| Vys|* sinBsiny
| Vyal? sin(y + 8)

Discussed by Silva and Wolfenstein (1996)

SIn ¥ ~ \p

Violations of these relations can occur with or without violations of unitarity

Blackboard



Can one have extensions of the SM where deviations from unitarity
of the CKM occur? Can they be sufficiently suppressed?

YES!

Introducing vector-like quarks. Quark field content of the model:

Branco, Morozumi, Parada, MNR (1993)

(u°d®);;, i=1,...,n,
Dgp, p=1,...,N,;,
qu, q=1,...,N, ,
Dp,, a=1,...,n+N,,
Upg, B=1,...,n+N, .

The quark mass terms are

LM zﬁgi(mu )iBUIgB + ﬁgq(MU )qBUIgB

+ggi(md )iaDlga +D£p(MD )paDIga



Let us take for definiteness one down and one up vector-like quark:

L, =Ly+ L,

«»CW:T/%‘ﬁLaV%(MVHdLBW“ :

L,= £ [z%.u; vy u —deEi— Hd
Z ZCOSGW af LaY Lp aflLaY LB

—sin®0yJE 1Z, (a,B=1,...,4)

7]

where u,, d g are mass eigenstates and

where U and W denote the matrices which relate the

p KM =
z§1 Wig weak and mass eigenstates:

u,-o

U° L

0
Zop =083~ UiaUsg » —y d;

d —
Za8 —Oaqp™ WIaW4B ’

Because of the presence of the vectorlike quarks there are
flavor-changing neutral currents which are closely con-
nected to the deviations from unitarity in V®M. Indeed,
using the unitarity of U and W, one readily obtains

(VVap=24p Deviations from unitarity of V and ZFCNC are
related and are suppressed in the standard
quark sector by the ratio of the standard
quark masses by vector like quark masses

(VW) =22 (V=VCKM)



A Common Origin for all CP Violations

Branco, Parada, MNR, 2003

All CP violating phenomena may have a common origin

- CP violation in the quark sector

- CP Violation in the leptonic sector
- Generation of Baryon Asymmetry of the Universe

- Solution to Strong CP Problem

Spontaneous CP violation

Blackboard



D’ —--p §— -8

wlo — iwl@, e% — z’e%, V% — iV%

Yukawa Terms
Ly =Ly + L
Lg= %D_SGM uR + @Gdﬁg dp +
+(fyS + f,/S*)DYd% + MDY DY, + h.c.
L =90Gip €% +p0G, b v +

1
§V%T0(f,/s +4+£,/S*)% + h.c.
Vexkm — h Voru = d° (6)
—2
h=mOmS" — (mOMptMp mO") /I (7)
where d* = diag(m3,m3,m?), my = \/L§ Gq, Mo =

MpMp' + M? and Mp = \%(fj’r cos(a) + i f? sin(«)),
with fo = f, + f,.






