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1. Introduction

We present the invited lectures given at the Third IDPASC School which took place in Santiago
de Compostela in January 2013. The students attending the school had very different backgrounds,
some of them were doing their PhD in experimental particle physics, others in theory. As a result,
and in order to make the lectures useful for most of the students, we focused on basic topics of
broad interest, avoiding the more technical aspects of Flavour Physics and CP Violation. We make
a brief review of the Standard Model, paying special attention to the generation of fermion masses
and mixing, as well as to CP violation. We describe some of the simplest extensions of the SM,
emphasising novel flavour aspects which arise in their framework.

2. Review of the Standard Model

The Standard Model (SM) of unification of the electroweak and strong interactions [1–4] is
based on the gauge group

GSM ⌘ SU(3)C ⇥SU(2)L ⇥U(1)Y , (2.1)

which has 12 generators. To each one of these generators corresponds a gauge field. The introduc-
tion of these gauge fields is essential in order to achieve invariance under local gauge transforma-
tions of GSM. This is entirely analogous to what one encounters in electromagnetic interactions,
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Table 1: The SM fermionic content. For a given SM representation R one has (n3,n2,y) ⌘
(dimSU(3)(R),dimSU(2)(R),Y (R)) . The index i = 1,2,3 is the generation index.

qiL ⌘
 

ui

di

!

L

(3,2,1/6)

uiR (3,1,2/3)

diR (3,1,�1/3)

`iL ⌘
 

ni

e�i

!

L

(1,2,�1/2)

e�i R (1,1,�1)

where the photon is the gauge field associated to the U(1)e.m., introduced in order to guarantee local
gauge invariance. We shall denote the gauge fields in the following way:

SU(3)C �! Gk
µ

, k = 1, . . . ,8; (2.2)

SU(2)L �! W j
µ

, j = 1, . . . ,3; (2.3)

SU(2)L �! B
µ

. (2.4)

The electroweak interactions are linear combination of the following gauge bosons:

W a
µ

, B
µ

�! W+
µ

,W�
µ

, Z
µ

, A
µ

, (2.5)

where A
µ

is the photon field, mediator of electromagnetic interactions while the massive bosons
W+

µ

and Z
µ

mediate, respectively, the charged and neutral weak currents. Since U(1)e.m. is a good
symmetry of nature, the photon field should remain massless.

The SM describes all observed fermionic particles, which have definite gauge transformations
properties and are replicated in three generations. All the SM fermionic fields carry weak hyper-
charge Y , defined as

Y ⌘ Q�T3 , (2.6)

where Q is the electric charge operator and T3 is the diagonal generator of SU(2)L. Since exper-
iments only provided evidence for left-handed charged currents, the right-handed components of
fermion fields are put in SU(2)L-singlets. Only the quarks carry colour, i.e they are triplets of
SU(3)C, while the leptons carry no colour. We summarise in Table 1 all fermionic content charac-
terised by their transformation properties under the gauge group SU(3)C ⇥ SU(2)L ⇥ U(1)Y . It is
worth noting that within this matter content the SM is free from anomalies, since SU(3)C is non-
chiral, all representations of ⇥SU(2)L are real, the SU(3)2Y , SU(2)2Y and Y 3 cancel between the
quarks and leptons.
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Gauge interactions are determined by the covariant derivative which is dictated by the trans-
formation properties of the various fields, under the gauge group. In general one has

D
µ

= ∂

µ

� igsLkGk
µ

� igT jW j
µ

� ig0yB
µ

, (2.7)

where T j are the three SU(2)-generators,

T j =

(
0 , singlet
t j
2 , fundamental

, (2.8)

while Lk are the eight SU(3)-generators,

Lk =

(
0 , singlet
lk
2 , fundamental

. (2.9)

The matrices t j and lk are the usual Pauli and Gell-Mann matrices, respectively. For the fermions
presented in Table 1 the covariant derivatives read as

D
µ

qL =

✓
∂

µ

� i
gs

2
lk Gk

µ

� i
g
2

t j W
j

µ

� i
g0

6
B

µ

◆
qL , (2.10)

D
µ

uR =

✓
∂

µ

� i
gs

2
lk Gk

µ

� i
2g0

3
B

µ

◆
uR , (2.11)

D
µ

dR =

✓
∂

µ

� i
gs

2
lk Gk

µ

+ i
g0

3
B

µ

◆
dR , (2.12)

D
µ

`L =

✓
∂

µ

� i
g
2

t j W
j

µ

+ i
g0

2
B

µ

◆
qL , (2.13)

D
µ

e�L =
�
∂

µ

+ igB
µ

�
e�R . (2.14)

An important feature of the SM is the fact that right-handed neutrinos,

nR ⇠ (1,1,0) , (2.15)

are not introduced. As a result, neutrinos are strictly massless in the SM, in contradiction with
present experimental evidence. We shall come back to this question in the sequel.

In order to account for the massive gauge bosons W±
µ

and Z
µ

without destroying renormalis-
ability, the gauge symmetry must be spontaneously broken. The simplest scheme to break spon-
taneously the electroweak gauge symmetry into electromagnetism, involves the introduction of a
complex doublet Higgs scalar field f

f =

 
f

+

f

0

!
⇠ (1,2,1/2) , (2.16)

which leads to the breaking:

SU(3)C ⇥SU(2)L ⇥U(1)Y �! SU(3)C ⇥U(1)e.m. . (2.17)

The most general gauge invariant, renormalisable scalar potential is:

V (f) = µ

2
f

†
f + l

�
f

†
f

�2
. (2.18)
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Taking l > 0 the potential is bounded from below and two minima do exist. For µ

2 > 0 one has
h0|f |0i= 0 while for µ

2 < 0 one has instead

h0|f |0i =
 

0
1p
2
v

!
. (2.19)

In Figure 1 it is drawn the Higgs potential around the two minima. Indeed, the case l > 0 and
µ

2 < 0 implies the spontaneous breaking of the electroweak gauge as indicated in eq. 2.17. One
can check that the U(1) remains unbroken. The electric charge operator reads as

Q = T3 + Y , (2.20)

and for the Higgs doublet one gets

Q =

 
1
2 0
0 � 1

2

!
+

 
1
2 0
0 1

2

!
=

 
1 0
0 0

!
. (2.21)

Therefore one verifies that the vacuum given in eq. (2.19) is invariant under the charge operator Q,
since

Q

 
0
1p
2
v

!
= 0 , (2.22)

and one gets

eia Q

 
0
1p
2
v

!
=


1 + ia Q + · · ·

�  
0
1p
2
v

!
=

 
0
1p
2
v

!
. (2.23)

Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:

h0|f1|0i =
 

0
1p
2
v1

!
, h0|f2|0i =

 
x

1p
2
v2 eiq

!
, (2.24)

with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,

YuL =
2
3
� 1

2
=

1
6
, (2.25)

YdL = �1
3
+

1
2
=

1
6
, (2.26)

and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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can check that the U(1) remains unbroken. The electric charge operator reads as

Q = T3 + Y , (2.20)

and for the Higgs doublet one gets
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Therefore one verifies that the vacuum given in eq. (2.19) is invariant under the charge operator Q,
since
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:

h0|f1|0i =
 

0
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, h0|f2|0i =
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2
v2 eiq
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, (2.24)

with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,

YuL =
2
3
� 1

2
=

1
6
, (2.25)

YdL = �1
3
+

1
2
=

1
6
, (2.26)

and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =
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1p
2
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!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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Taking l > 0 the potential is bounded from below and two minima do exist. For µ

2 > 0 one has
h0|f |0i= 0 while for µ

2 < 0 one has instead
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In Figure 1 it is drawn the Higgs potential around the two minima. Indeed, the case l > 0 and
µ

2 < 0 implies the spontaneous breaking of the electroweak gauge as indicated in eq. 2.17. One
can check that the U(1) remains unbroken. The electric charge operator reads as

Q = T3 + Y , (2.20)

and for the Higgs doublet one gets
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Therefore one verifies that the vacuum given in eq. (2.19) is invariant under the charge operator Q,
since
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:

h0|f1|0i =
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, (2.24)

with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:
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In Figure 1 it is drawn the Higgs potential around the two minima. Indeed, the case l > 0 and
µ

2 < 0 implies the spontaneous breaking of the electroweak gauge as indicated in eq. 2.17. One
can check that the U(1) remains unbroken. The electric charge operator reads as

Q = T3 + Y , (2.20)

and for the Higgs doublet one gets
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Therefore one verifies that the vacuum given in eq. (2.19) is invariant under the charge operator Q,
since
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:

h0|f1|0i =
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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In Figure 1 it is drawn the Higgs potential around the two minima. Indeed, the case l > 0 and
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Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:
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with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,
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2
=

1
6
, (2.25)

YdL = �1
3
+

1
2
=

1
6
, (2.26)

and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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The same applies to Supersymmetric models

Comment: hypercharge is chosen in such a way as to lead to the correct electric charges  
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Table 1: The SM fermionic content. For a given SM representation R one has (n3,n2,y) ⌘
(dimSU(3)(R),dimSU(2)(R),Y (R)) . The index i = 1,2,3 is the generation index.

qiL ⌘
 

ui

di

!

L

(3,2,1/6)

uiR (3,1,2/3)

diR (3,1,�1/3)

`iL ⌘
 

ni

e�i

!

L

(1,2,�1/2)

e�i R (1,1,�1)

where the photon is the gauge field associated to the U(1)e.m., introduced in order to guarantee local
gauge invariance. We shall denote the gauge fields in the following way:

SU(3)C �! Gk
µ

, k = 1, . . . ,8; (2.2)

SU(2)L �! W j
µ

, j = 1, . . . ,3; (2.3)

SU(2)L �! B
µ

. (2.4)

The electroweak interactions are linear combination of the following gauge bosons:

W a
µ

, B
µ

�! W+
µ

,W�
µ

, Z
µ

, A
µ

, (2.5)

where A
µ

is the photon field, mediator of electromagnetic interactions while the massive bosons
W+

µ

and Z
µ

mediate, respectively, the charged and neutral weak currents. Since U(1)e.m. is a good
symmetry of nature, the photon field should remain massless.

The SM describes all observed fermionic particles, which have definite gauge transformations
properties and are replicated in three generations. All the SM fermionic fields carry weak hyper-
charge Y , defined as

Y ⌘ Q�T3 , (2.6)

where Q is the electric charge operator and T3 is the diagonal generator of SU(2)L. Since exper-
iments only provided evidence for left-handed charged currents, the right-handed components of
fermion fields are put in SU(2)L-singlets. Only the quarks carry colour, i.e they are triplets of
SU(3)C, while the leptons carry no colour. We summarise in Table 1 all fermionic content charac-
terised by their transformation properties under the gauge group SU(3)C ⇥ SU(2)L ⇥ U(1)Y . It is
worth noting that within this matter content the SM is free from anomalies, since SU(3)C is non-
chiral, all representations of ⇥SU(2)L are real, the SU(3)2Y , SU(2)2Y and Y 3 cancel between the
quarks and leptons.
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Taking l > 0 the potential is bounded from below and two minima do exist. For µ

2 > 0 one has
h0|f |0i= 0 while for µ

2 < 0 one has instead

h0|f |0i =
 

0
1p
2
v

!
. (2.19)

In Figure 1 it is drawn the Higgs potential around the two minima. Indeed, the case l > 0 and
µ

2 < 0 implies the spontaneous breaking of the electroweak gauge as indicated in eq. 2.17. One
can check that the U(1) remains unbroken. The electric charge operator reads as

Q = T3 + Y , (2.20)

and for the Higgs doublet one gets

Q =

 
1
2 0
0 � 1

2

!
+

 
1
2 0
0 1

2

!
=

 
1 0
0 0

!
. (2.21)

Therefore one verifies that the vacuum given in eq. (2.19) is invariant under the charge operator Q,
since

Q

 
0
1p
2
v

!
= 0 , (2.22)

and one gets

eia Q

 
0
1p
2
v

!
=


1 + ia Q + · · ·

�  
0
1p
2
v

!
=

 
0
1p
2
v

!
. (2.23)

Electric charge is automatically conserved in the SM. This is no longer true in extensions of the
SM with two Higgs doublets, including the case of supersymmetric extensions of the SM. In the
general two Higgs doublet model (2HDM) without loss of generality, one has:

h0|f1|0i =
 

0
1p
2
v1

!
, h0|f2|0i =

 
x

1p
2
v2 eiq

!
, (2.24)

with x real. In order to preserve charge conservation in the 2HDM, one has to choose a region of
the parameter space where the minimum is at x = 0.

The SM does not provide an explanation for the charges of elementary fermions. The values
of the hypercharge Y are chosen in such a way that the correct electric charges are obtained. As an
example, one can determined YqL , by using the eq. (2.6) and the knowledge of Qu and Qd . Thus,

YuL =
2
3
� 1

2
=

1
6
, (2.25)

YdL = �1
3
+

1
2
=

1
6
, (2.26)

and therefore YqL = 1/6. It is rather intriguing the fact that the requirement of cancelation of the
gauge anomaly in the SM together with the fact that the electromagnetic interactions are non-chiral
is sufficient to fully determine all the hypercharges of the fundamental fermions up to an overall
factor. In particular one gets relations among quark and lepton charges, leading to:

Qp = �Qe . (2.27)
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Convenient parametrisation to describe SSB
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(a) l > 0, µ

2 > 0 (b) l > 0, µ

2 < 0

Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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(a) l > 0, µ

2 > 0 (b) l > 0, µ

2 < 0

Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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(a) l > 0, µ

2 > 0 (b) l > 0, µ

2 < 0

Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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(a) l > 0, µ

2 > 0 (b) l > 0, µ
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Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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(a) l > 0, µ

2 > 0 (b) l > 0, µ

2 < 0

Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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(a) l > 0, µ

2 > 0 (b) l > 0, µ

2 < 0

Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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The bosonic state orthogonal bosonic state to Z
µ

:

A
µ

= cosqW B
µ

+ sinqW W 3
µ

, (2.33)

remains massless and is identified with the photon. The electron coupling to the photon is directly
determined from the weak couplings g and g0 as

1
e2 =

1
g2 +

1
g02

, (2.34)

or
e =

gg0p
g2 +g02

= gsinqW = g0 cosqW . (2.35)

3. Fermion masses and mixings

In the SM, one cannot write directly a mass term for any of the fundamental fermions because
they would violate the gauge symmetry, since left-handed and right-handed chiralities do transform
differently. The SM fermions acquire mass through Yukawa couplings, once the SM group is spon-
taneously broken. Therefore, in the SM the Higgs mechanism that is responsible for the breaking
of the SM group, also generates fermion masses.

Quark and Charged Lepton masses

The Yukawa interactions are the most general terms in the Lagrangian allowed by the SM
gauge group that involve fermions and the Higgs doublet. The Yukawa couplings can be written
as:

�LY = (Yu)i j qiL f̃ uiR + (Yd)i j qiL f diR + (Y`)i j `iL f eiR + H.c. , (3.1)

where f̃ ⌘ it2 f

†. The Yukawa matrices Yu, Yd and Y` are arbitrary complex matrices in flavour
space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the
third term will give rise to the charged lepton masses. Making use of the Higgs doublet parametri-
sation given in eq. (2.28) one can decompose the Lagrangian given in eq. (3.1) as

�LY =
vp
2
(Yu)i j uiL uiR +

vp
2
(Yd)i j diL diR +

vp
2
(Y`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H

�
i(Yu)i jp

2
uiL uiR G0 +

i(Yd)i jp
2

diL diR G0 +
i(Y`)i jp

2
eiL eiR G0

� (Yu)i j diL uiR G� + (Yd)i j uiL diR, G+ + (Y`)i j niL eiR G+ + H.c. .

(3.2)

Once a gauge transformation is performed in order to absorbed the Nambu-Goldstone bosons G±

and G0, the Lagrangian in eq. (3.2) becomes

�LY = (mu)i j uiL uiR + (md)i j diL diR + (m`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H + H.c. ,

(3.3)
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Fermion masses and mixings

Bare mass terms for fermions are not allowed due to gauge symmetry

Width [MeV]

Branching ratio to channel (%)

Zd Zs Zb hd hs hb Wu Wc Wt
D1 2.9 · 10�4

0.9 20.3 4.4 0.9 19.3 4.2 0.2 40.7 8.8

D2 0.81 0.3 4.9 20.4 0.3 4.9 20.2 0 8.9 40.0

D3 0.69 0 0.5 24.9 0 0.5 24.7 0.3 0.5 48.1

Table 1: Decays of new down type quaks

m( L R + R L) (1)

m0
u = W †

LmuW
u
R m0

d = W †
LmdW

d
R (2)

H 0
u = W †

LHuWL H 0
d = W †

LmdWL (3)

Lm(leptons) = �1

2

⌫0T
L C�1m⇤

eff⌫
0
L � l0Lmll

0
R + h.c. (4)

Vab (5)

1

Within the SM all fermion masses are protected by gauge symmetry 

Suppose that one builds a Grand Unified Theory G containing the SM 

G could be for instance SU(5) or SO(10)

Since fermions masses are not invariant under the gauge group of the SM fermions do 
not acquire mass in the breaking of G into the gauge group of the SM 

This breaking usually occurs at a very high scale and the gauge bosons associated to 
the broken symmetry acquire mass at this high scale V>>v



Yukawa interactions
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The bosonic state orthogonal bosonic state to Z
µ

:

A
µ

= cosqW B
µ

+ sinqW W 3
µ

, (2.33)

remains massless and is identified with the photon. The electron coupling to the photon is directly
determined from the weak couplings g and g0 as

1
e2 =

1
g2 +

1
g02

, (2.34)

or
e =

gg0p
g2 +g02

= gsinqW = g0 cosqW . (2.35)

3. Fermion masses and mixings

In the SM, one cannot write directly a mass term for any of the fundamental fermions because
they would violate the gauge symmetry, since left-handed and right-handed chiralities do transform
differently. The SM fermions acquire mass through Yukawa couplings, once the SM group is spon-
taneously broken. Therefore, in the SM the Higgs mechanism that is responsible for the breaking
of the SM group, also generates fermion masses.

Quark and Charged Lepton masses

The Yukawa interactions are the most general terms in the Lagrangian allowed by the SM
gauge group that involve fermions and the Higgs doublet. The Yukawa couplings can be written
as:

�LY = (Yu)i j qiL f̃ uiR + (Yd)i j qiL f diR + (Y`)i j `iL f eiR + H.c. , (3.1)

where f̃ ⌘ it2 f

†. The Yukawa matrices Yu, Yd and Y` are arbitrary complex matrices in flavour
space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the
third term will give rise to the charged lepton masses. Making use of the Higgs doublet parametri-
sation given in eq. (2.28) one can decompose the Lagrangian given in eq. (3.1) as

�LY =
vp
2
(Yu)i j uiL uiR +

vp
2
(Yd)i j diL diR +

vp
2
(Y`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H

�
i(Yu)i jp

2
uiL uiR G0 +

i(Yd)i jp
2

diL diR G0 +
i(Y`)i jp

2
eiL eiR G0

� (Yu)i j diL uiR G� + (Yd)i j uiL diR, G+ + (Y`)i j niL eiR G+ + H.c. .
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they would violate the gauge symmetry, since left-handed and right-handed chiralities do transform
differently. The SM fermions acquire mass through Yukawa couplings, once the SM group is spon-
taneously broken. Therefore, in the SM the Higgs mechanism that is responsible for the breaking
of the SM group, also generates fermion masses.

Quark and Charged Lepton masses

The Yukawa interactions are the most general terms in the Lagrangian allowed by the SM
gauge group that involve fermions and the Higgs doublet. The Yukawa couplings can be written
as:

�LY = (Yu)i j qiL f̃ uiR + (Yd)i j qiL f diR + (Y`)i j `iL f eiR + H.c. , (3.1)

where f̃ ⌘ it2 f

†. The Yukawa matrices Yu, Yd and Y` are arbitrary complex matrices in flavour
space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the
third term will give rise to the charged lepton masses. Making use of the Higgs doublet parametri-
sation given in eq. (2.28) one can decompose the Lagrangian given in eq. (3.1) as

�LY =
vp
2
(Yu)i j uiL uiR +

vp
2
(Yd)i j diL diR +

vp
2
(Y`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H

�
i(Yu)i jp

2
uiL uiR G0 +

i(Yd)i jp
2

diL diR G0 +
i(Y`)i jp

2
eiL eiR G0

� (Yu)i j diL uiR G� + (Yd)i j uiL diR, G+ + (Y`)i j niL eiR G+ + H.c. .

(3.2)

Once a gauge transformation is performed in order to absorbed the Nambu-Goldstone bosons G±

and G0, the Lagrangian in eq. (3.2) becomes

�LY = (mu)i j uiL uiR + (md)i j diL diR + (m`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H + H.c. ,

(3.3)

7

Flavour Physics and CP Violation in the SM and Beyond

The bosonic state orthogonal bosonic state to Z
µ

:

A
µ

= cosqW B
µ

+ sinqW W 3
µ

, (2.33)

remains massless and is identified with the photon. The electron coupling to the photon is directly
determined from the weak couplings g and g0 as

1
e2 =

1
g2 +

1
g02

, (2.34)

or
e =

gg0p
g2 +g02

= gsinqW = g0 cosqW . (2.35)

3. Fermion masses and mixings

In the SM, one cannot write directly a mass term for any of the fundamental fermions because
they would violate the gauge symmetry, since left-handed and right-handed chiralities do transform
differently. The SM fermions acquire mass through Yukawa couplings, once the SM group is spon-
taneously broken. Therefore, in the SM the Higgs mechanism that is responsible for the breaking
of the SM group, also generates fermion masses.

Quark and Charged Lepton masses

The Yukawa interactions are the most general terms in the Lagrangian allowed by the SM
gauge group that involve fermions and the Higgs doublet. The Yukawa couplings can be written
as:

�LY = (Yu)i j qiL f̃ uiR + (Yd)i j qiL f diR + (Y`)i j `iL f eiR + H.c. , (3.1)

where f̃ ⌘ it2 f

†. The Yukawa matrices Yu, Yd and Y` are arbitrary complex matrices in flavour
space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the
third term will give rise to the charged lepton masses. Making use of the Higgs doublet parametri-
sation given in eq. (2.28) one can decompose the Lagrangian given in eq. (3.1) as

�LY =
vp
2
(Yu)i j uiL uiR +

vp
2
(Yd)i j diL diR +

vp
2
(Y`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H

�
i(Yu)i jp

2
uiL uiR G0 +

i(Yd)i jp
2

diL diR G0 +
i(Y`)i jp

2
eiL eiR G0

� (Yu)i j diL uiR G� + (Yd)i j uiL diR, G+ + (Y`)i j niL eiR G+ + H.c. .

(3.2)

Once a gauge transformation is performed in order to absorbed the Nambu-Goldstone bosons G±

and G0, the Lagrangian in eq. (3.2) becomes

�LY = (mu)i j uiL uiR + (md)i j diL diR + (m`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H + H.c. ,

(3.3)

7

are arbitrary complex matrices in flavour space

Flavour Physics and CP Violation in the SM and Beyond

The bosonic state orthogonal bosonic state to Z
µ

:

A
µ

= cosqW B
µ

+ sinqW W 3
µ

, (2.33)

remains massless and is identified with the photon. The electron coupling to the photon is directly
determined from the weak couplings g and g0 as

1
e2 =

1
g2 +

1
g02

, (2.34)

or
e =

gg0p
g2 +g02

= gsinqW = g0 cosqW . (2.35)

3. Fermion masses and mixings

In the SM, one cannot write directly a mass term for any of the fundamental fermions because
they would violate the gauge symmetry, since left-handed and right-handed chiralities do transform
differently. The SM fermions acquire mass through Yukawa couplings, once the SM group is spon-
taneously broken. Therefore, in the SM the Higgs mechanism that is responsible for the breaking
of the SM group, also generates fermion masses.

Quark and Charged Lepton masses

The Yukawa interactions are the most general terms in the Lagrangian allowed by the SM
gauge group that involve fermions and the Higgs doublet. The Yukawa couplings can be written
as:

�LY = (Yu)i j qiL f̃ uiR + (Yd)i j qiL f diR + (Y`)i j `iL f eiR + H.c. , (3.1)

where f̃ ⌘ it2 f

†. The Yukawa matrices Yu, Yd and Y` are arbitrary complex matrices in flavour
space. The first two terms in eq. (3.1) will generate the up- and down-type quark masses while the
third term will give rise to the charged lepton masses. Making use of the Higgs doublet parametri-
sation given in eq. (2.28) one can decompose the Lagrangian given in eq. (3.1) as

�LY =
vp
2
(Yu)i j uiL uiR +

vp
2
(Yd)i j diL diR +

vp
2
(Y`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H

�
i(Yu)i jp

2
uiL uiR G0 +

i(Yd)i jp
2

diL diR G0 +
i(Y`)i jp

2
eiL eiR G0

� (Yu)i j diL uiR G� + (Yd)i j uiL diR, G+ + (Y`)i j niL eiR G+ + H.c. .

(3.2)

Once a gauge transformation is performed in order to absorbed the Nambu-Goldstone bosons G±

and G0, the Lagrangian in eq. (3.2) becomes

�LY = (mu)i j uiL uiR + (md)i j diL diR + (m`)i j eiL eiR

+
(Yu)i jp

2
uiL uiR H +

(Yd)i jp
2

diL diR H +
(Y`)i jp

2
eiL eiR H + H.c. ,

(3.3)

7

Flavour Physics and CP Violation in the SM and Beyond

(a) l > 0, µ

2 > 0 (b) l > 0, µ

2 < 0

Figure 1:

Although the hypercharge quantisation may arise from the anomaly-free condition, this is certainly
not a satisfactory explanation in the SM. The solution to this fundamental question is elegantly
answered in the framework of Grand-Unification, e.g. SU(5), where the quantisation of electric
charges is related to some new phenomena like the magnetic monopoles predicted in the theory
that can be tested in future experiments.

In order to describe the spontaneous breaking of the electroweak symmetry in the SM, one
starts by introducing a convenient parametrisation of the Higgs doublet f as

f =

 
G+

1p
2
(v + H + iG0)

!
, (2.28)

where G+ is a charged complex scalar field, H is a real scalar field and G0 is a real pseudo-
scalar. The scalar fields G± and G0 are massless states, the so-called Nambu-Goldstone bosons.
Through the Brout-Englert-Higgs mechanism, the charged bosons G± are absorbed as longitudinal
components of the W±

µ

which acquire a mass:

MW =
gv
2
, (2.29)

while the neutral boson G0 becomes the longitudinal component of the gauge boson Z
µ

, which is a
linear combination of the bosons B

µ

and W 3
µ

,

Z
µ

= cosqW W 3
µ

� sinqW B
µ

, (2.30)

where qW is simply given by

tanqW ⌘ g0

g
. (2.31)

The Z
µ

boson acquires then a mass given by

MZ =
p

g2 + g02
v
2
=

MW

cosqW
. (2.32)
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Quark and lepton mass matrices

arbitrary complex matrices
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where the quark mass matrices mu, md and the charged lepton mass matrix m` are simply defined
by

mu ⌘ vp
2

Yu , md ⌘ vp
2

Yd , m` ⌘
vp
2

Y` . (3.4)

Gauge invariance does not constrain the flavour structure of Yukawa couplings and therefore mu,
md and m` are arbitrary complex matrices.

Let us now focus on the mass terms,

�Lm = (mu)i j ui
0
L u0

i R + (md)i j di
0
L d0

i R + (m`)i j ei
0
L e0

i R . (3.5)

A super-script 0 on the fermion fields was used that these fields are the original ones, in the weak
basis. The matrices mu,d,e can be diagonalised by the following bi-unitary transformations:

ui
0
L = Uu

L uiL ; ui
0
R = Uu

R uiR , (3.6a)

di
0
L = Ud

L diL ; di
0
R = Ud

R diR , (3.6b)

ei
0
L = Ue

L eiL ; ei
0
R = Ue

R eiR , (3.6c)

where Uu,d,e
R,L are a set of unitary matrix such as

mu �! Uu
L

† muUu
R = diag(mu,mc,mt) , (3.7a)

md �! Ud
L

†
md Ud

R = diag(md ,ms,mb) , (3.7b)

m` �! Ue
L

† m`Ue
R = diag

�
m`,mµ

,m
t

�
. (3.7c)

The fields uL,R,dL,R,eL,R are thus the mass eigenstates. The bi-unitary transformations given in
eq. (3.6) affect the interactions between left-handed particles and the W±

µ

bosons - the charged
currents - which are written in a weak basis as:

�LCC =
gp
2

⇥
ui

0
L g

µ di
0
L + ni

0
L g

µ ei
0
L
⇤

W+
µ

+ H.c. . (3.8)

In the mass eigenstate basis the charged currents become:

�LCC =
gp
2

h
uL g

µ Uu
L

†Ud
L dL + n

0
L g

µ Ue
L eL

i
W+

µ

+ H.c. . (3.9)

The product of unitary matrices in eq. (3.9) defines the well know Cabibbo-Kobayshi-Maskawa
matrix V as

V ⌘ Uu
L

†Ud
L . (3.10)

In the SM the unitary matrix Ue
L is physically meaningless. Note that since neutrinos are massless

in the SM, one can always redefine neutrino fields as

n

0
L �! nL = Ue

L nL , (3.11)

and therefore the charged current term n

0
L g

µ Ue
L eL in eq. (3.9) becomes nL g

µ eL . We then conclude
that in the SM there is no leptonic mixing and therefore no neutrino oscillations.
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Width [MeV]

Branching ratio to channel (%)

Zd Zs Zb hd hs hb Wu Wc Wt
D1 2.9 · 10�4

0.9 20.3 4.4 0.9 19.3 4.2 0.2 40.7 8.8

D2 0.81 0.3 4.9 20.4 0.3 4.9 20.2 0 8.9 40.0

D3 0.69 0 0.5 24.9 0 0.5 24.7 0.3 0.5 48.1

Table 1: Decays of new down type quaks
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1

Most general weak basis  (WB) transformation

The mass terms and the Yukawa couplings change but the physics does not change. Why? 
You will soon see why.

Important to note that textures zeros imposed in the mass matrices are no longer visible. 
Symmetries are no longer apparent. This renders the use of WB invariants very important

Exercise: Show that there is no loss of generality in choosing a WB where the mass 

matrices are Hermitian 

Exercise: Show that there is no loss of generality in choosing a basis where up quark mass 
matrix is real diagonal (the same applies separately to the down quark mass matrix)
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why?



In the SM neutrinos are strictly massless , 

as a result there is no leptonic mixing



Answer: Since neutrinos are massless in the SM one can always redefine them in 

such a way that this matrix is rotated away 

Brief review of the flavour structure of the Standard Model
Fermion masses and mixings (cont)
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�Lm = (mu)i j ui
0
L u0

i R + (md)i j di
0
L d0

i R + (m`)i j ei
0
L e0

i R . (3.5)

A super-script 0 on the fermion fields was used that these fields are the original ones, in the weak
basis. The matrices mu,d,e can be diagonalised by the following bi-unitary transformations:

ui
0
L = Uu

L uiL ; ui
0
R = Uu

R uiR , (3.6a)

di
0
L = Ud

L diL ; di
0
R = Ud

R diR , (3.6b)

ei
0
L = Ue

L eiL ; ei
0
R = Ue

R eiR , (3.6c)

where Uu,d,e
R,L are a set of unitary matrix such as

mu �! Uu
L

† muUu
R = diag(mu,mc,mt) , (3.7a)

md �! Ud
L

†
md Ud

R = diag(md ,ms,mb) , (3.7b)

m` �! Ue
L

† m`Ue
R = diag

�
m`,mµ

,m
t

�
. (3.7c)

The fields uL,R,dL,R,eL,R are thus the mass eigenstates. The bi-unitary transformations given in
eq. (3.6) affect the interactions between left-handed particles and the W±

µ

bosons - the charged
currents - which are written in a weak basis as:

�LCC =
gp
2

⇥
ui

0
L g

µ di
0
L + ni

0
L g

µ ei
0
L
⇤

W+
µ

+ H.c. . (3.8)

In the mass eigenstate basis the charged currents become:

�LCC =
gp
2

h
uL g

µ Uu
L

†Ud
L dL + n

0
L g

µ Ue
L eL

i
W+

µ

+ H.c. . (3.9)

The product of unitary matrices in eq. (3.9) defines the well know Cabibbo-Kobayshi-Maskawa
matrix V as

V ⌘ Uu
L

†Ud
L . (3.10)

In the SM the unitary matrix Ue
L is physically meaningless. Note that since neutrinos are massless

in the SM, one can always redefine neutrino fields as

n

0
L �! nL = Ue

L nL , (3.11)

and therefore the charged current term n

0
L g

µ Ue
L eL in eq. (3.9) becomes nL g

µ eL . We then conclude
that in the SM there is no leptonic mixing and therefore no neutrino oscillations.
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We can show that the electromagnetic and neutral currents are not affected by the transforma-
tions given in eq. (3.6). The electromagnetic Je.m. given in the weak basis,

Jµ

e.m. =
2
3
⇥

u0
L g

µ u0
L + u0

R g

µ u0
R
⇤
� 1

3

h
d0

L g

µ d0
L + d0

R g

µ d0
R

i
�
⇥

e0
L g

µ e0
L + e0

R g

µ e0
R
⇤
, (3.12)

do not change in the mass eigenstate, since Jµ

e.m. transforms as

J0µe.m. =
2
3

h
uL g

µ Uu
L

†Uu
L uL + uR g

µ Uu
R

†Uu
R uR

i
� 1

3

h
dL g

µ Ud
L

†
Ud

L dL + dR g

µ Ud
R

†
Ud

R dR

i

�
h

eL g

µ Ue
L

†Ue
L eL + eR g

µ Ue
R

†Ue
R eR

i
,

(3.13)

and we get the same formal expression as in eq. (3.12). In a similar way we demonstrate that the
neutral currents Lagrangian,

LNC =
g

cosqW

h
u0

L g

µ u0
L � d0

L g

µ d0
L + n

0
L g

µ

n

0
L � eL g

µ e0
L �2sin 2

qW Jµ

e.m.

i
Z

µ

, (3.14)

are also invariant under the transformations given in eq. (3.6).

L 0
NC =

g
cosqW

⇥
uL g

µ uL � dL g

µ dL + nL g

µ

nL � eL g

µ eL �2sin 2
qW Jµ

e.m.
⇤

Z
µ

. (3.15)

Flavour changing neutral currents (FCNC) are naturally absent at three-level in the SM, due to the
GIM mechanism. Indeed “charm” was invented in order to achieve this cancellation of FCNC.

Exercise 1. Suppose that “charm” did not exist, so that one would have
 

u0
1

d0
1

!

L

, d2L , u1R , d1R , d1R . (3.16)

Show that in this model FCNC automatically arise.

Historical note: Prior to the appearance of renormalisable gauge interactions, physicists con-
sidered the possibility that weak neutral currents could exist. However there was a strong prejudice
against neutral currents due to the stringent experimental limits on the strength of FCNC.

Example 1. The decay K0
L ! µ

+
µ

� has a branching ratio extremely suppressed, with respect to
the decay K0

L ! p

+ e� ne . If FCNC existed they would have branching ratios of the same order of
magnitude which are shown in figure 2.

From eq. (3.15) we see that neutral current interactions violate parity, since both couplings
involving yg

µ

y and yg

µ

g5y are present.
As a result of the GIM mechanism there are no tree-level contributions to K0 �K0, B0 �B0,

BS �BS and D0 �D0 mixings. However in the SM there are higher order contributions to these
processes which are calculable. The contributions from the diagrams given in figure (3) led to the
correct estimate to the charm quark mass [5] and the size of Bd �Bd mixing provided the first
indirect evidence of a large top mass.
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We can show that the electromagnetic and neutral currents are not affected by the transforma-
tions given in eq. (3.6). The electromagnetic Je.m. given in the weak basis,

Jµ

e.m. =
2
3
⇥

u0
L g

µ u0
L + u0

R g

µ u0
R
⇤
� 1

3

h
d0

L g

µ d0
L + d0

R g

µ d0
R

i
�
⇥

e0
L g

µ e0
L + e0

R g

µ e0
R
⇤
, (3.12)

do not change in the mass eigenstate, since Jµ

e.m. transforms as

J0µe.m. =
2
3

h
uL g

µ Uu
L

†Uu
L uL + uR g

µ Uu
R

†Uu
R uR

i
� 1

3

h
dL g

µ Ud
L

†
Ud

L dL + dR g

µ Ud
R

†
Ud

R dR

i

�
h

eL g

µ Ue
L

†Ue
L eL + eR g

µ Ue
R

†Ue
R eR

i
,

(3.13)

and we get the same formal expression as in eq. (3.12). In a similar way we demonstrate that the
neutral currents Lagrangian,

LNC =
g

cosqW

h
u0

L g

µ u0
L � d0

L g

µ d0
L + n

0
L g

µ

n

0
L � eL g

µ e0
L �2sin 2

qW Jµ

e.m.

i
Z

µ

, (3.14)

are also invariant under the transformations given in eq. (3.6).

L 0
NC =

g
cosqW

⇥
uL g

µ uL � dL g

µ dL + nL g

µ

nL � eL g

µ eL �2sin 2
qW Jµ

e.m.
⇤

Z
µ

. (3.15)

Flavour changing neutral currents (FCNC) are naturally absent at three-level in the SM, due to the
GIM mechanism. Indeed “charm” was invented in order to achieve this cancellation of FCNC.

Exercise 1. Suppose that “charm” did not exist, so that one would have
 

u0
1

d0
1

!

L

, d2L , u1R , d1R , d1R . (3.16)

Show that in this model FCNC automatically arise.

Historical note: Prior to the appearance of renormalisable gauge interactions, physicists con-
sidered the possibility that weak neutral currents could exist. However there was a strong prejudice
against neutral currents due to the stringent experimental limits on the strength of FCNC.

Example 1. The decay K0
L ! µ

+
µ

� has a branching ratio extremely suppressed, with respect to
the decay K0

L ! p

+ e� ne . If FCNC existed they would have branching ratios of the same order of
magnitude which are shown in figure 2.

From eq. (3.15) we see that neutral current interactions violate parity, since both couplings
involving yg

µ

y and yg

µ

g5y are present.
As a result of the GIM mechanism there are no tree-level contributions to K0 �K0, B0 �B0,

BS �BS and D0 �D0 mixings. However in the SM there are higher order contributions to these
processes which are calculable. The contributions from the diagrams given in figure (3) led to the
correct estimate to the charm quark mass [5] and the size of Bd �Bd mixing provided the first
indirect evidence of a large top mass.
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We can show that the electromagnetic and neutral currents are not affected by the transforma-
tions given in eq. (3.6). The electromagnetic Je.m. given in the weak basis,

Jµ

e.m. =
2
3
⇥

u0
L g

µ u0
L + u0

R g

µ u0
R
⇤
� 1

3

h
d0

L g

µ d0
L + d0

R g

µ d0
R

i
�
⇥

e0
L g

µ e0
L + e0

R g

µ e0
R
⇤
, (3.12)

do not change in the mass eigenstate, since Jµ

e.m. transforms as

J0µe.m. =
2
3

h
uL g

µ Uu
L

†Uu
L uL + uR g

µ Uu
R

†Uu
R uR

i
� 1

3

h
dL g

µ Ud
L

†
Ud

L dL + dR g

µ Ud
R

†
Ud

R dR

i

�
h

eL g

µ Ue
L

†Ue
L eL + eR g

µ Ue
R

†Ue
R eR

i
,

(3.13)

and we get the same formal expression as in eq. (3.12). In a similar way we demonstrate that the
neutral currents Lagrangian,

LNC =
g

cosqW

h
u0

L g

µ u0
L � d0

L g

µ d0
L + n

0
L g

µ

n

0
L � eL g

µ e0
L �2sin 2

qW Jµ

e.m.

i
Z

µ

, (3.14)

are also invariant under the transformations given in eq. (3.6).

L 0
NC =

g
cosqW

⇥
uL g

µ uL � dL g

µ dL + nL g

µ

nL � eL g

µ eL �2sin 2
qW Jµ

e.m.
⇤

Z
µ

. (3.15)

Flavour changing neutral currents (FCNC) are naturally absent at three-level in the SM, due to the
GIM mechanism. Indeed “charm” was invented in order to achieve this cancellation of FCNC.

Exercise 1. Suppose that “charm” did not exist, so that one would have
 

u0
1

d0
1

!

L

, d2L , u1R , d1R , d1R . (3.16)

Show that in this model FCNC automatically arise.

Historical note: Prior to the appearance of renormalisable gauge interactions, physicists con-
sidered the possibility that weak neutral currents could exist. However there was a strong prejudice
against neutral currents due to the stringent experimental limits on the strength of FCNC.

Example 1. The decay K0
L ! µ

+
µ

� has a branching ratio extremely suppressed, with respect to
the decay K0

L ! p

+ e� ne . If FCNC existed they would have branching ratios of the same order of
magnitude which are shown in figure 2.

From eq. (3.15) we see that neutral current interactions violate parity, since both couplings
involving yg

µ

y and yg

µ

g5y are present.
As a result of the GIM mechanism there are no tree-level contributions to K0 �K0, B0 �B0,

BS �BS and D0 �D0 mixings. However in the SM there are higher order contributions to these
processes which are calculable. The contributions from the diagrams given in figure (3) led to the
correct estimate to the charm quark mass [5] and the size of Bd �Bd mixing provided the first
indirect evidence of a large top mass.
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We can show that the electromagnetic and neutral currents are not affected by the transforma-
tions given in eq. (3.6). The electromagnetic Je.m. given in the weak basis,

Jµ

e.m. =
2
3
⇥

u0
L g

µ u0
L + u0

R g

µ u0
R
⇤
� 1

3

h
d0

L g

µ d0
L + d0

R g

µ d0
R

i
�
⇥

e0
L g

µ e0
L + e0

R g

µ e0
R
⇤
, (3.12)

do not change in the mass eigenstate, since Jµ

e.m. transforms as

J0µe.m. =
2
3

h
uL g

µ Uu
L

†Uu
L uL + uR g

µ Uu
R

†Uu
R uR

i
� 1

3

h
dL g

µ Ud
L

†
Ud

L dL + dR g

µ Ud
R

†
Ud

R dR

i

�
h

eL g

µ Ue
L

†Ue
L eL + eR g

µ Ue
R

†Ue
R eR

i
,

(3.13)

and we get the same formal expression as in eq. (3.12). In a similar way we demonstrate that the
neutral currents Lagrangian,

LNC =
g

cosqW

h
u0

L g

µ u0
L � d0

L g

µ d0
L + n

0
L g

µ

n

0
L � eL g

µ e0
L �2sin 2

qW Jµ

e.m.

i
Z

µ

, (3.14)

are also invariant under the transformations given in eq. (3.6).

L 0
NC =

g
cosqW

⇥
uL g

µ uL � dL g

µ dL + nL g

µ

nL � eL g

µ eL �2sin 2
qW Jµ

e.m.
⇤

Z
µ

. (3.15)

Flavour changing neutral currents (FCNC) are naturally absent at three-level in the SM, due to the
GIM mechanism. Indeed “charm” was invented in order to achieve this cancellation of FCNC.

Exercise 1. Suppose that “charm” did not exist, so that one would have
 

u0
1

d0
1

!

L

, d2L , u1R , d1R , d1R . (3.16)

Show that in this model FCNC automatically arise.

Historical note: Prior to the appearance of renormalisable gauge interactions, physicists con-
sidered the possibility that weak neutral currents could exist. However there was a strong prejudice
against neutral currents due to the stringent experimental limits on the strength of FCNC.

Example 1. The decay K0
L ! µ

+
µ

� has a branching ratio extremely suppressed, with respect to
the decay K0

L ! p

+ e� ne . If FCNC existed they would have branching ratios of the same order of
magnitude which are shown in figure 2.

From eq. (3.15) we see that neutral current interactions violate parity, since both couplings
involving yg

µ

y and yg

µ

g5y are present.
As a result of the GIM mechanism there are no tree-level contributions to K0 �K0, B0 �B0,

BS �BS and D0 �D0 mixings. However in the SM there are higher order contributions to these
processes which are calculable. The contributions from the diagrams given in figure (3) led to the
correct estimate to the charm quark mass [5] and the size of Bd �Bd mixing provided the first
indirect evidence of a large top mass.
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We can show that the electromagnetic and neutral currents are not affected by the transforma-
tions given in eq. (3.6). The electromagnetic Je.m. given in the weak basis,

Jµ
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2
3
⇥
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L g

µ u0
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µ u0
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⇥
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⇤
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do not change in the mass eigenstate, since Jµ

e.m. transforms as

J0µe.m. =
2
3

h
uL g

µ Uu
L

†Uu
L uL + uR g

µ Uu
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R uR
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� 1
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µ Ud
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L dL + dR g
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µ Ue
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†Ue
L eL + eR g

µ Ue
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,

(3.13)

and we get the same formal expression as in eq. (3.12). In a similar way we demonstrate that the
neutral currents Lagrangian,

LNC =
g

cosqW

h
u0

L g

µ u0
L � d0

L g

µ d0
L + n

0
L g

µ

n

0
L � eL g

µ e0
L �2sin 2

qW Jµ

e.m.

i
Z

µ

, (3.14)

are also invariant under the transformations given in eq. (3.6).

L 0
NC =

g
cosqW

⇥
uL g

µ uL � dL g

µ dL + nL g

µ

nL � eL g

µ eL �2sin 2
qW Jµ

e.m.
⇤

Z
µ

. (3.15)

Flavour changing neutral currents (FCNC) are naturally absent at three-level in the SM, due to the
GIM mechanism. Indeed “charm” was invented in order to achieve this cancellation of FCNC.

Exercise 1. Suppose that “charm” did not exist, so that one would have
 

u0
1

d0
1

!

L

, d2L , u1R , d1R , d1R . (3.16)

Show that in this model FCNC automatically arise.

Historical note: Prior to the appearance of renormalisable gauge interactions, physicists con-
sidered the possibility that weak neutral currents could exist. However there was a strong prejudice
against neutral currents due to the stringent experimental limits on the strength of FCNC.

Example 1. The decay K0
L ! µ

+
µ

� has a branching ratio extremely suppressed, with respect to
the decay K0

L ! p

+ e� ne . If FCNC existed they would have branching ratios of the same order of
magnitude which are shown in figure 2.

From eq. (3.15) we see that neutral current interactions violate parity, since both couplings
involving yg

µ

y and yg

µ

g5y are present.
As a result of the GIM mechanism there are no tree-level contributions to K0 �K0, B0 �B0,

BS �BS and D0 �D0 mixings. However in the SM there are higher order contributions to these
processes which are calculable. The contributions from the diagrams given in figure (3) led to the
correct estimate to the charm quark mass [5] and the size of Bd �Bd mixing provided the first
indirect evidence of a large top mass.
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No tree level Z-mediated Flavour Changing Neutral Currents
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Figure 2:

Exercise 2. Consider a simple extension of the SM which consists of the addition of an isosinglet
quark D,

DL,DR ⇠ (3,1,�1/3) . (3.17)

a) Write down the most general quark mass terms which are obtained in the framework of this
model.

b) Derive the structure of the charged currents.

c) Derive the structure of neutral currents, showing that there are FCNC in this model.

d) Show that although non-vanishing at tree level, FCNC are naturally suppressed in this model,
provided the isosinglet quark D is much heavier than the standard quarks.

Neutral currents have played a crucial rôle in the construction of the SM and its experimental
tests and the discovery of Neutral weak currents was the first great success of the SM. As it was
here described, the important feature of FCNC is that they are forbidden at tree-level, both in the
SM and in most of its extensions. At loop level FCNC are generated and have played a crucial
rôle in testing the SM and in putting bounds on New Physics beyond the SM through the study of
process like: K0 �K0, B0 �B0, BS �BS and D0 �D0; rare kaon decays; rare b-meson decays; CP
violation. In this framework, SM contributes to these processes at loop level and therefore New
Physics has a chance to give significant contributions. On the other hand, the need to suppress
FCNC has lead to two dogmas:

no Z-mediated FCNC at tree level and no FCNC in the scalar sector, at tree level.

S. Glashow, S. Weimberg [6] and E.A. Paschos [7] derived necessary and sufficient conditions
for having diagonal neutral currents, namely:

i) All quarks of fixed charge and helicity must transform according to the same irreducible
representation of SU(2) and correspond to the same eigenvalue of T3.

ii) All quarks should receive their contributions to the quark mass matrix from a single neutral
scalar VEV.
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In the SM there are no Z mediated Flavour Changing neutral currents at tree level

As we have seen there are also no Higgs mediated FCNC at tree level

All flavour changing transitions in the SM are mediated by charged weak currents 

with flavour mixing controlled by the CKM matrix

FCNC appear at loop level and are, therefore, suppressed. They have played  a 

crucial  role in testing the Standard Model and in putting bounds on New Physics 


through meson mixing, rare K decays, rare B decays and CP violation.

CKM has small off-diagonal elements

In summary



Fundamental properties of the CKM matrix

Flavour Physics and CP Violation in the SM and Beyond

Can one violate the above two dogmas in reasonable extensions of the SM? The answer

is yes!

“Reasonable” means that FCNC should be naturally suppressed without fine-tuning. In the
gauge sector, the dogma can be violated through the introduction of a Q = 1/3 and/or Q = 2/3
vector-like quark [8–14], since in this model one has naturally small violation of 3⇥ 3 unitarity
of the CKM matrix V which in turn leads to Z-mediated FCNC at tree level, which are naturally
suppressed.

d

s

d

s

W

W

u,c, t u,c, t

(a) K0 �K0 mixing

d

b

d

b

u,c, t u,c, t

W

W

(b) B0
d �B0

d mixing

Figure 3:

In the Higgs sector, the dogma can be violated and yet having FCNC automatically suppressed
by small CKM matrix elements [8].

Fundamental properties of the CKM matrix

We have introduced in eq. (3.10) the CKM matrix V , which characterises the flavour changing
charged currents in the quark sector:

LCC =
⇣

u c t
⌘

L
g

µ

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA

0

B@
d
s
b

1

CA

L

W+
µ

+ H.c. , (3.18)

The CKM matrix is complex, but some of its phases have no physical meaning. This is due to the
fact that one has the freedom to rephase the mass eigenstate quark fields u

a

,dk:

u
a

= eij

a u0
a

, dk = eijk d0
k . (3.19)

Under this rephasing one has:
V 0

ak = ei(jk�j

a

)V
ak . (3.20)

It is clear from eq. (3.20) that the individual phases of Vi j have no Physical meaning. It is useful
to look for rephasing invariant quantities, which do not change under this rephasing. The simplest
examples are moduli |V

ak| and quartets Q
aib j, defined as

Q
aib j ⌘ V

aiV
b j V ⇤

a j V
⇤
b i , (3.21)

with a 6= b and i 6= j. Invariants of higher order may in general be written as functions of the
quartets and the moduli.
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The CKM matrix is complex but not all its phases have physical meaning
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Can one violate the above two dogmas in reasonable extensions of the SM? The answer
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“Reasonable” means that FCNC should be naturally suppressed without fine-tuning. In the
gauge sector, the dogma can be violated through the introduction of a Q = 1/3 and/or Q = 2/3
vector-like quark [8–14], since in this model one has naturally small violation of 3⇥ 3 unitarity
of the CKM matrix V which in turn leads to Z-mediated FCNC at tree level, which are naturally
suppressed.
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The CKM matrix is complex, but some of its phases have no physical meaning. This is due to the
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It is clear from eq. (3.20) that the individual phases of Vi j have no Physical meaning. It is useful
to look for rephasing invariant quantities, which do not change under this rephasing. The simplest
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quartets and the moduli.
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gauge sector, the dogma can be violated through the introduction of a Q = 1/3 and/or Q = 2/3
vector-like quark [8–14], since in this model one has naturally small violation of 3⇥ 3 unitarity
of the CKM matrix V which in turn leads to Z-mediated FCNC at tree level, which are naturally
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Exercise 3. Show that:
V

aiV
b j Vgk V ⇤

a j V
⇤
bk V ⇤

gi =
Q

aib j Q
b ia j

|V
b i|2

. (3.22)

The quartets are easily constructed through the following scheme,

V =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0

BBBBBBBB@

1

CCCCCCCCA

, (3.23)

where the two quartets,

VusVcbV ⇤
ubV ⇤

cs = Quscb , Vcd VtsV ⇤
td V ⇤

cs = Qcdts , (3.24)

are illustrated. The diagonal dotted line refers to the product of the corresponding CKM elements.

3.1 Neutrino masses

In the SM, neutrinos are exactly massless. No Dirac mass terms can be written since right-
handed neutrino fields are not introduced in the SM. On the other hand, Majorana mass terms are
not generated in higher orders, due to exact (B�L) conservation in the SM. As a result of having
massless neutrinos, neither leptonic mixing nor leptonic CP violation can be generated in the SM.
Indeed, any mixing arising from the diagonalisation of the charged-lepton masses can be rotated
away by a redefinition of the neutrino fields.

In the view of above, one concludes that the discovery of leptonic mixing and non-vanishing
neutrino masses, rules out the SM, as it was proposed. However a simple extension of the SM,
sometimes denoted nSM, can easily accommodate leptonic mixing and provide an explanation for
the smallness of neutrino masses, through the seesaw mechanism [15–19]. The nature of neutrinos
(i.e. Majorana or Dirac) is still an important open question. Both in the case of Majorana [15–19] or
Dirac neutrinos [20] one has to have a mechanism to understand the smallness of neutrino masses.

3.2 The Flavour sector of the SM

Let us now discuss the flavour sector of the SM. The gauge invariance does not constrain the
flavour structure of the Yukawa matrices Yu, Yd and using eq. (3.4) one obtains two arbitrary mass
matrices mu and md . The two quark mass matrices are arbitrary complex matrices which need not
to be Hermitian [21]. The two matrices mu, md contain (18+18) parameters, but most of them are
not physical. Due to the fermion family replication the gauge interaction part of LSM has a very
large flavour symmetry. One can make Weak-basis transformations which change mu, md but do
not change the physical content of mu, md . One has then a large redundancy in mu, md . By making
a WB transformation such as:

u0
L = WL u0

L
0 ; u0

R = W u
R u0

R
0
, (3.25a)

d0
L = WL d0

L
0 ; d0

R = W d
R d0

R
0
, (3.25b)
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CP Violation

Within the SM the only source of CP violation is the phase of the CKM matrix  



There is a large redundancy in the number of parameters contained in 

mass matrices of the up and down quark still in a weak basis 

Each 3X3 complex  mass matrix will contain 18 parameters 

A weak basis transformation:

Width [MeV]

Branching ratio to channel (%)

Zd Zs Zb hd hs hb Wu Wc Wt
D1 2.9 · 10�4

0.9 20.3 4.4 0.9 19.3 4.2 0.2 40.7 8.8

D2 0.81 0.3 4.9 20.4 0.3 4.9 20.2 0 8.9 40.0

D3 0.69 0 0.5 24.9 0 0.5 24.7 0.3 0.5 48.1

Table 1: Decays of new down type quaks

u0
L = UL u00

L ; u0
R = Uu

R u00

R

d0L = UL d0
0

L ; d0R = Ud
R u00

R

e0L = U e
L e0

0

L ; e0R = U e
R e0

0

R (1)

m0
u = W †

LmuW
u
R m0

d = W †
LmdW

d
R (2)

H 0
u = W †

LHuWL H 0
d = W †

LmdWL (3)

Lm(leptons) = �1

2

⌫0T
L C�1m⇤

eff⌫
0
L � l0Lmll

0
R + h.c. (4)

Vab (5)

1

allows to choose a weak basis where one of the matrices is real diagonal 
and the other is Hermitian
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the gauge currents remain flavour diagonal but mu, md change as follows:

mu �! mu
0 = W †

L muW u
R , (3.26a)

md �! md
0 = W †

L md W d
R , (3.26b)

but the physical content does not change! Therefore, without loss of generality, one can make a
WB transformation so that mu is diagonal, i.e. mu diag(mu, mc, mt) and md is Hermitian

md =

0

B@
m11 m12 m13

m⇤
12 m22 m23

m⇤
13 m⇤

23 m33

1

CA . (3.27)

In this basis, the only rephasing invariant phase is

j ⌘ arg(m12 m23 m⇤
13) , (3.28)

and there are ten independent parameters: 3 up-quark masses mu, mc, mt , 6 moduli down-type ma-
trix elements |mdi j| and one rephasing invariant phase j . There is to a difficulty in following a
bottom-up approach in the search for a solution to the Flavour Puzzle: even if there is a Flavour
Symmetry behind the spectrum or fermion masses and mixings, in what Weak-Basis will the sym-
metry be transparent? For example Texture Zeroes are Weak-Basis dependent [22].

3.3 CP Violation

In order to study the CP properties of a Lagrangian, it is convenient to separate the Lagrangian
in two parts:

L = L(CP) + L 0 , (3.29)

where L(CP) denotes the part of the Lagrangian which one knows that conserves CP. At this stage
it is important to recall that a pure gauge Lagrangian is necessarily CP invariant [23]. One should
allow for the most general CP transformations allowed by LCP. Typically, LCP leaves a large
freedom of choice in the definition of CP transformations. CP is violated if and only if there
is no possible choice of CP transformation which leaves the Lagrangian invariant [24]. CP can
be investigated in the fermion mass eigenstate or in a weak basis. We shall consider both cases.
Let us study the CP properties of the SM, after spontaneous gauge symmetry breaking, and after
diagonalisation of the quark mass matrices, i.e.,

mu = diag(mu,mc,mt) , (3.30a)

md = diag(md ,ms,mb) , (3.30b)

which are non-degenerate. In the mass eigenstate basis, the most general CP transformation is:

(CP)W+µ

(t,~r) (CP)�1 = �eizW W�µ

(t,�~r) ,

(CP)W�µ

(t,~r) (CP)�1 = �e�izW W+µ

(t,�~r) ,

(CP) u
a

(t,~r) (CP)�1 = eiz
a

g

0C uT
a

(t,�~r) ,

(CP) dk(t,~r) (CP)�1 = eizk
g

0C uTk (t,�~r) ,

(3.31)

13

=
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is no possible choice of CP transformation which leaves the Lagrangian invariant [24]. CP can
be investigated in the fermion mass eigenstate or in a weak basis. We shall consider both cases.
Let us study the CP properties of the SM, after spontaneous gauge symmetry breaking, and after
diagonalisation of the quark mass matrices, i.e.,

mu = diag(mu,mc,mt) , (3.30a)

md = diag(md ,ms,mb) , (3.30b)
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the gauge currents remain flavour diagonal but mu, md change as follows:

mu �! mu
0 = W †

L muW u
R , (3.26a)
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trix elements |mdi j| and one rephasing invariant phase j . There is to a difficulty in following a
bottom-up approach in the search for a solution to the Flavour Puzzle: even if there is a Flavour
Symmetry behind the spectrum or fermion masses and mixings, in what Weak-Basis will the sym-
metry be transparent? For example Texture Zeroes are Weak-Basis dependent [22].
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where the conjugation matrix C obeys to the relation g

µ

C = �Cg

T
µ

. Invariance of charged current
weak interactions under CP constrains V

ak to satisfy the following condition:

V ⇤
ak = ei(zW+zk�z

a

)V
ak . (3.32)

If one considers a single element of the CKM matrix V , the previous condition can always be
satisfied by using the freedom to choose zW ,zk,za

. However, it can be readily shown that the
condition constrains all quartets and all rephasing invariant functions of V to real. Therefore there
is CP violation in the SM if and only if any of the rephasing invariant functions of the CKM matrix
V is not real.

In the SM with ng generations, the CKM matrix V is a ng⇥ng unitary matrix and it can be then
parametrised by n2

g independent parameters. Through rephasing of quark fields, one can remove
2ng �1 phases. Thus, the total number of parameters, denoted N, is given by

N = n2
g �2ng �1 = (ng �1)2 , (3.33)

which shows that for three generations (ng = 3) one is left with 4 real parameters. If one takes into
account that a unitary matrix is describe by ng(ng �1)/2 “angles”, one can further count the total
number of physical phases Nph as:

Nph = N � 1
2

ng(ng �1) =
1
2
(ng �1)(ng �2) . (3.34)

We conclude that for 2 generations (ng = 2), there are no physical phases left and therefore CP is
conserved. In the case of three generations (ng = 3), one has only one CP violating phase. There is
another way of confirming this. For two generations, there is only one rephasing invariant quartet
Qudcs, defined as

Qudcs ⌘ Vud VcsV ⇤
usV ⇤

cd . (3.35)

However using the orthogonality relation:

Vud V ⇤
cd + VusV ⇤

cs = 0 , (3.36)

and multiplying by V ⇤
usVcs, one obtains:

Qudcs = �|Vus|2 |Vcs|2 , (3.37)

which shows that Qudcs is real.
Considering now the case of three generations, we see that orthogonality of the first two rows

of V leads to
Vud V ⇤

cd + VusV ⇤
cs + VubV ⇤

cb = 0 . (3.38)

Multiplying by V ⇤
usVcs and taking imaginary parts one obtains:

ImQudcs = � ImQubcs . (3.39)

In an analogous way, one can show that for ng = 3 the imaginary parts of all quartets are equal, up
to a sign. In the SM with three generations | ImQ| gives the strength of CP violation. If we consider
the orthogonality between the first and third columns of V :

Vud V ⇤
ub + Vcd V ⇤

cb + Vtd V ⇤
tb = 0 . (3.40)
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Figure 4: Unitarity triangle

This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.

15

Flavour Physics and CP Violation in the SM and Beyond

h
Vud V ⇤

ub

Vcd V ⇤
cb

Vtd V ⇤
tb

b

a

g

Figure 4: Unitarity triangle

This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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This equation may be interpreted as a "triangle" as represented in figure 4. One verifies easily
that under rephasing, the triangle rotates. Therefore the orientation of the triangle has no physical
meaning. Obviously, the internal angles of the triangles are rephasing invariant, namely

a ⌘ arg [�Vtd VubV ⇤
ud V ⇤

tb] = arg(�Qubtd) , (3.41a)

b ⌘ arg [�Vcd VtbV ⇤
cbV ⇤

td ] = arg(�Qtbcd) , (3.41b)

g ⌘ arg [�Vud VcbV ⇤
ubV ⇤

cd ] = arg(�Qcbud) , (3.41c)

and one gets the following relation

a + b + g = arg(�1) = p (mod p) . (3.42)

This is true "by definition", and therefore it is not a test of unitarity!!
The quantity ImQ has a simple geometrical interpretation. It is twice the area of the unitarity

triangles, as sketched in figure 4. The area of the triangles, A, is given by

A = |Vcd V ⇤
cb|

h
2
, (3.43)

where the height of triangle, h, is given by

h = |Vud V ⇤
ub| sing , (3.44)

with g defined in eq. (3.41c). One then obtains

A =
1
2
|ImQudcb| . (3.45)

Since all | ImQ| are equal then all triangles have the same area.
Experimentally we know that:
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with l ⇡ 0.22.
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The six unitarity triangles are given by
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Let us now comment on the strength of CP violation in the SM, which

|ImQ| =
����

l

0

Vud
l

3

Vub
l

Vcd
l

2

Vcb

���� sing . (3.48)

In order to account for CP violation in the kaon sector, sing should be of order 1. So | ImQ|⇡ l

6.
The strength of CP violation (measured by ImQ) is small in the SM, due to the smallness of

some CKM moduli |Vi j|, like |Vub|, |Vcb|. What would be the maximal possible value of ImQ? The
maximal value is obtained for the following mixing matrix with universal moduli as

V =
1p
3

0

B@
1 1 1
1 w w

⇤

1 w

⇤
w

1

CA , (3.49)

with w ⌘ exp(i2p/3) , yielding

ImQ =
1

6
p

3
⇡ 0.096 . (3.50)

A convenient parametrisation of the CKM matrix is the so-called Standard Parametrisation,
which is defined by the product of three rotations, namely:

V (q12,q13,q23,d13) =

0
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1 0 0
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0 �s23 c23
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1

CA ,

(3.51)

where ci j ⌘ cosqi j and si j ⌘ sinqi j. One of the advantages of the Standard Parametrisation is that
the si j are simply related to directly measured quantities:

s13 = |Vub| , s12 =
|Vus|p

1� |Vub|2
, s23 =

|Vcb|p
1� |Vub|2

. (3.52)

Once si j are fixed, all data has to be fit by a single parameter: d13 .
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The six unitarity triangles are given by
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Let us now comment on the strength of CP violation in the SM, which

|ImQ| =
����
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Vcb

���� sing . (3.48)

In order to account for CP violation in the kaon sector, sing should be of order 1. So | ImQ|⇡ l

6.
The strength of CP violation (measured by ImQ) is small in the SM, due to the smallness of

some CKM moduli |Vi j|, like |Vub|, |Vcb|. What would be the maximal possible value of ImQ? The
maximal value is obtained for the following mixing matrix with universal moduli as

V =
1p
3

0
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⇤
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⇤
w

1

CA , (3.49)

with w ⌘ exp(i2p/3) , yielding

ImQ =
1

6
p

3
⇡ 0.096 . (3.50)

A convenient parametrisation of the CKM matrix is the so-called Standard Parametrisation,
which is defined by the product of three rotations, namely:

V (q12,q13,q23,d13) =

0
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0 c23 s23
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(3.51)

where ci j ⌘ cosqi j and si j ⌘ sinqi j. One of the advantages of the Standard Parametrisation is that
the si j are simply related to directly measured quantities:

s13 = |Vub| , s12 =
|Vus|p

1� |Vub|2
, s23 =

|Vcb|p
1� |Vub|2

. (3.52)

Once si j are fixed, all data has to be fit by a single parameter: d13 .
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The six unitarity triangles are given by
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Let us now comment on the strength of CP violation in the SM, which
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In order to account for CP violation in the kaon sector, sing should be of order 1. So | ImQ|⇡ l

6.
The strength of CP violation (measured by ImQ) is small in the SM, due to the smallness of

some CKM moduli |Vi j|, like |Vub|, |Vcb|. What would be the maximal possible value of ImQ? The
maximal value is obtained for the following mixing matrix with universal moduli as

V =
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1

CA , (3.49)

with w ⌘ exp(i2p/3) , yielding
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p

3
⇡ 0.096 . (3.50)

A convenient parametrisation of the CKM matrix is the so-called Standard Parametrisation,
which is defined by the product of three rotations, namely:
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where ci j ⌘ cosqi j and si j ⌘ sinqi j. One of the advantages of the Standard Parametrisation is that
the si j are simply related to directly measured quantities:

s13 = |Vub| , s12 =
|Vus|p

1� |Vub|2
, s23 =

|Vcb|p
1� |Vub|2

. (3.52)

Once si j are fixed, all data has to be fit by a single parameter: d13 .
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The six unitarity triangles are given by
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A convenient parametrisation of the CKM matrix is the so-called Standard Parametrisation,
which is defined by the product of three rotations, namely:
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where ci j ⌘ cosqi j and si j ⌘ sinqi j. One of the advantages of the Standard Parametrisation is that
the si j are simply related to directly measured quantities:

s13 = |Vub| , s12 =
|Vus|p

1� |Vub|2
, s23 =

|Vcb|p
1� |Vub|2

. (3.52)

Once si j are fixed, all data has to be fit by a single parameter: d13 .
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Invariant Approach to CP Violation

In this section we review the invariant approach to CP violation [25]. As previously indicated
we write L as in eq. (3.29). In order to analyse whether the whole Lagrangian violates CP, one
has to check whether the CP transformation under which L(CP) is invariant implies non-trivial
restrictions, i.e. restrictions which may not be satisfied by L 0 defined in eq. (3.29). In the case of
the SM, the most general CP transformations which leave L(CP) invariant are:

(CP) u0
L (CP)�1 = eizW KL g

0C u0
L
T
,

(CP) d0
L (CP)�1 = KL g

0C d0
L
T
,

(CP) u0
R (CP)�1 = Ku

R g

0C u0
R
T
,

(CP) d0
R (CP)�1 = Kd

R g

0C d0
R
T
,

(3.53)

where KL, Ku
L and Kd

R are unitary matrices acting in flavour space. It can be shown that in order for
the Yukawa interactions (or equivalently mu ,md) to be CP invariant, the following relations have
to be satisfied:

K†
L mu Ku

R = m⇤
u ,

K†
L md Kd

R = m⇤
d .

(3.54)

The existence of the matrices KL, Ku
L and Kd

R is a necessary and sufficient condition for CP invari-
ance in the SM.

Exercise 4. Prove the above result.

It is rather convenient to define the Hermitian matrices Hu,Hd as:

Hu ⌘ mu m†
u , Hd ⌘ md m†

d . (3.55)

Thus, from eq. (3.54) one derives:

K†
L Hu KL = H⇤

u = HT
u ,

K†
L Hd KL = H⇤

u = HT
u ,

(3.56)

and therefore one has
K†

L [Hu,Hd ]KL = [HT
u ,HT

d ] = �[Hu,Hd ]
T . (3.57)

Taking the trace of an odd r power of the above equation we find

Tr[Hu,Hd ]
r = 0 . (r odd) (3.58)

Therefore, one concludes that in the SM CP invariance implies Tr[Hu,Hd ]r = 0. For the case
of r = 1 this relation is trivially satisfied, since the trace of a commutator is automatically zero.
The minimum non-trivial case is for r = 3. Note that eq. (3.58) is a necessary condition for CP
invariance for any number of generations. For two generations the invariant automatically vanishes.
In the case of three generations one obtains:

Tr[Hu,Hd ]
3 = 6i(m2

t �m2
c)(m

2
t �m2

u)(m
2
c �m2

u)

(m2
b �m2

s )(m
2
b �m2

d)(m
2
s �m2

d) ImQ.
(3.59)
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restrictions, i.e. restrictions which may not be satisfied by L 0 defined in eq. (3.29). In the case of
the SM, the most general CP transformations which leave L(CP) invariant are:

(CP) u0
L (CP)�1 = eizW KL g

0C u0
L
T
,

(CP) d0
L (CP)�1 = KL g

0C d0
L
T
,

(CP) u0
R (CP)�1 = Ku

R g

0C u0
R
T
,

(CP) d0
R (CP)�1 = Kd

R g

0C d0
R
T
,

(3.53)

where KL, Ku
L and Kd

R are unitary matrices acting in flavour space. It can be shown that in order for
the Yukawa interactions (or equivalently mu ,md) to be CP invariant, the following relations have
to be satisfied:

K†
L mu Ku

R = m⇤
u ,

K†
L md Kd

R = m⇤
d .

(3.54)

The existence of the matrices KL, Ku
L and Kd

R is a necessary and sufficient condition for CP invari-
ance in the SM.

Exercise 4. Prove the above result.

It is rather convenient to define the Hermitian matrices Hu,Hd as:

Hu ⌘ mu m†
u , Hd ⌘ md m†

d . (3.55)

Thus, from eq. (3.54) one derives:

K†
L Hu KL = H⇤

u = HT
u ,

K†
L Hd KL = H⇤

u = HT
u ,

(3.56)

and therefore one has
K†

L [Hu,Hd ]KL = [HT
u ,HT

d ] = �[Hu,Hd ]
T . (3.57)

Taking the trace of an odd r power of the above equation we find

Tr[Hu,Hd ]
r = 0 . (r odd) (3.58)

Therefore, one concludes that in the SM CP invariance implies Tr[Hu,Hd ]r = 0. For the case
of r = 1 this relation is trivially satisfied, since the trace of a commutator is automatically zero.
The minimum non-trivial case is for r = 3. Note that eq. (3.58) is a necessary condition for CP
invariance for any number of generations. For two generations the invariant automatically vanishes.
In the case of three generations one obtains:

Tr[Hu,Hd ]
3 = 6i(m2

t �m2
c)(m

2
t �m2

u)(m
2
c �m2

u)

(m2
b �m2

s )(m
2
b �m2

d)(m
2
s �m2

d) ImQ.
(3.59)

17

Flavour Physics and CP Violation in the SM and Beyond

Invariant Approach to CP Violation

In this section we review the invariant approach to CP violation [25]. As previously indicated
we write L as in eq. (3.29). In order to analyse whether the whole Lagrangian violates CP, one
has to check whether the CP transformation under which L(CP) is invariant implies non-trivial
restrictions, i.e. restrictions which may not be satisfied by L 0 defined in eq. (3.29). In the case of
the SM, the most general CP transformations which leave L(CP) invariant are:

(CP) u0
L (CP)�1 = eizW KL g

0C u0
L
T
,

(CP) d0
L (CP)�1 = KL g

0C d0
L
T
,

(CP) u0
R (CP)�1 = Ku

R g

0C u0
R
T
,

(CP) d0
R (CP)�1 = Kd

R g

0C d0
R
T
,

(3.53)

where KL, Ku
L and Kd

R are unitary matrices acting in flavour space. It can be shown that in order for
the Yukawa interactions (or equivalently mu ,md) to be CP invariant, the following relations have
to be satisfied:

K†
L mu Ku

R = m⇤
u ,

K†
L md Kd

R = m⇤
d .

(3.54)

The existence of the matrices KL, Ku
L and Kd

R is a necessary and sufficient condition for CP invari-
ance in the SM.

Exercise 4. Prove the above result.

It is rather convenient to define the Hermitian matrices Hu,Hd as:

Hu ⌘ mu m†
u , Hd ⌘ md m†

d . (3.55)

Thus, from eq. (3.54) one derives:

K†
L Hu KL = H⇤

u = HT
u ,

K†
L Hd KL = H⇤

u = HT
u ,

(3.56)

and therefore one has
K†

L [Hu,Hd ]KL = [HT
u ,HT

d ] = �[Hu,Hd ]
T . (3.57)

Taking the trace of an odd r power of the above equation we find

Tr[Hu,Hd ]
r = 0 . (r odd) (3.58)

Therefore, one concludes that in the SM CP invariance implies Tr[Hu,Hd ]r = 0. For the case
of r = 1 this relation is trivially satisfied, since the trace of a commutator is automatically zero.
The minimum non-trivial case is for r = 3. Note that eq. (3.58) is a necessary condition for CP
invariance for any number of generations. For two generations the invariant automatically vanishes.
In the case of three generations one obtains:

Tr[Hu,Hd ]
3 = 6i(m2

t �m2
c)(m

2
t �m2

u)(m
2
c �m2

u)

(m2
b �m2

s )(m
2
b �m2

d)(m
2
s �m2

d) ImQ.
(3.59)

17

The minimal non trivial case is for r=3

Flavour Physics and CP Violation in the SM and Beyond

Invariant Approach to CP Violation

In this section we review the invariant approach to CP violation [25]. As previously indicated
we write L as in eq. (3.29). In order to analyse whether the whole Lagrangian violates CP, one
has to check whether the CP transformation under which L(CP) is invariant implies non-trivial
restrictions, i.e. restrictions which may not be satisfied by L 0 defined in eq. (3.29). In the case of
the SM, the most general CP transformations which leave L(CP) invariant are:

(CP) u0
L (CP)�1 = eizW KL g

0C u0
L
T
,

(CP) d0
L (CP)�1 = KL g

0C d0
L
T
,

(CP) u0
R (CP)�1 = Ku

R g

0C u0
R
T
,

(CP) d0
R (CP)�1 = Kd

R g

0C d0
R
T
,

(3.53)

where KL, Ku
L and Kd

R are unitary matrices acting in flavour space. It can be shown that in order for
the Yukawa interactions (or equivalently mu ,md) to be CP invariant, the following relations have
to be satisfied:

K†
L mu Ku

R = m⇤
u ,

K†
L md Kd

R = m⇤
d .

(3.54)

The existence of the matrices KL, Ku
L and Kd

R is a necessary and sufficient condition for CP invari-
ance in the SM.

Exercise 4. Prove the above result.

It is rather convenient to define the Hermitian matrices Hu,Hd as:

Hu ⌘ mu m†
u , Hd ⌘ md m†

d . (3.55)

Thus, from eq. (3.54) one derives:

K†
L Hu KL = H⇤

u = HT
u ,

K†
L Hd KL = H⇤

u = HT
u ,

(3.56)

and therefore one has
K†

L [Hu,Hd ]KL = [HT
u ,HT

d ] = �[Hu,Hd ]
T . (3.57)

Taking the trace of an odd r power of the above equation we find

Tr[Hu,Hd ]
r = 0 . (r odd) (3.58)

Therefore, one concludes that in the SM CP invariance implies Tr[Hu,Hd ]r = 0. For the case
of r = 1 this relation is trivially satisfied, since the trace of a commutator is automatically zero.
The minimum non-trivial case is for r = 3. Note that eq. (3.58) is a necessary condition for CP
invariance for any number of generations. For two generations the invariant automatically vanishes.
In the case of three generations one obtains:

Tr[Hu,Hd ]
3 = 6i(m2

t �m2
c)(m

2
t �m2

u)(m
2
c �m2

u)

(m2
b �m2

s )(m
2
b �m2

d)(m
2
s �m2

d) ImQ.
(3.59)

17

Necessary and sufficient condition for CP conservation in the SM with three generations:

Flavour Physics and CP Violation in the SM and Beyond

It can be shown [25] that the vanishing of Tr[Hu,Hd ]3 is a necessary and sufficient condition for
CP invariance in the SM with three generations. For more than three generations the vanishing of
this invariant continuous being a necessary condition for CP invariance, but no longer is a sufficient
condition. In the case of three generations one has1:

det[Hu,Hd ] =
1
3

tr[Hu,Hd ]
3 , (3.60)

and thus the vanishing of the above determinant can be used [26] as a necessary and sufficient
condition for CP invariance. .

Exercise 5. Prove the above result given by eq. (3.59). Hint: choose to work in a weak basis where
either Hu or Hd is diagonal.

4. Physics Beyond the Standard Model

4.1 Neutrino Masses

It was already mentioned that in the SM, neutrinos are strictly massless. There are no Dirac
mass terms since no fermionic right-handed field nR is not introduced. There are no Majorana mass
terms at tree level, since no scalar SU(2)-triplet is introduced. Also no Majorana mass is generated
at higher orders, due to exact B�L conservation. Note that the Majorana mass term:

n

T
L C nL , (4.1)

violates B� L by 2 units. The same applies to SU(5) GUT, where B� L is also an accidental
symmetry.

It can be readily seen that in the SM, there is no leptonic mixing. The leptonic charged currents
is given by

n

0
Li g

µ `0
LiWµ

, (4.2)

where n

0
Li and `0

Li are weak eigenstates. After diagonalisation of the charged lepton mass matrix the
leptonic charged currents become

n

0
L g

µ U `L W
µ

, (4.3)

where `L is now in the mass eigenstate. But the unitary matrix U can be eliminated through a
redefinition of nu0

L so that the charged currents become flavour diagonal:

nL g

µ `L W
µ

. (4.4)

Observation of neutrino oscillations provides clear evidence for New Physics beyond the SM.
The Minimal extension of the SM which allows for non-vanishing neutrino masses introduces right-
handed neutrino fields, nRi, a "strange" missing feature of the SM. Once the right-handed neutrino
fields are introduced, Dirac masses for neutrinos are generated. Yukawa interactions can then be
written as

(Y
n

)i j `i f̃ nRi + H.c. , (4.5)

1For any 3⇥3 traceless matrix A: TrA3 = 3 det(A).
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Figure 12.1: Sketch of the unitarity triangle.

VCKM =
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1 − λ2/2 λ Aλ3(ρ − iη)
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⎞
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The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles

in a complex plane, of which those obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (12.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are

exactly (0, 0), (1, 0), and, due to the definition in Eq. (12.4), (ρ̄, η̄). An important goal
of flavor physics is to overconstrain the CKM elements, and many measurements can
be conveniently displayed and compared in the ρ̄, η̄ plane. While the Lagrangian in
Eq. (12.1) is renormalized, and the CKM matrix has a well known scale dependence
above the weak scale [8], below µ = mW the CKM elements can be treated as constants,
with all µ-dependence contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM,
to extract magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes
dominated by loop-level contributions in the SM are particularly sensitive to new physics.
We give the global fit results for the CKM elements in Sec. 12.4, and discuss some
implications for beyond standard model physics in Sec. 12.5.
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12.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ϵ φ∗uI

Rj + h.c., (12.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ϵ is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, ⟨φ⟩ = (0, v/

√
2), Eq. (12.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM

⎛

⎝
dL
sL
bL

⎞

⎠ + h.c., VCKM ≡ V u
L V d

L
† =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠.

(12.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =

⎛

⎝
1 0 0
0 c23 s23
0 −s23 c23

⎞

⎠

⎛

⎝
c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13

⎞

⎠

⎛

⎝
c12 s12 0
−s12 c12 0

0 0 1

⎞

⎠

=

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

⎞

⎠ , (12.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (12.4)

These relations ensure that ρ̄+ iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb) is phase convention independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and one can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,
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VCKM =

⎛
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1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (12.5)

The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles

in a complex plane, of which those obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (12.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are

exactly (0, 0), (1, 0), and, due to the definition in Eq. (12.4), (ρ̄, η̄). An important goal
of flavor physics is to overconstrain the CKM elements, and many measurements can
be conveniently displayed and compared in the ρ̄, η̄ plane. While the Lagrangian in
Eq. (12.1) is renormalized, and the CKM matrix has a well known scale dependence
above the weak scale [8], below µ = mW the CKM elements can be treated as constants,
with all µ-dependence contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM,
to extract magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes
dominated by loop-level contributions in the SM are particularly sensitive to new physics.
We give the global fit results for the CKM elements in Sec. 12.4, and discuss some
implications for beyond standard model physics in Sec. 12.5.

June 5, 2018 19:49

Each side is divided by the best know side of the UT:  

2 12. CKM quark-mixing matrix

Figure 12.1: Sketch of the unitarity triangle.

VCKM =

⎛

⎝
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (12.5)

The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles

in a complex plane, of which those obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (12.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are

exactly (0, 0), (1, 0), and, due to the definition in Eq. (12.4), (ρ̄, η̄). An important goal
of flavor physics is to overconstrain the CKM elements, and many measurements can
be conveniently displayed and compared in the ρ̄, η̄ plane. While the Lagrangian in
Eq. (12.1) is renormalized, and the CKM matrix has a well known scale dependence
above the weak scale [8], below µ = mW the CKM elements can be treated as constants,
with all µ-dependence contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM,
to extract magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes
dominated by loop-level contributions in the SM are particularly sensitive to new physics.
We give the global fit results for the CKM elements in Sec. 12.4, and discuss some
implications for beyond standard model physics in Sec. 12.5.

June 5, 2018 19:49

2 12. CKM quark-mixing matrix

Figure 12.1: Sketch of the unitarity triangle.

VCKM =

⎛

⎝
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (12.5)

The CKM matrix elements are fundamental parameters of the SM, so their precise
determination is important. The unitarity of the CKM matrix imposes

∑
i VijV

∗
ik = δjk

and
∑

j VijV
∗
kj = δik. The six vanishing combinations can be represented as triangles

in a complex plane, of which those obtained by taking scalar products of neighboring
rows or columns are nearly degenerate. The areas of all triangles are the same, half of
the Jarlskog invariant, J [7], which is a phase-convention-independent measure of CP
violation, defined by Im

[
VijVklV

∗
il V

∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V ∗
ub + Vcd V ∗

cb + Vtd V ∗
tb = 0 , (12.6)

by dividing each side by the best-known one, VcdV
∗
cb (see Fig. 1). Its vertices are

exactly (0, 0), (1, 0), and, due to the definition in Eq. (12.4), (ρ̄, η̄). An important goal
of flavor physics is to overconstrain the CKM elements, and many measurements can
be conveniently displayed and compared in the ρ̄, η̄ plane. While the Lagrangian in
Eq. (12.1) is renormalized, and the CKM matrix has a well known scale dependence
above the weak scale [8], below µ = mW the CKM elements can be treated as constants,
with all µ-dependence contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM,
to extract magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes
dominated by loop-level contributions in the SM are particularly sensitive to new physics.
We give the global fit results for the CKM elements in Sec. 12.4, and discuss some
implications for beyond standard model physics in Sec. 12.5.
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unitarity). The fit must also use theory predictions for hadronic matrix elements, which
sometimes have significant uncertainties. There are several approaches to combining
the experimental data. CKMfitter [6,109] and Ref. [124] (which develops [125,126]
further) use frequentist statistics, while UTfit [110,127] uses a Bayesian approach. These
approaches provide similar results.

The constraints implied by the unitarity of the three generation CKM matrix
significantly reduce the allowed range of some of the CKM elements. The fit for the
Wolfenstein parameters defined in Eq. (12.4) gives

λ = 0.22453 ± 0.00044 , A = 0.836 ± 0.015 ,

ρ̄ = 0.122+0.018
−0.017 , η̄ = 0.355+0.012

−0.011 . (12.26)

These values are obtained using the method of Refs. [6,109]. Using the prescription
of Refs. [110,127] gives λ = 0.22465 ± 0.00039, A = 0.832 ± 0.009, ρ̄ = 0.139 ± 0.016,
η̄ = 0.346 ± 0.010 [128]. The fit results for the magnitudes of all nine CKM elements are

VCKM =

⎛

⎝
0.97446 ± 0.00010 0.22452± 0.00044 0.00365 ± 0.00012
0.22438 ± 0.00044 0.97359+0.00010

−0.00011 0.04214 ± 0.00076

0.00896+0.00024
−0.00023 0.04133± 0.00074 0.999105 ± 0.000032

⎞

⎠ , (12.27)
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Fit results for the magnitudes of all nine elements of CKM

The CKM elements can be most precisely determined using a global 

fit to all available measurements and imposing the SM constraints (e.g. 

three generation unitarity). The fit must also use theory predictions for 

hadronic matrix elements which sometimes have significant uncertainties. 
There are several approaches to combining the experimental data CKM 
fitter, UT fit (see references in PDG)



Violating 3X3 unitarity

What is the best strategy to perform precision test of the SM mechanism of 

flavour mixing and CP violation, while at the same time searching for New  Physics?

F. J. Botella, G, C. Branco, M. Nebot, MNR, 2003

F.J. Botella et al. / Nuclear Physics B 651 (2003) 174–190 175

account for a large number of data with a small number of parameters. The Cabibbo,
Kobayashi and Maskawa (CKM) matrix is characterized by four parameters which one
can choose to be three angles θi and the phase δ of the standard parametrization [9]. The
values of s1, s2 and s3 (si = sin θi ) can be determined by the experimental value of |Vus|,
|Vcb| and |Vub|. Once these parameters are fixed, one has to fit, using only the phase δ,
a large amount of data, including εK , ε′/ε, sin(2β), %MBd , %MBs . It is remarkable that
these five experimental quantities can be fitted with only one parameter [10], namely the
KM phase δ.
In this paper, we address the question of finding the best strategy to perform precision

tests of the SM mechanism of flavour mixing and CP violation, while at the same time
searching for the presence of New Physics.
In view of the impressive success of the SM, one may wonder what is the motivation

to look for physics beyond the SM. In what concerns CP violation, there are in our
opinion, two main motivations to look for New Physics and in particular new sources of
CP violation:

(i) By now, it has been established that the strength of CP violation in the SM is not
sufficient to generate the observed Baryon Asymmetry in the Universe (BAU), thus
suggesting the need for new sources of CP violation.

(ii) Almost all extensions of the SM, including supersymmetric extensions, have new
sources of CP violation which can in principle be detected at B-factories.

Throughout the paper, we will assume that the tree level weak decays are dominated by
the SM W-exchange diagrams, thus implying that the extraction of |Vus |, |Vub| and |Vcb|
from experiment continues to be valid even in the presence of New Physics (NP). We will
allow for contributions from NP in processes like B0d–"B 0

d mixing and B0s –"B 0
s mixing, as

well as in penguin diagrams. Since the SM contributes to these processes only at loop
level, the effects of NP are more likely to be detectable. Examples of processes which
are sensitive to NP, are the CP asymmetries corresponding to the decays B0d → J/ΨKs

and B0d → π+π− which are affected by NP contributions to B0d–"B 0
d mixing. Significant

contributions to B0d–"B 0
d and B0s –"B 0

s mixing can arise in many of the extensions of the
SM, such as models with vector-like quarks [11,12] and supersymmetric extensions of the
SM [13]. Vector-like quarks naturally arise in theories with large extra-dimensions [14], as
well as in some grand-unified theories like E6. The presence of vector-like quarks leads
to a small deviation of 3 × 3 unitarity of VCKM which in turn leads to Z-mediated new
contributions to B0d–"B 0

d and B0s –"B 0
s mixings. In the Minimal Supersymmetric Standard

Model (MSSM) the size of SUSY contributions to B0d–"B 0
d and B0s –"B 0

s mixing crucially
depends on the choice of soft-breaking terms, but there is a wide range of the parameter
space where SUSY contributions can be significant. Recently, it has been pointed out [15]
that in the context of SUSY SO(10), there is an interesting connection between the
observed large mixing in atmospheric neutrinos and the size of the SUSY contribution
to B0s –"B 0

s mixing, which is expected to be large in this class of models.
The standard way of testing the compatibility of the SM with the existing data consists

of adopting the Wolfenstein parametrization and plotting in the ρ, η plane the constraints

SM



Alternative approach to the one presented before: choose a complete set 

of rephasing invariant phases and use 3x3 unitarity of CKM to derive a set 

of exact relations written in terms of measurable quantities, namely moduli 

of CKM and and arguments of rephasing invariant quartets.

Violating 3X3 unitarity (cont)

Since all relations are exact and written in terms of measurable quantities, 

they are particularly suited to perform precise tests of the SM

Suppose one drops the requirement of 3x3 unitarity, how many 

parameters are there in the 3x3 CKM matrix?  

Flavour Physics and CP Violation in the SM and Beyond

4.2 Violating 3⇥3 CKM Unitarity

Suppose that one drops the requirement of 3⇥3 unitarity. How many parameters are there in
the 3⇥3 CKM matrix? By taking into account the elements of the CKM matrix V :

0

BBBB@

Vud Vus Vub · · ·
Vcd Vcs Vcb · · ·
Vtd Vts Vtb · · ·

...
...

...
. . .

1

CCCCA
. (4.55)

One counts 9 moduli plus 4 (9� 5) rephasing invariant phases for a total of 13 parameters. A
convenient choice for 4 independent rephasing invariant phases is:

b ⌘ arg(�Vcd VtbV ⇤
cbV ⇤

td) , (4.56a)

g ⌘ arg(�Vud VcbV ⇤
ubV ⇤

cd) , (4.56b)

c = bs ⌘ arg(�VcbVtsV ⇤
csV ⇤

tb) , (4.56c)

c

0 ⌘ arg(�VusVcd V ⇤
ud V ⇤

cs) , (4.56d)

The SM with three generations predicts a series of exact relations among the 13 measurable (in
principle) quantities. Again we should emphasise that the relation

a + b + g = p , (4.57)

is not a test of unitarity. It is true, by definition!

a ⌘ arg(�Vtd VubV ⇤
ud V ⇤

tb) , (4.58a)

b ⌘ arg(�Vcd VtbV ⇤
cbV ⇤

td) , (4.58b)

g ⌘ arg(�Vud VcbV ⇤
ubV ⇤

cd) . (4.58c)

In the derivation of the unitary relations, it is useful to adopt a convenient phase conven-
tion [35]. Without loss of generality one can choose:

arg(V ) =

0

B@
0 c

0 �g

p 0 0
�b p +c 0

1

CA . (4.59)

We have used the 5 rephasing degrees of freedom to fix 5 of the nines phases. We are left with 4
phases.

In the case of the SM where the CKM matrix is strictly unitary, one has exact relations predict
by the SM, such as [30, 31]:

|Vub| =
|Vcd ||Vcb|
|Vub|

sinb

sin(b + g)
, (4.60a)

sin c =
|Vtd |
|Vts|

|Vcd |
|Vcs|

sinb , (4.60b)

|Vub|
|Vtb|

=
sinb

sing

|Vtb|
|Vud |

, (4.60c)

sin c =
|Vus||Vub|
|Vcs||Vcb|

sin(�c +c

0+ g) . (4.60d)

25

9 moduli and 4 rephasing invariant phases (9-5)
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We are left with four phases



Exact relations
From six unitarity relations corresponding to orthogonality of different 


rows and of different columns
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Table 1
Phases that can be measured in different scenarios

KM β γ χ χ ′ α = π − β − γ

NP β̄ = β − φd γ χ̄ = χ + φs χ ′ ᾱ = α+ φd

specially important the measurement of γ , which does not suffer from contamination of
NP in the mixing. Note that γ can be either directly measured [19] or obtained through the
knowledge of the asymmetries aJ/ΨKs = Im(λ

(d)
J/ΨKs

), aπ+π− = Im(λ
(q)
π+π−). Indeed the

phase φd cancels in the sum ᾱ + β̄ = (π − γ − β + φd) + (β − φd) and one has:

(6)γ = π − 1
2
[arcsinaJ/ΨKs + arcsinaπ+π−].

Note that we are using aπ+π− = sin(2ᾱ) that can be extracted from the experimental
asymmetry through various different approaches [20]. Once γ is known, β can be readily
obtained, using unitarity and the knowledge of |Vub|, |Vus |, |Vcb|. The knowledge of β ,
together with aJ/ΨKs leads then to the determination of φd . Of course, this evaluation
of φd will be restricted by the precision on |Vub|, since |Vus |, |Vcb| are extracted from
experiment with good accuracy. Similar considerations apply to the extraction of rd , rs or
rd/rs from∆MBd and∆MBs where |V ∗

tdVtb|, |V ∗
t sVtb| or its ratio, have to be reconstructed

previously using unitarity.
In Table 1 we summarize the phases that can be measured from CP asymmetries both in

the KM scheme or in the case of New Physics in the mixing. For example, β̄ is the phase
measured through aJ/ΨKs , i.e., β̄ = (1/2) arcsinaJ/ΨKs .

3. Precision tests of the SM and search for New Physics

In this section, we derive a complete set of exact relations involving moduli of VCKM
and the four rephasing invariant phases of Eq. (1) adopting the phase convention of Eq. (2).
From the six unitarity relations corresponding to orthogonality of different rows and of
different columns of VCKM one obtains:

(7)(uc) sinχ ′ = |Vub||Vcb|
|Vus ||Vcs |

sinγ ,

(8)(ut) |Vud ||Vtd | sinβ − |Vus ||Vts| sin(χ ′ − χ) − |Vub||Vtb| sinγ = 0,

(9)(ct) sinχ = |Vtd ||Vcd |
|Vts||Vcs |

sinβ,

(10)(db)
|Vub|
|Vtd |

= sinβ
sinγ

|Vtb|
|Vud |

,

(11)(ds) sinχ ′ = |Vtd ||Vts|
|Vud ||Vus|

sin(β + χ),

(12)(sb)
sinχ

sin(γ + χ ′)
= |Vus ||Vub|

|Vts||Vtb|
,

A few additional relations:
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where, in parenthesis, we have indicated the corresponding rows and columns. There are
additional relations which can be readily obtained either by orthogonality or by applying
the law of sines to the corresponding unitarity triangles, such as:

(13)(db) |Vub| =
|Vcd ||Vcb|

|Vud |
sinβ

sin(γ + β)
,

(14)(db) |Vtd | =
|Vcd ||Vcb|

|Vtb|
sinγ

sin(γ + β)
,

(15)(sb) sinχ = |Vus ||Vub|
|Vcs ||Vcb|

sin(−χ + χ ′ + γ ).

Furthermore, by dividing Eq. (14) by |Vts| and using normalization of rows and columns
one obtains

(16)r = sinγ
sin(γ + β)

|Vcd |
|Vtb|

[

1+ r2 − r2
sin2 β
sin2 γ

|Vtb|2
|Vud |2

]1/2
,

where r ≡ |Vtd |/|Vts|. Using Eqs. (8) and (10), together with normalization conditions,
one obtains:

(17)sin(χ − χ ′) = r sinβ
|Vus |
|Vud |

[

1− |Vcb|2
|Vus|2

]

.

Another interesting relation is obtained by combining Eq. (12) with Eq. (13), leading to:

(18)sinχ = |Vus ||Vcd ||Vcb|
|Vts||Vtb||Vud |

sinβ sin(γ + χ ′)
sin(γ + β)

.

Since the above formulae have the potential of providing precise tests of the SM, we
have opted for writing exact relations. However, it is obvious that given the experimental
knowledge on the size of the various moduli of the CKM matrix elements, some of the
above relations can be, to an excellent approximation, substituted by simpler ones. For
example, Eq. (18) is the exact version of the Aleksan–London–Kayser relation [16], the
importance of which has been emphasized by Silva and Wolfenstein [21]:

(19)sinχ ≃ |Vus |2
|Vud |2

sinβ sinγ
sin(γ + β)

.

Similarly Eq. (9) can be well approximated by:

(20)sinχ ≃ r
|Vus |
|Vud | sinβ,

and Eqs. (14) and (12) lead, respectively, to:

(21)r ≃ |Vus |
sinγ

sin(γ + β)
,

(22)sinχ ≃ |Vus ||Vub|
|Vcb|

sinγ .
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and the four rephasing invariant phases of Eq. (1) adopting the phase convention of Eq. (2).
From the six unitarity relations corresponding to orthogonality of different rows and of
different columns of VCKM one obtains:

(7)(uc) sinχ ′ = |Vub||Vcb|
|Vus ||Vcs |

sinγ ,

(8)(ut) |Vud ||Vtd | sinβ − |Vus ||Vts| sin(χ ′ − χ) − |Vub||Vtb| sinγ = 0,

(9)(ct) sinχ = |Vtd ||Vcd |
|Vts||Vcs |

sinβ,

(10)(db)
|Vub|
|Vtd |

= sinβ
sinγ

|Vtb|
|Vud |

,

(11)(ds) sinχ ′ = |Vtd ||Vts|
|Vud ||Vus|

sin(β + χ),

(12)(sb)
sinχ

sin(γ + χ ′)
= |Vus ||Vub|

|Vts||Vtb|
, with
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where, in parenthesis, we have indicated the corresponding rows and columns. There are
additional relations which can be readily obtained either by orthogonality or by applying
the law of sines to the corresponding unitarity triangles, such as:

(13)(db) |Vub| =
|Vcd ||Vcb|

|Vud |
sinβ

sin(γ + β)
,

(14)(db) |Vtd | =
|Vcd ||Vcb|

|Vtb|
sinγ

sin(γ + β)
,

(15)(sb) sinχ = |Vus ||Vub|
|Vcs ||Vcb|

sin(−χ + χ ′ + γ ).

Furthermore, by dividing Eq. (14) by |Vts| and using normalization of rows and columns
one obtains

(16)r = sinγ
sin(γ + β)

|Vcd |
|Vtb|

[

1+ r2 − r2
sin2 β
sin2 γ

|Vtb|2
|Vud |2

]1/2
,

where r ≡ |Vtd |/|Vts|. Using Eqs. (8) and (10), together with normalization conditions,
one obtains:

(17)sin(χ − χ ′) = r sinβ
|Vus |
|Vud |

[

1− |Vcb|2
|Vus|2

]

.

Another interesting relation is obtained by combining Eq. (12) with Eq. (13), leading to:

(18)sinχ = |Vus ||Vcd ||Vcb|
|Vts||Vtb||Vud |

sinβ sin(γ + χ ′)
sin(γ + β)

.

Since the above formulae have the potential of providing precise tests of the SM, we
have opted for writing exact relations. However, it is obvious that given the experimental
knowledge on the size of the various moduli of the CKM matrix elements, some of the
above relations can be, to an excellent approximation, substituted by simpler ones. For
example, Eq. (18) is the exact version of the Aleksan–London–Kayser relation [16], the
importance of which has been emphasized by Silva and Wolfenstein [21]:

(19)sinχ ≃ |Vus |2
|Vud |2

sinβ sinγ
sin(γ + β)

.

Similarly Eq. (9) can be well approximated by:

(20)sinχ ≃ r
|Vus |
|Vud | sinβ,

and Eqs. (14) and (12) lead, respectively, to:

(21)r ≃ |Vus |
sinγ

sin(γ + β)
,

(22)sinχ ≃ |Vus ||Vub|
|Vcb|

sinγ .
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This equation is the exact version of Aleksan-London and Kayser relation (1994):
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sinβ sin(γ + χ ′)
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.

Since the above formulae have the potential of providing precise tests of the SM, we
have opted for writing exact relations. However, it is obvious that given the experimental
knowledge on the size of the various moduli of the CKM matrix elements, some of the
above relations can be, to an excellent approximation, substituted by simpler ones. For
example, Eq. (18) is the exact version of the Aleksan–London–Kayser relation [16], the
importance of which has been emphasized by Silva and Wolfenstein [21]:

(19)sinχ ≃ |Vus |2
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.

Similarly Eq. (9) can be well approximated by:

(20)sinχ ≃ r
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Discussed by Silva and Wolfenstein (1996)

Violations of these relations can occur with or without violations of unitarity

Eq. (1), but there are no assumptions about magnitudes other than that ρ, η, and A are
less than unity. In fact, some of our analysis does not even depend on the approximate
magnitudes of the Vub, Vtd and Vts matrix elements, which are poorly measured.

It is pointed out in an article by Aleksan, Kayser and London [8] that the matrix
contains only four independent phases, which may in principle be determined from
CP violating experiments. While they emphasize the possibility of reconstructing the
matrix from these four phases, our goal is to use them to detect new physics. In the
SM, only two of these phases are large; these are essentially the ones usually identified
as β and γ. With our weak constraints on ρ and η, the angles β and γ can have
almost any value. Therefore, these measurements by themselves provide practically
no test of the CKM model. We recall that, in the standard analysis, one combines
the measurements of |Vub|, |Vtd| and the CP violation in the neutral Kaon system to
constrain the allowed values of β and γ [9]. New physics would then show up through
novel correlations between different experiments [10, 11]. Our major emphasis is on
what can be learned by attempts to measure a third phase ϵ (not to be confused with
the parameter in K decays) which is expected to be much smaller [8].

We follow reference [8] and define the two large phases as

β = arg

(

−
VtbV ∗

td

VcbV ∗

cd

)

, (2)

γ = arg

(

−
V ∗

ubVud

V ∗

cbVcd

)

. (3)

Within the SM, any other large phase we might chose will differ from these only by a
term of order ϵ, defined as

ϵ = arg

(

−
V ∗

csVcb

V ∗

tsVtb

)

. (4)

The last phase needed,

ϵ′ = arg

(

−
V ∗

udVus

V ∗

cdVcs

)

, (5)

is much smaller than the others, in the SM.
Aleksan, Kayser and London now make the important point that, to a good ap-

proximation, we can check the CKM model from the equation [8]

sin ϵ ≃
∣

∣

∣

∣

Vus

Vud

∣

∣

∣

∣

2 sin β sin γ

sin (β + γ)

≃ λ2η , (6)

where the last equality follows from Eq. (1). The approximation involves corrections
which, percentage-wise, are at most of order λ2. The power of this relation lies in
the fact that the ratio |Vus/Vud| is known to high precision. Similar relations may be
derived using other magnitude ratios, like |Vcd/Vcs|, which are not so well determined.
There are two other sets of expressions involving only β, γ, and ϵ, but they require the
knowledge of |Vub| or |Vtd|. We note that the validity of Eq. (6) rests on two pillars. On
the one hand, it assumes that the extraction of the angles was not inhibited by new
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Can one have extensions of the SM where deviations from unitarity 

of the CKM occur? Can they be sufficiently suppressed?

YES!
Introducing vector-like quarks. Quark field content of the model:

Branco, Morozumi, Parada, MNR (1993)
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model will be denoted as

(u d )h;, i=1, . . . , n,
md Gd Jd

0 1&d
0Dl,
0UI.q
0

0Uzp

P =1, . . . , Sd,
g 1) ~ ~ ~ p LV )

a=1, . . . , n +Nd,
P=l, . . . , n+N„.

The quark mass terms are

XM=uh;(m„), pURp+ Uh (MU) pU

+CLi™d)ia Ra+Dhp(MD ~pa Ra (2)

—uh V p y dhpWCKM P
2

&Z [Z aPuhaP "uhP ZaPdh—a1'"CLP2 cosOgr
—sin O~J", ]Z„(a,P=1, . . . , 4),

where u, dp are mass eigenstates and
3VCKM—
i=1

zap =5ap—U4aU4p
ap ~ap ~4a ~4p

(4a)

(4b)

(4c)

where U and 8' denote the matrices which relate the
weak and mass eigenstates:

u'
U0

=U ui d,' d,
0 =8'

Because of the presence of the vectorlike quarks there are
flavor-changing neutral currents which are closely con-
nected to the deviations from unitarity in V™ . Indeed,
using the unitarity of U and 8, one readily obtains

The dimensions of the four mass matrices are readily in-
ferred from the index range convention of Eq. (1). Al-
though most of our considerations apply to arbitrary n,

N„, we will, for simplicity, take n =3, Ed =N„=1.
The weak gauge currents can be written

+&z

mu u Ju=ox (7b)
u u

where G„, 1&„, and 1&d are diagonal real positive ma-
trices of dimension n, N„, and Nd. The matrix Gd is n di-
mensional and complex, while Jd and J„are (n XNd ) and
( n XN„) complex matrices. Through a phase
redefinition, one can eliminate Nd and N„phases from Jd
and Ju, respectively. It is convenient to write in block
form the unitary matrices 8' and U which diagonalize
ALdALd, and At„A,„,respectively:

Ad Ed Rd
Bd Sd Td

Rd =Jdlk'd ',
while Kd is, up to O(m /M ), the unitary matrix which
diagonalizes Gd Gd. Analogous expressions obviously ap-
ply to U. The V M matrix is then given by

K„Kd K„Jd1&d
CKM 'JtK Q 'J J 1&u u d u u d d

(10)

Using unitarity of 8', U one readily obtains

( VV );j =5;j—[J„M„J„];j,
V)ij ~ij [KdJdMd JdKd lij

where we have taken into account the fact that we have
chosen to work in the weak basis where C„ is diagonal
and therefore K„=I3. Since J„and Jd are O(m) it is
clear from Eqs. (11) that deviations from unitarity and
FCNC for the standard quarks will be suppressed by the
ratio m /M .

with analogous expressions for U. Let m be the mass
scale of ( Gd, Jd ) and M be the mass scale of 1&d. Since
Gd, Jd are b,I=—,

' mass terms while Qd is a b,I=O mass
term, it is natural to assume M »m. One can then find
an approximate solution for 8':

Td =I~, Sd =—(Qd Jd )Kd,

( VV ) p=z "p, (6a) III. REPHASING-INVARIANT
PARAMKTRIZATION OF Vc+M

( VtV) d ( V—VcKM) (6b)

An attractive feature of models with vectorlike quarks is
the fact that although deviations from unitarity in V
and FCNC's arise, they are related through Eqs. (6) and
are both suppressed in the standard quark sector by the
ratio of standard quark masses to the vectorlike quark
masses. This can be readily seen by making an approxi-
mate diagonalization of the quark mass matrices. By
choosing an appropriate weak basis one can put, without
loss of generality, the quark mass matrices in the form N, =—,'(n —1)[(n—2)+2(Nd+N„)] . (12)

Since the CKM matrix is no longer unitary, it is less
obvious to find the number of independent CP-violating
phases for arbitrary n, Nd, and N„. In Ref. [5] Branco
and Lavoura have studied the restrictions that CP invari-
ance imposes on the quark masses of Eq. (1). This was
done by constructing the most general CP transformation
which leaves invariant the charged and neutral current
interactions. They obtained for the number of CP restric-
tions
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II. THE MODEL

We add to the SM the following fields: a singlet charge
− 1

3
vectorial quark D0, three righthanded neutrino fields

ν0R (one per generation) and a neutral scalar singlet field,
S. We impose a Z4 symmetry, under which the fields
transform in the following manner:

D0 → −D0, S → −S

ψ0
l → iψ0

l , e0R → ie0R, ν0R → iν0R (1)

where ψl
0 denotes the lefthanded lepton doublets, while

e0R, ν
0
R stand for the righthanded charged lepton and neu-

trino singlets, respectively. All other fields remain invari-
ant under the Z4 symmetry. Furthermore, we impose
CP invariance on the Lagrangean, thus constraining all
Yukawa couplings to be real. In any weak basis (WB)
the Yukawa terms can be written as:

LY = Lq + Ll (2)

Lq = ψ0
qGuφ u0

R + ψ0
qGdφ̃ d0R +

+(fqS + fq
′S∗)D0

Ld
0
R + M̃D0

LD
0
R + h.c. (3)

Ll = ψ0
l Glφ e0R + ψ0

l Gν φ̃ ν
0
R +

1

2
ν0TR C(fνS ++fν

′S∗)ν0R + h.c. (4)

Here ψ0
q , u0

R, and d0R are the SM quark fields, and
φ is the SM Higgs doublet. Notice that an addi-
tional bare mass term of the form M̃D0

LD
0
R was in-

cluded in Lq. This term is both gauge and Z4 in-
variant and is present in the Lagrangean together with
the mass terms arising from the Yukawa interactions
upon SU(2) × U(1) × Z4 symmetry breaking. The
scalar potential will contain terms in φ and S with
no phase dependence, together with terms of the form
(µ2 + λ1S∗S + λ2φ†φ)(S2 + S∗2) + λ3(S4 + S∗4) which,
in general, lead to the spontaneous breaking of T and
CP invariance [13] with φ and S acquiring vacuum ex-
pectation values (vevs) of the form:

⟨φ0⟩ =
v√
2
, ⟨S⟩ =

V exp(iα)√
2

(5)

III. THE HADRONIC SECTOR

A crucial aspect of this model is the fact that the phase
α ≡ arg⟨S⟩ arising at a high energy scale does generate at
low energies a CP violating phase δKM in the 3×3 sector
of the mixing matrix connecting standard quarks. In this
respect, the presence of the vector-like quark D0 plays
a crucial rôle, since it is through the couplings (fqS +

fq
′S∗)D0

Ld
0
R that the phase α appears in the effective

mass matrix for the down standard-like quarks. Without
loss of generality, one may choose to work in a weak basis
where the up quark mass matrix is diagonal. In this basis,
it can be readily shown [14] that the 3×3 VCKM matrix,

mixing the standard quarks in the charged weak current
is obtained through the following relations:

VCKM
−1 h VCKM = d2 (6)

h ≡ m0
dm

0
d

† − (m0
dMD

†MD m0
d

†
)/M

2
(7)

where d2 = diag(m2
d,m

2
s,m

2
b), m0

d = v√
2

Gd, M
2

=

MDMD
† + M̃2 and MD = V√

2
(f q

+ cos(α) + if q
− sin(α)),

with f± ≡ fq ± fq
′.

It is clear from Eqs. (6), (7) that the phase δKM ,
generated through spontaneous CP violation is not sup-
pressed by factors of v

V
. Note that we are assuming that

the mass terms (MD)j are of the same order of magnitude
as M̃ . This is a reasonable assumption since both terms
are SU(2) × U(1) × SU(3)c invariant. For very large V
(e.g. V ∼ MGUT ∼ 1015 Gev), δKM is the only leftover
effect at low energies, from spontaneous CP breaking at
high energies. For not so large a value of V (e. g., V
of the order of a few Tev) the appearance of significant
flavour changing neutral currents (FCNC) in the down
quark sector leads to new contributions to Bd − Bd and
Bs − Bs mixing which can alter [15] some of the predic-
tions of the SM for CP asymmetries in B meson decays.
These FCNC are closely related to the non-unitarity of
the 3 × 3 CKM matrix, with both effects suppressed by
powers of v

V
.

As a result of the Z4 symmetry, this model satisfies the
Nelson-Barr criteria [11], [12] and therefore the Θ param-
eter is zero in tree approximation. Recall that the param-
eter Θ associated with strong CP violation can be written
as Θ = ΘQCD + ΘQFD, where ΘQCD = gs2FF̃/32π2,
and ΘQFD = arg(detm), m denoting the quark mass
matrix. In this model CP is a good symmetry of the
Lagrangean, only spontaneously broken by the vacuum,
which implies ΘQCD = 0. Furthermore, ΘQFD vanishes
at tree level [14] in a natural way so that higher order
corrections to Θ are finite and calculable. The symmetry
Z4 plays a crucial rôle in the vanishing of the argument
of the determinant of the down type quark mass ma-
trix Md. One-loop corrections are suppressed by small
Yukawa couplings which is a general property of this class
of models, as pointed out by Nelson [11]. A nice feature
of this model is that one loop corrections are further sup-
pressed by the ratio v2/V 2 [14] .

IV. THE LEPTONIC SECTOR

In the leptonic sector, after spontaneous symmetry
breakdown, one obtains from Eq. (4) the following mass
terms:

Lm = −
[

ν0Lmν
0
R +

1

2
ν0TR CMν0R + l0Lmll

0
R

]

+ h.c. =

= −
[

1

2
nT
LCM∗nL + l0Lmll

0
R

]

+ h.c. (8)
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φ is the SM Higgs doublet. Notice that an addi-
tional bare mass term of the form M̃D0

LD
0
R was in-

cluded in Lq. This term is both gauge and Z4 in-
variant and is present in the Lagrangean together with
the mass terms arising from the Yukawa interactions
upon SU(2) × U(1) × Z4 symmetry breaking. The
scalar potential will contain terms in φ and S with
no phase dependence, together with terms of the form
(µ2 + λ1S∗S + λ2φ†φ)(S2 + S∗2) + λ3(S4 + S∗4) which,
in general, lead to the spontaneous breaking of T and
CP invariance [13] with φ and S acquiring vacuum ex-
pectation values (vevs) of the form:

⟨φ0⟩ =
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, ⟨S⟩ =

V exp(iα)√
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III. THE HADRONIC SECTOR

A crucial aspect of this model is the fact that the phase
α ≡ arg⟨S⟩ arising at a high energy scale does generate at
low energies a CP violating phase δKM in the 3×3 sector
of the mixing matrix connecting standard quarks. In this
respect, the presence of the vector-like quark D0 plays
a crucial rôle, since it is through the couplings (fqS +

fq
′S∗)D0

Ld
0
R that the phase α appears in the effective

mass matrix for the down standard-like quarks. Without
loss of generality, one may choose to work in a weak basis
where the up quark mass matrix is diagonal. In this basis,
it can be readily shown [14] that the 3×3 VCKM matrix,

mixing the standard quarks in the charged weak current
is obtained through the following relations:
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It is clear from Eqs. (6), (7) that the phase δKM ,
generated through spontaneous CP violation is not sup-
pressed by factors of v

V
. Note that we are assuming that

the mass terms (MD)j are of the same order of magnitude
as M̃ . This is a reasonable assumption since both terms
are SU(2) × U(1) × SU(3)c invariant. For very large V
(e.g. V ∼ MGUT ∼ 1015 Gev), δKM is the only leftover
effect at low energies, from spontaneous CP breaking at
high energies. For not so large a value of V (e. g., V
of the order of a few Tev) the appearance of significant
flavour changing neutral currents (FCNC) in the down
quark sector leads to new contributions to Bd − Bd and
Bs − Bs mixing which can alter [15] some of the predic-
tions of the SM for CP asymmetries in B meson decays.
These FCNC are closely related to the non-unitarity of
the 3 × 3 CKM matrix, with both effects suppressed by
powers of v

V
.

As a result of the Z4 symmetry, this model satisfies the
Nelson-Barr criteria [11], [12] and therefore the Θ param-
eter is zero in tree approximation. Recall that the param-
eter Θ associated with strong CP violation can be written
as Θ = ΘQCD + ΘQFD, where ΘQCD = gs2FF̃/32π2,
and ΘQFD = arg(detm), m denoting the quark mass
matrix. In this model CP is a good symmetry of the
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which implies ΘQCD = 0. Furthermore, ΘQFD vanishes
at tree level [14] in a natural way so that higher order
corrections to Θ are finite and calculable. The symmetry
Z4 plays a crucial rôle in the vanishing of the argument
of the determinant of the down type quark mass ma-
trix Md. One-loop corrections are suppressed by small
Yukawa couplings which is a general property of this class
of models, as pointed out by Nelson [11]. A nice feature
of this model is that one loop corrections are further sup-
pressed by the ratio v2/V 2 [14] .
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