Cosmology with Spectroscopic Surveys: Past, Present and Future

Héctor Gil-Marín Junior leader 'la Caixa' Fellow Institut de Ciencies del Cosmos, Universitat de Barcelona

Baryon Acoustic Oscillations

Redshift Space Distortions

- Universe assumed **isotropic** and **homogeneous**
- RSD: Enhancement / reduction of the clustering along the line-of-sight (LOS) direction due to peculiar velocities (Kaiser 1987)

Clustering of Tracers: What do we measure?

Distortions along and across the line of sight

Alcock-Paczynski effect

This effect distorts the homogeneity and isotropy of BAO as a function of Ω_{true} & $\Omega_{fiducial}$

Hector Gil-Marín

Alcock-Paczynski & Redshift Space Distortions

• **AP effect**: Anisotropy induced by transforming redshifts into coming distances assuming a *wrong cosmology*

$$\Delta r_{\parallel}(z_1, z_2; \mathbf{\Omega}_m) = \int_{z_1}^{z_2} \frac{cdz'}{H_0 \sqrt{\mathbf{\Omega}_m (1+z')^3 + 1 - \mathbf{\Omega}_m}} \approx \frac{c\Delta z}{H(\overline{z}, \mathbf{\Omega}_m)}$$

$$\Delta r_{\perp}(\theta_1, \theta_2; z, \mathbf{\Omega}_m) = \Delta \theta \int_0^z \frac{c dz'}{H(z', \mathbf{\Omega}_m)}$$

Alcock-Paczynski & Redshift Space Distortions

 AP effect: Anisotropy induced by transforming redshifts into coming distances assuming a <u>wrong cosmology</u>

BAO shift, but no extra anisotropy

 $\sim (D_A^2/H)^{1/3} / r_s$

Relative BAO shift along and across the line-of-sight + induced anisotropy

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- The sound horizon scale is well determined by CMB measurements (helps to calibrate)
- We can separate the effect of cosmological distortions (AP) from other effects such as RSD

- BAO is the most distinct feature in ξ(s) and P(k) to look at.
- Position is robust under potential systematics:
- Non-linear effects are >1%
- BAO position not affected by bias or Kaiser boost
- However, the feature is damped by non-linear velocity bulks (can be solved using reconstruction)

Cosmology with BOSS & eBOSS

- Apache Point Observatory, 2.5-meter
- Spectroscopic Galaxy Survey
- 2009 2014 **BOSS**
- 2014-2019 **eBOSS**
- BOSS LRGs 0.15<z<0.75 (CMASS, LOWZ)
- eBOSS LRGs 0.6<z<1.1
- eBOSS ELGs 0.6<z<1.1
- eBOSS quasars 0.8<z<2.2
- + Ly-α spectra (Andreu's talk)

Main Goal: Measure BAO peak position with 1% accuracy Other cosmology studies: growth of structure, mod-GR, neutrino mass, primordial non-Gaussianity, etc.

Cosmology with BOSS & eBOSS

Modelling the power spectrum: full shape vs. BAO

There are two main kind of complementary analyses:

1. **BAO analysis**: Based on the position of the BAO-peak

2. **Full Shape analysis** (aka RSD): Based on the PS full shape and amplitude signal

BAO analysis

- Fit broadband with polynomial fit & BAO template on oscillations
- Constrain on $D_A(z)/r_s$ and $H(z)r_s$ through the BAO-feature only

• Damping terms for BAO due to bulk flows

 $\begin{array}{ll} \textbf{BAO template} & \textbf{Broadband} \\ P_{bao}(k,\alpha_{0,2}) = P_{sm}(k) \bigg\{ 1 + \big[O_{lin}(k/\alpha_{0,2}) - 1 \big] e^{-\frac{1}{2}k^2 \Sigma_{nl}^2} \bigg\} & P_{sm}(k) = B^2 P_{lin,sm}(k) + A_1 k + A_2 + \frac{A_3}{k} + \dots \\ \\ P^{(\mu^2)} \equiv P^{(0)} + \frac{2}{5} P^{(2)} & P^{(0)}, P^{(2)} \to P^{(0)}, P^{(\mu^2)} \end{array}$

Hector Gil-Marín

Reconstruction

- Enhance BAO peak by un-doing the non-linear bulk flows
- Assumptions on gravity Ω_m and bias of tracer
- 'Gaussianization' of the galaxy field

$$\nabla \cdot \mathbf{\Psi} + \frac{f}{b} \nabla \cdot (\mathbf{\Psi} \cdot \hat{\mathbf{r}}) \,\hat{\mathbf{r}} = -\frac{\delta_g}{b}$$

Reconstruction

Hector Gil-Marín

Cosmology with Spectroscopic Surveys

Reconstruction

Hector Gil-Marín

Cosmology with Spectroscopic Surveys

Full Shape (RSD)

- Constrain the growth of structure, $f\sigma_8(z)$, $D_A(z)/r_s$ and $H(z)r_s$ through the shape and amplitude of a range of scales.
- It requires a full modelling of the amplitude and shape of the power spectrum multipoles
 - Non-linear dark matter PS shape
 Perturbation Theory 2-loop
 - Galaxy bias,

Non-linear & non-local

• RSD

TNS-model

$$\begin{split} P_{g}^{(s)}(k,\mu) &= D_{\mathrm{FoG}}^{P}(k,\mu,\sigma_{\mathrm{FoG}}^{P}[z]) \left[P_{g,\delta\delta}(k) + 2f\mu^{2}P_{g,\delta\theta}(k) \right. \\ &+ f^{2}\mu^{4}P_{\theta\theta}(k) + b_{1}^{3}A(k,\mu,f/b_{1}) + b_{1}^{4}B(k,\mu,f/b_{1}) \right] \\ P_{\delta\delta}, P_{\delta\theta}, P_{\theta\theta} \rightarrow \text{Dark Matter non-linear models (2-loop RPT)} \\ D_{\mathrm{FoG}}^{P} \rightarrow 1\text{-parameter Lorentzian damping term} \\ A, B \rightarrow \text{TNS functions} \end{split}$$

Main BOSS results

3overlapping z-bins

- Good Agreement with Planck+GR
- First time 1% precision BAO measurement

Main eBOSS results

DR14Q 0.8<z<2.2

Cosmology with Spectroscopic Surveys

Cosmology with BOSS and eBOSS

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Cosmology with BOSS and eBOSS

Cosmology with Spectroscopic Surveys

Cosmology with BOSS and eBOSS

Cosmology with Spectroscopic Surveys

Conclusions

- LSS as a complementary source of information to CMB
- BOSS & eBOSS have demonstrated over the last 8yr that BAO and RSD are robust techniques for estimating cosmological parameters from LSS
- Final DR16 eBOSS results December 2019
- So far no tension with ΛCDM+Planck
- LSS + CMB/BBN favours a low H₀ value

av modify the k vector in the monopole

 α_{ϵ} generates an anisotropy (distort symmetric 3D-features along and across the

LOS)

$$\alpha_{\varepsilon}(z) = \frac{D_A(z)H(z)}{\left[D_A(z)H(z)\right]^{fid}}$$

Backup Slides

Cosmology with Spectroscopic Surveys

Cosmology with Spectroscopic Surveys

Cosmology with Spectroscopic Surveys

Tension with local H₀ measurement reduces with Neff>3

HGM et al. 2018

Cosmology with Spectroscopic Surveys