Cosmology with Gravitational Lens Time Delays

Sherry Suyu

Max Planck Institute for Astrophysics Technical University of Munich Academia Sinica Institute of Astronomy and Astrophysics

July 29, 2019 Understanding cosmological observations @ Benasque

Hubble constant: key parameter

Hubble constant H₀
age, size of the Universe
expansion rate:

 $v = H_0 d$

Tension? New physics? Need more precise & accurate H_0

Need Independent methods to overcome systematics, especially the unknown unknowns

[Riess et al. 2019]

Distance Ladder

ladder to reach objects in Hubble flow ($v_{peculiar} \ll v_{Hubble} = H_0 d$)

[slide material courtesy of Adam Riess]

Distance Ladder Measurements

- Hubble Space Telescope Key Project [Freedman et al. 2001]
 - $H_0 = 72 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (10% uncertainty)
 - resolving multi-decade "factor-of-two" controversy
- Carnegie Hubble Program [Freedman et al. 2012]
 - $H_0 = 74.3 \pm 2.1 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (2.8% uncertainty)
- Supernovae, H₀ for the dark energy Equation of State "SH0ES" project [Riess et al. 2019]
 - $H_0 = 74.03 \pm 1.42 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (1.9% uncertainty)
- Carnegie-Chicago Hubble Program [Beaton et al. 2016]
 - aim 3% precision in H_0 via independent route with RR Lyrae, the tip of red giant branch, SN Ia
 - H₀ = 69.8 ± 0.8 (stat) ± 1.7 (sys) km s⁻¹ Mpc⁻¹ [Freedman et al. 2019]

Megamasers

Direct distance measurement without any calibration on distance ladder

[slide material courtesy of C.-Y. Kuo]

Megamasers

$$D = V_0^2 \sin i / a \Delta \theta$$

How to measure V_0 , $\Delta \theta$, a and i?

[slide material courtesy of C.-Y. Kuo]

Megamaser Cosmology Project

$H_0 = 69.3 \pm 4.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$

UGC 3789 45.0 ± 4.7 MpcNGC 6264 137 ± 19 MpcNGC 6323 107 ± 42 MpcNGC 5765b 126 ± 11 Mpc

[slide material courtesy of Cheng-Yu Kuo]

Cosmic Microwave Background

CMB Temperature fluctuations

[Planck Collaboration 2016]

(1) Ratio of peak heights $\rightarrow \Omega_m h^2$, $\Omega_b h^2$ [h = H_0 / 100 km/s/Mpc] (2) Location of the first peak in **flat** \wedge **CDM** $\rightarrow \Omega_m h^{3.2}$

- Under **flat \landCDM** assumption, (1) and (2) yield $h = 0.674 \pm 0.005$ [Planck collaboration 2018]
- Without flat ΛCDM assumption, *h* highly degenerate with other cosmological parameters (e.g., curvature, *w*, *N*_{eff})

Standard Siren

Gravitational wave form \rightarrow luminosity distance D Measure recessional velocity of EM counterpart v $H_0 = v / D$

M. Garlick]

GW170817: First measurement of H₀ $p(H_0 | GW170817)$ Planck¹⁷ SHoES¹⁸

[LIGO, VIRGO, 1M2H, DES, DLT40, LCO, VINROUGE, MASTER collaborations, 2017]

9

Gravitational Lensing

Strong gravitationally lensed quasar

[Credit: ESA/Hubble, NASA]

Variability of quasar emission

HE0435-1223

[Suyu et al. 2017]

quasar powered by accretion of material onto supermassive black hole:

light emitted from quasar changes in time ("flickers")

Cosmology with time delays

[Credit: V. Bonvin]

Cosmology with time delays

¹⁴ [Credit: V. Bonvin]

Cosmology with time delays

HE0435-1223

[Suyu et al. 2017]

Advantages:

For cosmography, need:

- (1) time delays
- (2) lens mass model
- (3) mass along line of sight
- simple geometry & well-tested physics

- one-step physical measurement of a cosmological distance

HOLICOW H₀ Lenses in COSMOGRAIL's Wellspring

B1608+656

A C G2 G1 D B 1"

H₀ to <3.5% precision

HE0435-1223

WFI2033-4723

HE1104-1805

[Suyu et al. 2017]

HOLiCOWers

H0LiCOW: H₀ Lenses in COSMOGRAIL's Wellspring
→ Establish time-delay gravitational lenses as one of the best cosmological probes

HOLICOW H₀ Lenses in COSMOGRAIL's Wellspring

B1608+656

RXJ1131-1231

HE1104-1805

[Suyu et al. 2017]

Time Delays

[Cosmological Monitoring of Gravitational Lenses]

monitoring lensed quasars since 2004 in the optical

EPFL: F. Courbin, G. Meylan, V. Bonvin, M. Millon, J. Chan, M. Tewes, Y. Revaz, N. Cantale, C. Faure, A. Eigenbrod, C. Vuissoz
IIA Bangalore: T. Prabhu, C.S. Stalin, R. Kumar, D. Sahu
Univ. Liège: D. Sluse, P. Magain, E. Eulaers, V. Chantry
UZAS Tashkent: I. Asfandiyarov
Univ. Zürich: P. Saha, J. Coles
Univ. Nottingham: S. Dye
Now also in close collaboration (monitoring, microlensing) with: C. Kochanek, A. Mosquera (Ohio), C. Morgan, C. MacLeod, L. Hainline (USNA)

Time Delays

13-year light curve of HE0435-1223 Time delay with 6.5% uncertainty [Bonvin, Courbin, Suyu et al. 2017]

HE0435 has nearby mass structures at different redshifts [e.g., Morgan et al. 2005, Momcheva et al. 2015]

0.7

0.4

0.3

0.2

Wide-field spectroscopy for group identification [Sluse, Sonnenfeld, Rumbaugh et al. 2017]

- Wide-field imaging to get external mass distribution
- [Rusu, Fassnacht, Sluse et al. 2017]

- weighted number counts + Millennium Simulation to quantify κ_{ext} [Fassnacht et al. 2011; Hilbert et al. 2007, 2009; Suyu et al. 2010, 2013, Greene et al. 2013]
- thorough investigation of weighting schemes with CFHTLenS [Heymans et al. 2012] as control field
- get κ_{ext} distribution with uncertainty σ_{κ} =0.025 [Rusu et al. 2017]

- weighted number counts + Millennium Simulation to quantify κ_{ext} [Fassnacht et al. 2011; Hilbert et al. 2007, 2009; Suyu et al. 2010, 2013, Greene et al. 2013]
- thorough investigation of weighting schemes with CFHTLenS [Heymans et al. 2012] as control field
- get κ_{ext} distribution with uncertainty σ_{κ} =0.025 [Rusu et al. 2017]

HE0435 has nearby mass structures at different redshifts [e.g., Morgan et al. 2005, Momcheva et al. 2015]

Wide-field spectroscopy for group identification [Sluse, Sonnenfeld, Rumbaugh et al. 2017]

Wide-field imaging to get external mass distribution [Rusu, Fassnacht, Sluse et al. 2017]

Lens mass modeling $t = \frac{1}{c} D_{\Delta t} \phi_{lens}$

Modeling with **GLEE** :) Gravitational Lens Efficient Explorer [Suyu & Halkola 2010]

Lens mass modeling

Lens reconstruction

[Wong, Suyu, Auger et al. 2017]

27

Cosmology with Adaptive Optics

[Chen, Fassnacht, Suyu et al. submitted (arXiv:1907.02533)] ²⁸

Cosmology with Adaptive Optics

[Chen, Fassnacht, Suyu et al. submitted (arXiv:1907.02533)]

Cosmology with Adaptive Optics

[Chen, Fassnacht, Suyu et al. submitted (arXiv:1907.02533)]

H0LiCOW latest results

[Suyu et al. 2010]

[Suyu et al. 2013, 2014; Tewes et al. 2013]

[Wong et al. 2017; Rusu et al. 2017; Sluse et al. 2017; Bonvin et al. 2017]

part of extended sample [Birrer et al. 2019]

[Bonvin et al. 2019; Sluse et al. 2019; Rusu et al. 2019]

part of Keck AO sample of SHARP program [Chen et al. 2019]

H₀ from 6 strong lenses

Blind analysis to avoid confirmation bias

H₀ with 2.4% precision in flat ΛCDM

[Wong, Suyu, Chen et al. submitted (arXiv:1907.04869)] ³²

H₀ comparison

[Wong, Suyu, Chen et al. submitted (arXiv:1907.04869)] 33

Tensions between Early and Late Universe

[Verde, Treu, Riess (arXiv:1907.10625)]

Calibrating SNe distances with D_{Δt}

B1608+656

[Suyu et al. 2010]

RXJ1131-1231

[Suyu et al. 2013, 2014; Tewes et al. 2013]

HE0435-1223

[Wong et al. 2017; Rusu et al. 2017; Sluse et al. 2017; Bonvin et al. 2017]

SDSS1206+4332

part of extended sample

[Birrer, Treu Rusu et al. 2018]

Reduced cosmological dependence

[Taubenberger, Suyu, Komatsu et al. 2019]

Reduced cosmological dependence

[Taubenberger, Suyu, Komatsu et al. 2019; see also Arendse, Agnello & Wojtak 2019]

Looking forward

- Part of STRIDES collaboration [Treu et al. 2018]
- Blind analysis with two independent lens modeling softwares
 [Shajib et al. 2019; Shajib et al. in prep; Yıldırım et al. in prep; Wong et al. in prep]

Stellar kinematics really helps

[Yıldırım, Suyu, Halkola 2019]

Stellar kinematics really helps

- Inferred $D_{\Delta t}$ depends on assumptions of mass model
- Including kinematic data:
 - reduces dependence of $\mathsf{D}_{\Delta t}$ on mass model assumption
 - tightens constraints on D_{∆t}

[Yıldırım, Suyu, Halkola 2019]

D_A to the lens

 $\begin{array}{l} \mbox{Time delay:} & \Delta t \sim GM \\ \mbox{Lens velocity dispersion:} & \sigma^2 \sim GM/r \\ \mbox{Angular diameter distance:} & D_A \sim r/\Delta\theta \\ \hline D_A \sim \frac{\Delta t}{\sigma^2 \Delta \theta} \end{array}$

- D_A more sensitive to dark energy than $D_{\Lambda t}$
- D_A insensitive to mass along LOS, but depend on anisotropy in stellar velocity dispersion
- Can measure D_A to ~15% per lens with current data

[Paraficz & Hjorth 2009; Jee, Komatsu & Suyu 2015; Jee, Suyu, Komatsu et al., accepted]

Stellar kinematics really helps

Including spatially-resolved (2D) kinematic data:

- drastically reduces the uncertainty of D_A from ~15% to ~3%
- sensitive to systematic errors in kinematic measurements

[Yıldırım, Suyu, Halkola 2019]

Towards hundreds of lenses

Hyper Suprime-Cam Survey

8m Subaru Telescope Mauna Kea, Hawaii

- 1400 deg² with i_{limit}~26
- 2014-2019
- expect ~600 lenses
 [Oguri & Marshall 2010]

Dark Energy Survey

STRong-lensing Insights into Dark Energy Survey (PI: Treu) 4m Blanco Telescope, CTIO, Chile

- 5000 deg² with i_{limit}~24
 2012-2017
- expect ~1100 lenses
 [Oguri & Marshall 2010]

Kilo Degree Survey

2.6m VLT Survey Telescope, Paranal, Chile

1500 deg² with r_{limit}~24
2011-2019

New lensed quasars systems

[Agnello et al. 2015]

[More et al. 2017]

[Lin et al. 2017]

[Ostrovski et al. 2017]

[Berghea et al. 2017]

Gaia reveals lensed quasars

Gaia

only

Gaia + WISE/SDSS + Pan-STARRS

J0011-0845	J0028+0631	J0030-1525	J0123-0455
J0417+3325	J0630-1201	J0840+3550	j0941+0518
J1640+1045	J1709+3828	J1710+4332	j1721+8842 •
J0140-1152	J0146-1133	J0235-2433	J0259-2338
J0949+4208	J1508+3844	J1602+4526	J1606-2333

[Lemon et al. 2018]

New quads imaged with HST

New lens systems discovered in DES, Pan-STARRS, SDSS, ATLAS:

[Shajib et al. 2018]

Strongly lensed supernova

MACS 1149.6+2223

[Kelly et al. 2015] 47

Supernova "Refsdal"

discovered serendipitously in November 2014

[Kelly et al. 2015] ₄₈

When will the other SN images appear?

Predicted magnification and delay

HST observations in Oct 2015: no sign of SX in Nov 2015: no sign of SX...

50

Appearance of image SXDecember 2015[Kelly et al. 2016]

Magnification and delay

[Kelly et al. 2016] 52

Spot on!

[Kelly et al. 2016] ⁵³

H₀ à la Supernova Resfdal

feasibility study of using SN Refsdal for H₀ measurement

- S1-S2-S3-S4 delays from Rodney et al. (2016)
- SX-S1 delay estimated based on detection in Kelly et al. (2016)

[Grillo, Rosati, Suyu et al. 2018] 54

Future Prospects

Experiments and surveys in the 2020s including Euclid and Large Synoptic Survey Telescope (LSST) will provide ~10,000 lensed quasars and ~100 lensed supernovae [Oguri & Marshall 2010]

High-resolution imaging & spectroscopy

Summary

- Time-delay distances $D_{\Delta t}$ of each lens can be measured with uncertainties of ~5-8% including systematics
- From 6 lenses in H0LiCOW, $H_0 = 73.3^{+1.7}_{-1.8}$ km/s/Mpc in flat Λ CDM, a 2.4% precision measurement independent of other probes
- Search is underway to find new lenses in imaging surveys including HSC, DES, KiDS, PanSTARRS
- SN Refsdal blind test demonstrated the robustness of our cluster mass modeling approach and software GLEE
- LSST cadence strategies for lensed SNe: higher cadence, longer cumulative season length
- Current and future surveys will have thousands of new time-delay lenses, providing an independent and competitive probe of cosmology