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 Q1: Does the scattering change if the topological charge q changes sign?

 Q2: Given a topological charge q, does the sense of circular polarization

matter?

 Q3: Does the focusing regime change the answers to Q1 and Q2?

Symmetries of the problem don’t change

q = 1
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 2) Why do l = ±1 behave equally, while l =±7 don’t?

 3) Why do l = 0 and l = 7 have different linewidths?

 4) Why do we see different intensity patterns?
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Why do l = ±1 behave equally, while l =±7 don’t? (I)

 2 extreme cases:

i) Beam width is much smaller than the scatterer

ii) Beam width is much larger than the scatterer
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 Rigorous picture: Simulation | Mie Theory

Why do l = ±1 behave equally, while l =±7 don’t? (II)

 Mie Theory: Given a particle (R, nr), then

 And in between l = ±7?

Differences in

j=1,2,3 then it’s

almost equal!

The decomposition

is different in modes

where j ~ j*
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 Helicity

Why do we see different intensity patterns? (I)

 A dual scatterer preserves helicity
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Why do we see different intensity patterns? (II)

 Multipoles with opposite helicity behave similarly in opposite semispaces
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Conclusions

 Increasing the Angular Momentum of the illumination can spectrally tune and

sharpen the scattered power

 Interesting effects arise when we tailor the illumination so that we excite the

multipolar modes j* ≈ 2πR/λ ≈ 16

 Q1: Does the scattering change if the topological charge q changes sign?

 A1: It depends

 Q2: Given a topological charge q, does the sense of circular polarization

matter?

 A2: It depends

 Q3: Does the focusing regime change the answers to Q1 and Q2?

Symmetries of the problem don’t change

 A3: Yes
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