

1993. 1995

 \checkmark Q₁: Does the scattering change if the topological charge **q** changes sign?

q = 1

q = -1

 \checkmark Q₁: Does the scattering change if the topological charge **q** changes sign?

- \checkmark Q₁: Does the scattering change if the topological charge *q* changes sign?
- Q₂: Given a topological charge *q*, does the sense of circular polarization matter?

- \checkmark Q₁: Does the scattering change if the topological charge *q* changes sign?
- Q₂: Given a topological charge *q*, does the sense of circular polarization matter?

- \checkmark Q₁: Does the scattering change if the topological charge *q* changes sign?
- Q₂: Given a topological charge *q*, does the sense of circular polarization matter?

q = 1

- \checkmark Q₁: Does the scattering change if the topological charge **q** changes sign?
- Q₂: Given a topological charge *q*, does the sense of circular polarization matter?
- Q₃: Does the focusing regime change the answers to Q₁ and Q₂?
 Symmetries of the problem don't change

Tailoring Mie scattering with Helicity and Angular Momentum

Xavier Zambrana-Puyalto

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 795838

Experimental details Particles made of amorphous TiO₂, R = (2.0 ± 0.1) μ m, n_r = 1.8

 \checkmark

✓ Particles made of amorphous TiO₂, R = (2.0 ± 0.1) μ m, n_r = 1.8

 λ scans. Great alignment care for polarization and phase

Particles made of amorphous TiO₂, R = (2.0 ± 0.1) μ m, n_r = 1.8 \checkmark λ scans. Great alignment care for \checkmark polarization and phase Blue/red: two helicities \checkmark

Particles made of amorphous TiO₂, R = (2.0 ± 0.1) μ m, n_r = 1.8 \checkmark λ scans. Great alignment care for \checkmark polarization and phase Blue/red: two helicities \checkmark $I = \frac{\Gamma_p - \Gamma_0}{P_o - P_o}$ Backscattering dimensionless figure of merit \checkmark

- Particles made of amorphous TiO₂, R = (2.0 ± 0.1) μ m, n_r = 1.8 \checkmark λ scans. Great alignment care for \checkmark polarization and phase Blue/red: two helicities \checkmark $I = \frac{I_p - \Gamma_0}{P_\circ - P_\circ}$ Backscattering dimensionless figure of merit \checkmark
 - Mirror and cylindrically symmetric

Experimental results (I)

Experimental results (I)

Experimental results (I)

Experimental results (II)

Experimental results (II)

1) Why do these resonances move around?

1) Why do these resonances move around?

 \checkmark 2) Why do I = ±1 behave equally, while I =±7 don't?

- \checkmark 2) Why do I = ±1 behave equally, while I =±7 don't?
- \checkmark 3) Why do I = 0 and I = 7 have different linewidths?

- 1) Why do these resonances move around?
- \checkmark 2) Why do I = ±1 behave equally, while I =±7 don't?
- \checkmark 3) Why do I = 0 and I = 7 have different linewidths?
- ✓ 4) Why do we see different intensity patterns?

Resonances are associated to eigenmodes. Their spectral position cannot be tailored with the illumination

- Resonances are associated to eigenmodes. Their spectral position cannot be tailored with the illumination
- You can call them 'power oscillations'. They are due to the superposition of many modes

- Resonances are associated to eigenmodes. Their spectral position cannot be tailored with the illumination
- You can call them 'power oscillations'. They are due to the superposition of many modes
- Example using Mie Theory

- Resonances are associated to eigenmodes. Their spectral position cannot be tailored with the illumination
- You can call them 'power oscillations'. They are due to the superposition of many modes

- Resonances are associated to eigenmodes. Their spectral position cannot be tailored with the illumination
- You can call them 'power oscillations'. They are due to the superposition of many modes

- Resonances are associated to eigenmodes. Their spectral position cannot be tailored with the illumination
- You can call them 'power oscillations'. They are due to the superposition of many modes

 Intuitive picture: Interesting phenomena happen when the size of the scatterer and the beam width are similar

- Intuitive picture: Interesting phenomena happen when the size of the scatterer and the beam width are similar
- ✓ 2 extreme cases:
 - i) Beam width is much smaller than the scatterer
 - ii) Beam width is much larger than the scatterer

- ✓ Rigorous picture: Simulation | Mie Theory
- \checkmark **<u>Mie Theory</u>**: Given a particle (R, n_r), then

- ✓ Rigorous picture: Simulation | Mie Theory
- \checkmark **<u>Mie Theory</u>**: Given a particle (R, n_r), then

✓ The scattering is composed of j* modes, where j* ≈ $2\pi R/\lambda \approx 16$

- ✓ Rigorous picture: Simulation | Mie Theory
- \checkmark **<u>Mie Theory</u>**: Given a particle (R, n_r), then
 - ✓ The scattering is composed of j* modes, where j* ≈ $2\pi R/\lambda \approx 16$
 - The 'fine details' (narrow resonances) about scattering are found in the higher order modes

- ✓ Rigorous picture: Simulation | Mie Theory
- \checkmark <u>Mie Theory</u>: Given a particle (R, n_r), then
 - ✓ The scattering is composed of j* modes, where j* ≈ $2\pi R/\lambda \approx 16$
 - The 'fine details' (narrow resonances) about scattering are found in the higher order modes
 - \checkmark What's the difference between the multipolar decomposition for I = ±1?

- ✓ Rigorous picture: Simulation | Mie Theory
- \checkmark <u>Mie Theory</u>: Given a particle (R, n_r), then
 - ✓ The scattering is composed of j* modes, where j* ≈ $2\pi R/\lambda \approx 16$
 - The 'fine details' (narrow resonances) about scattering are found in the higher order modes
 - \checkmark What's the difference between the multipolar decomposition for I = ±1?

- ✓ Rigorous picture: Simulation | Mie Theory
- \checkmark <u>Mie Theory</u>: Given a particle (R, n_r), then
 - ✓ The scattering is composed of j* modes, where j* ≈ $2\pi R/\lambda \approx 16$
 - The 'fine details' (narrow resonances) about scattering are found in the higher order modes
 - \checkmark What's the difference between the multipolar decomposition for I = ±1?

- ✓ Rigorous picture: Simulation | Mie Theory
- \checkmark <u>Mie Theory</u>: Given a particle (R, n_r), then
 - ✓ The scattering is composed of j* modes, where j* ≈ $2\pi R/\lambda \approx 16$
 - The 'fine details' (narrow resonances) about scattering are found in the higher order modes

And in between $I = \pm 7$?

$$C_s \propto \sum_{j=|m_z|}^{\infty} |C_{jm_z}|^2 \left(|a_j|^2 + |b_j|^2 \right)$$

$$C_s \propto \sum_{j=|m_z|}^{\infty} |C_{jm_z}|^2 \left(|a_j|^2 + |b_j|^2\right)$$

$$C_s \propto \sum_{j=|m_z|}^{\infty} |C_{jm_z}|^2 \left(|a_j|^2 + |b_j|^2\right)$$

$$C_s \propto \sum_{j=|m_z|}^{\infty} |C_{jm_z}|^2 \left(|a_j|^2 + |b_j|^2\right)$$

$$C_s \propto \sum_{j=|m_z|}^{\infty} |C_{jm_z}|^2 \left(|a_j|^2 + |b_j|^2\right)$$

$$C_s \propto \sum_{j=|m_z|}^{\infty} |C_{jm_z}|^2 \left(|a_j|^2 + |b_j|^2\right)$$

✓ Helicity

Why do we see different intensity patterns? (II)

Multipoles with opposite helicity behave similarly in opposite semispaces

Conclusions

✓ Helicity and Angular momentum play a crucial role in light scattering

- ✓ Helicity and Angular momentum play a crucial role in light scattering
- Increasing the Angular Momentum of the illumination can spectrally tune and sharpen the scattered power

- Helicity and Angular momentum play a crucial role in light scattering
- Increasing the Angular Momentum of the illumination can spectrally tune and sharpen the scattered power
- ✓ Interesting effects arise when we tailor the illumination so that we excite the multipolar modes j^{*} ≈ $2\pi R/\lambda \approx 16$
- Helicity and Angular momentum play a crucial role in light scattering
- Increasing the Angular Momentum of the illumination can spectrally tune and sharpen the scattered power
- ✓ Interesting effects arise when we tailor the illumination so that we excite the multipolar modes j^{*} ≈ $2\pi R/\lambda \approx 16$

Q₁: Does the scattering change if the topological charge *q* changes sign?
A₁: It depends

- Helicity and Angular momentum play a crucial role in light scattering
- Increasing the Angular Momentum of the illumination can spectrally tune and sharpen the scattered power
- ✓ Interesting effects arise when we tailor the illumination so that we excite the multipolar modes j^{*} ≈ $2\pi R/\lambda \approx 16$

- \checkmark Q₁: Does the scattering change if the topological charge **q** changes sign?
- \checkmark A₁: It depends
- ✓ Q_2 : Given a topological charge q, does the sense of circular polarization matter?
- \checkmark A₂: It depends

- Helicity and Angular momentum play a crucial role in light scattering
- Increasing the Angular Momentum of the illumination can spectrally tune and sharpen the scattered power
- ✓ Interesting effects arise when we tailor the illumination so that we excite the multipolar modes j^{*} ≈ $2\pi R/\lambda \approx 16$

- \checkmark Q₁: Does the scattering change if the topological charge *q* changes sign?
- \checkmark A₁: It depends
- ✓ Q_2 : Given a topological charge *q*, does the sense of circular polarization matter?
- \checkmark A₂: It depends
- ✓ Q_3 : Does the focusing regime change the answers to Q_1 and Q_2 ? Symmetries of the problem don't change
- \checkmark A₃: Yes

 X. Zambrana-Puyalto, X. Vidal, P. Wozniak, P. Banzer, and G. Molina-Terriza, "Tailoring Multipolar Mie Scattering with Helicity and Angular Momentum", ACS Photonics 5, 2936-2944 (2018) X. Zambrana-Puyalto, X. Vidal, P. Wozniak, P. Banzer, and G. Molina-Terriza, "Tailoring Multipolar Mie Scattering with Helicity and Angular Momentum", ACS Photonics 5, 2936-2944 (2018)

 \checkmark Take the expression of the incident field

 \checkmark Take the expression of the incident field

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}^{\mathbf{t}}_{p,q} = \overline{\mathbf{S}}\{\mathbf{E}^{\mathbf{in}}_{p,q}\}$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}^{\mathbf{t}}_{p,q} = \overline{\mathbf{S}}\{\mathbf{E}^{\mathbf{in}}_{p,q}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \overline{\mathbf{S}}\{\mathbf{E}_{p,q}^{\mathbf{in}}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \overline{\mathbf{S}}\{\mathbf{E}_{p,q}^{\mathbf{in}}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \overline{\mathbf{S}}\{\mathbf{E}_{p,q}^{\mathbf{in}}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$M_{\{\hat{\mathbf{z}}\}}^{\dagger}\Lambda M_{\{\hat{\mathbf{z}}\}} = -\Lambda M_{\{\hat{\mathbf{z}}\}}^{\dagger} J_z M_{\{\hat{\mathbf{z}}\}} = -J_z$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \overline{\mathbf{S}}\{\mathbf{E}_{p,q}^{\mathbf{in}}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$M_{\{\hat{\mathbf{z}}\}}^{\dagger} \Lambda M_{\{\hat{\mathbf{z}}\}} = -\Lambda M_{\{\hat{\mathbf{z}}\}}^{\dagger} J_z M_{\{\hat{\mathbf{z}}\}} = -J_z$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}^{\mathbf{t}}_{p,q} = \overline{\mathbf{S}}\{\mathbf{E}^{\mathbf{in}}_{p,q}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$M_{\{\hat{\mathbf{z}}\}}^{\dagger} \Lambda M_{\{\hat{\mathbf{z}}\}} = -\Lambda M_{\{\hat{\mathbf{z}}\}}^{\dagger} J_z M_{\{\hat{\mathbf{z}}\}} = -J_z$$

$$I_q^{L/R} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\mathbf{E}_{+1/-1,q}^{\mathbf{t}}|^2 dx dy,$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}^{\mathbf{t}}_{p,q} = \overline{\mathbf{S}}\{\mathbf{E}^{\mathbf{in}}_{p,q}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$M_{\{\hat{\mathbf{z}}\}}^{\dagger} \Lambda M_{\{\hat{\mathbf{z}}\}} = -\Lambda M_{\{\hat{\mathbf{z}}\}}^{\dagger} J_z M_{\{\hat{\mathbf{z}}\}} = -J_z$$

$$I_q^{L/R} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\mathbf{E}_{+1/-1,q}^{\mathbf{t}}|^2 dx dy, \xrightarrow{}$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}^{\mathbf{t}}_{p,q} = \overline{\mathbf{S}}\{\mathbf{E}^{\mathbf{in}}_{p,q}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$M_{\{\hat{\mathbf{z}}\}}^{\dagger} \Lambda M_{\{\hat{\mathbf{z}}\}} = -\Lambda M_{\{\hat{\mathbf{z}}\}}^{\dagger} J_z M_{\{\hat{\mathbf{z}}\}} = -J_z$$

$$I_q^{L/R} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\mathbf{E}_{+1/-1,q}^{\mathbf{t}}|^2 dx dy, \xrightarrow{} I_q^{L/R} = I_{-q}^{R/L}$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}^{\mathbf{t}}_{p,q} = \overline{\mathbf{S}}\{\mathbf{E}^{\mathbf{in}}_{p,q}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$M_{\{\hat{\mathbf{z}}\}}^{\dagger} \Lambda M_{\{\hat{\mathbf{z}}\}} = -\Lambda M_{\{\hat{\mathbf{z}}\}}^{\dagger} J_z M_{\{\hat{\mathbf{z}}\}} = -J_z$$

$$I_q^{L/R} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\mathbf{E}_{+1/-1,q}^{\mathbf{t}}|^2 dx dy, \xrightarrow{} I_q^{L/R} = I_{-q}^{R/L}$$

$$\mathbf{E}_{p,q}^{\mathbf{in}} = A\rho^q e^{(iq\phi + ikz)} e^{(-\rho^2/w_0)} e^{-iwt} \hat{\mathbf{e}}_p$$

 Compute the transmitted field through the hole with a convolution using the Green dyadic formulism

$$\mathbf{E}^{\mathbf{t}}_{p,q} = \overline{\mathbf{S}}\{\mathbf{E}^{\mathbf{in}}_{p,q}\}$$

Relate this field with its mirror symmetric counterpart

$$\mathbf{E}_{p,q}^{\mathbf{t}} = \exp(i\alpha) M_{\{\hat{\mathbf{z}}\}} \mathbf{E}_{-p,-q}^{\mathbf{t}}$$

Anti-commutation relations

$$M_{\{\hat{\mathbf{z}}\}}^{\dagger} \Lambda M_{\{\hat{\mathbf{z}}\}} = -\Lambda M_{\{\hat{\mathbf{z}}\}}^{\dagger} J_z M_{\{\hat{\mathbf{z}}\}} = -J_z$$

$$I_q^{L/R} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\mathbf{E}_{+1/-1,q}^{\mathbf{t}}|^2 dx dy, \xrightarrow{} I_q^{L/R} = I_{-q}^{R/L}$$
$$CD_q = -\underbrace{CD_{-q}}$$