Quantum plasmonics with adatoms on graphene flakes

M. Müller, C. Rockstuhl

Karlsruhe Institute of Technology, Germany

M. Pelc, A. Ayuela Donostia International Physics Center

M. Kosik, K. Słowik Nicolaus Copernicus University in Toruń, Poland

Quantum plasmonics

Quantum emitters placed near nanoantennas

Emitter - light interactions strong coupling fast dynamics

> absorption losses limited tunability

extreme platform for plasmonics

tunability

extreme platform for plasmonics

tunability

$$\omega_{\rm res} \sim E_{\rm F}^{1/2}$$

extreme platform for plasmonics

tunability

Renwen Yu et al. ACS Photonics (2017)

extreme platform for plasmonics

tunability

Manjavacas et al. Nanophotonics (2013)

Graphene flakes

resonances in optical range

quantum model required for size < 20 nm

Thongrattanasiri et al. ACS Nano (2012)

Model

Applications

Ingredients

Graphene flake

arbitrary shape and edge type

small: <1000 C atoms (computation time, resonance in visible)

Adatom

one or more

Anderson model of one-, **two**- or few-level defects

coupled to selected carbon sites

Laser beam

arbitrary temporal shape cw, Gaussian, $\delta(t)$, ...

classical, no feedback from atoms

Hamiltonian: flake

t = - 2.66 eV

	0	1	2	3	4	5	6
0		t					
1	t		t				t
2		t		t			
3			t		t		
4				t		t	
5					t		t
6		t				t	

Hamiltonian: flake + atom

	0	1	2	3	4	5	6	е	g
0		t							
1	t		t				t		
2		t		t					
3			t		t				
4				t		t			
5					t		t		
6		t				t			
е								ω _e	
g									ω _g

Hamiltonian: flake + atom

Hamiltonian: flake + atom

	0	1	2	3	4	5	6	е	g
0		t							
1	t		t				t		
2		t		t					
3			t		t				
4				t		t			
5					t		t		
6		t				t		t _e	t _g
е							t _e	ω _e	
g							t _g		ω _g

Real - system parameters

adatom	Ψ	ω_k	t _k	Δt_0
Н	1 <i>s</i>	-0.81	1.89	0.79
F	2s	-10.59	4.70	0.79
	$2p_z$	-2.48	1.45	
OH	$2s^{O}$	-7.74	4.10	0.73
	$2p_z^{O}$	-1.26	1.24	
	$1s^{H}$	-0.81	0.36	
OH	ψ_1	-8.17	3.75	0.73
	ψ_2	-1.64	1.81	
	ψ_3	7.39	1.69	
0	2s	-7.74	3.47	0.92
	$2p_z$	-1.26	0.76	0.89
	$2p_x$	-1.26	± 0.80	

all quantities in units of t

Ihnatsenka & Kirczenow, PRB (2011)

Eigenstate basis

 $H \overline{\Psi_j} = E_j \overline{\Psi_j}$ $\Psi_j = \sum_{i} c_{ji} \phi_{ii}$

Eigenstate basis

 $H\overline{\Psi}_{j} = E_{j}\overline{\Psi}_{j}$ $\Psi_{j} = \Sigma_{l}C_{jl}\overline{\varphi}_{l}$

 $H(t) = H_{\text{flake+adatom}}$ + $H_{\text{adatom+field}}$ + Φ_{ext} + Φ_{ind}

Flake + adatom

tight - binding Hamiltonian

$$H_{\text{atom+flake}} = t \sum_{\langle l,k \rangle} c_l^{\dagger} c_k$$
$$+ \sum_{i=\text{e,g}} \left(\omega_i c_i^{\dagger} c_i + t_i c_i^{\dagger} c_0 + \text{H.c.} \right)$$

 $H(t) = H_{\text{flake+adatom}}$ + $H_{\text{adatom+field}}$ + Φ_{ext} + Φ_{ind}

Adatom + field ----g 1 **g**

 $H(t) = H_{\text{flake+adatom}}$ + $H_{\text{adatom+field}}$ + Φ_{ext} + Φ_{ind}

Adatom + field $g\left(c_{\rm e}^{\dagger}c_{\rm g} + c_{\rm g}^{\dagger}c_{\rm e}\right)$ $\hbar g = -\mathbf{E}\left(t\right) \cdot \mathbf{d}_{\rm eg}$

 $H(t) = H_{\text{flake+adatom}}$ + $H_{\text{adatom+field}}$ + Φ_{ext} + Φ_{ind}

External potential

coupling of flake and field

$$\left(\Phi_{\rm ext}\right)_{kk} = -e\mathbf{r}_k \cdot \mathbf{E}\left(t\right)$$

 \mathbf{r}_{k} - position of site k $\mathbf{E}\left(t
ight)$ - laser field

diagonal in site basis

Cox et al. Nature Communications (2014)

 $H(t) = H_{flake+adatom}$ + $H_{adatom+field}$ + Φ_{ext} + Φ_{ind}

Induced potential

$$(\Phi_{\rm ind})_{ll} =$$

$$-Ne\sum_{m}v_{lm}\left(\rho_{mm}-\rho_{mm}^{0}\right)$$

 v_{lm} Coulomb interaction + exchange integrals

on flake on atom if \neq 1 electron inbetween scaled with t_e , t_g

 $H(t) = H_{flake+adatom}$ + $H_{adatom+field}$ + Φ_{ext} + Φ_{ind}

Induced potential

 $(\Phi_{\text{ind}})_{ll} =$ $Ne \sum v_{lm} \left(\rho_{mm} - \rho_{mm}^0 \right)$

m

doping with electrons or holes

exchange integrats

on flake on atom if \neq 1 electron inbetween scaled with t_e , t_g

Equilibrium state

Equilibrium state

$$\rho_{0} = \frac{1}{N} \sum_{j} f_{j} (N) |\psi_{j}\rangle \langle \psi_{j}|$$

$$f_{j} (N) = \frac{1}{\exp\left(\frac{E_{j} - E_{F}(N)}{k_{B}T} + 1\right)}$$
eigenbasis

0

Eigenstate charge distributions

Eigenstates with adatom

44

 $t_{e,g} = 0.5 \text{ eV}$

57 14

51

38 26

Eigenstates with adatom

t_{e,g} = 1.0 eV

master equation

$$\dot{\rho} = -\frac{i}{\hbar} \left[H, \rho \right] + D\left(\rho \right)$$

master equation

$$\dot{\rho} = -\frac{i}{\hbar} \left[H, \rho \right] + D\left(\rho \right)$$

via Lindblad terms

decoherence

$$D\left(\rho\right) = \sum_{p} 2\gamma_{p} \left(\sigma_{p}\rho\sigma_{p}^{\dagger} - \left\{\rho, \sigma_{p}^{\dagger}\sigma\right\}\right)$$

master equation

$$\dot{\rho} = -\frac{i}{\hbar} \left[H, \rho \right] + D\left(\rho \right)$$

decoherence

$$D\left(\rho\right) = \sum_{p} 2\gamma_p \left(\sigma_p \rho \sigma_p^{\dagger} - \left\{\rho, \sigma_p^{\dagger} \sigma\right\}\right)$$

$$p \text{ decoherence between selected pair of states}$$

via Lindblad terms

master equation

$$\dot{\rho} = -\frac{i}{\hbar} \left[H, \rho \right] + D\left(\rho \right)$$

decoherence

$$\begin{split} D\left(\rho\right) &= \sum 2\gamma_p \left(\sigma_p \rho \sigma_p^\dagger - \left\{\rho, \sigma_p^\dagger \sigma\right\}\right) \quad \textit{via} \text{ Lindblad terms} \\ D\left(\rho\right) &= \frac{1}{2\tau} \left(\rho - \rho_0\right) \quad \text{phenomenologically} \end{split}$$

. .

time

see Manjavacas et al. Nanophotonics (2013)

DFT simulations by Giulia Giannone (Istituto Italiano di Tecnologia, Lecce)

Comparison of induced charge distribution plots obtained from DFT and our code.

Poster advertisement

Interaction of a graphene nanoflake with an adatom under optical illumination M. Kosik et al., poster

via Lindblad terms

$$\sum_{p} 2\gamma_p \left(\sigma_p \rho \sigma_p^{\dagger} - \left\{ \rho, \sigma_p^{\dagger} \sigma \right\} \right) =$$

not known, but scalable

2+ free parameters γ_p

not protected against Pauli principle breaking phenomenologically

-
$$\frac{1}{2\tau}(\rho - \rho_0)$$

known for pristine graphene

1 parameter т

decay to predefined stationary state

Polarizability

 $\mathbf{P}(t) = -eN \sum_{l} \left[\rho_{ll} \left(t \right) - \rho_{ll}^{0} \right] \boldsymbol{r}_{l}$

Absorption spectrum

Blue shifting resonances

- → require doping
- → lower energy

Red shifting resonances

- → do not require doping
- → higher energy

Excitons

- creation of an electron-hole pair
- single-particle process
- appear without doping
 - might disappear with doping
- "Interband" → higher energy

- → motion of electron cloud
- \rightarrow collective process
- → ± doping required
- → shift with doping $\sim n^{1/2}$
- → nonlinear optical response
- → "intraband" → lower energy

. . . .

- creation of an electron-hole pair
- single-particle process
- appear without doping
 - might disappear with doping
- "Interband" →
 higher energy

- motion of electron cloud
- \rightarrow collective process
- → ± doping required
- → shift with doping $\sim n^{1/2}$
- → nonlinear optical response

Bernadotte et al. *J. Phys. Chem. C* (2013) Townsend& Bryant *J.Opt.* (2014) G. Bryant *J. Opt.* (2016) Zhang et al. *ACS nano* (2017)

Poster advertisement

mostly excitonic transition

predominantly plasmonic transition

Co-Existence of Tunable Plasmons and Excitons in Graphene Nanoantennas M. Müller et al., poster

Summary & outlook

→ Tool to study dynamics of illuminated graphene flakes with adatoms

- Spectral properties (eigenenergies and states)
- Dynamics of density matrix
- Induced charges & optical response
- → Distinction of plasmonic & excitonic resonances
- → Influence of flake on adatom's optical response & vice-versa

ONAL SCIENCE CENTRE DEG Deutsche Forschungsgemeinschaft

Summary & outlook

Tool to study dynamics of illuminated graphene flakes with adatoms \rightarrow

- Spectral properties (eigenenergies and states)
- Dynamics of density matrix
- Induced charges & optical response
- Distinction of plasmonic & excitonic resonances \rightarrow

ONAL SCIENCE CENTRE

- Influence of flake on adatom's optical response & vice-versa \rightarrow
- more atoms
- back-action on field

Deutsche

Forschungsgemeinschaft

Summary & outlook

→ Tool to study dynamics of illuminated graphene flakes with adatoms

- Spectral properties (eigenenergies and states)
- Dynamics of density matrix
- Induced charges & optical response
- → Distinction of plasmonic & excitonic resonances
- → Influence of flake on adatom's optical response & vice-versa
- → more atoms
- → back-action on field

thank you

Deutsche

Forschungsgemeinschaft

