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Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11i12 i13 i14 i15i16 i17 i18



‣ Lecture 1: tensor network states
✦ Main idea of a tensor network ansatz & area law of the entanglement entropy

✦ MPS, PEPS & iPEPS, Tree tensor networks, MERA & 2D MERA

✦ Classify tensor network ansatz according to its entanglement scaling  

‣ Lecture II: tensor network algorithms (iPEPS)
✦ Contraction & Optimization  

‣ Lecture III: Fermionic tensor networks
✦ Formalism & applications to the 2D Hubbard model

✦ Other recent progress

Outline



Motivation: Strongly correlated quantum many-body systems

Typically:
• No exact analytical solution

• Mean-field / perturbation theory fails

• Exact diagonalization: O(exp(N)) 

tech-faq.com

Quantum magnetism / 
spin liquids 

 

High-Tc 
superconductivity

Accurate and efficient 
numerical simulations 

are essential!

Challenging!
Novel phases with  
ultra-cold atoms 

 



• Main idea: Statistical sampling of the  
exponentially large configuration space

Quantum Monte Carlo

• Computational cost is polynomial in N and not exponential

 Very powerful for many spin and bosonic systems



• Main idea: Statistical sampling of the  
exponentially large configuration space

Quantum Monte Carlo

. . .

. . .
. . .

. . .

Example: The Heisenberg model

H =
�

�i,j⇥

SiSj

Ground state  
has Néel order

Sandvik & Evertz, PRB 82 (2010):  
system sizes up to 256x256 

Hilbert space: 265536

m = 0.30743(1)sublattice magn.

• Computational cost is polynomial in N and not exponential

 Very powerful for many spin and bosonic systems



• Main idea: Statistical sampling of the  
exponentially large configuration space

Quantum Monte Carlo

• Computational cost is polynomial in N and not exponential

BUT
 Very powerful for many spin and bosonic systems



Quantum Monte Carlo & the negative sign problem

Bosons
(e.g. 4He)  

Fermions
(e.g electrons)

�B(x1, x2) = �B(x2, x1)

symmetric!

�F (x1, x2) = ��F (x2, x1)

antisymmetric!

tsim � O(poly(N/T ))

✓
tsim � O(exp(N/T ))

cannot solve large systems  
at low temperature!

this leads to the infamous 
negative sign problem



Strongly correlated fermionic systems

• High-temperature superconductors 
2D Hubbard model

Is it the relevant model  
of high-temperature  
superconductors?

Hopping between  
nearest-neighbor sites

On-site repulsion between 
electrons with opposite spin 

Ĥ = �t
�

⇤i,j⌅,�

ĉ†i� ĉj� + U
�

i

n̂i�n̂i⇥



Quantum Monte Carlo & the negative sign problem

tsim � O(poly(N/T ))

all bonds satisfied

Non-frustrated  
spin systems 

✓
tsim � O(exp(N/T ))

cannot solve large systems  
at low temperature!

not all bonds satisfied

?
frustrated

Frustrated  
spin systems

this leads to the infamous 
negative sign problem



negative  
sign problem

To make progress in 
strongly correlated 

systems it is essential to 
develop new accurate 
numerical methods!

• DMFT / DCA

• Diagrammatic Monte Carlo
• Tensor network algorithms
• Fixed-node Monte Carlo

• Series expansion
• Density Matrix Embedding Theory

• Variational Monte Carlo
• Functional renormalization group

• Coupled-cluster methods
• ...



Overview: tensor networks in 1D and 2D

MPS1D
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1D MERA
Multi-scale entanglement renormalization ansatz

and more
‣ 1D tree tensor 

network 

‣ correlator 
product states

‣ ...

Matrix-product state 

Underlying ansatz of the 
density-matrix renormalization 

group (DMRG) method

PEPS
 projected entangled-pair state

and more
‣ Entangled-

plaquette states

‣ 2D tree tensor 
network 

‣ String-bond states

‣ ...

2D MERA
2D

1 2 3 4 5 6 7 8



Diagrammatic notation

★ We don’t need to write down formulas with tensors with many indices!

i j

rank-3 tensor

k

A

Aijk

i j

k

l

rank-4 tensor

...B

Bijklvector vi

i v

rank-1 tensor

i j

matrix Mij

M

rank-2 tensor

number

c

rank-0 tensor

Example 1: =vM

★ Connected lines: sum over corresponding indices!

i j
i u

X

j

Mijvj = ui



Example 2:
★ sum over all connected 

indices: contraction of a 
tensor network

=u vM c
i j

Example 3:
★ The rank of the 

resulting tensor 
corresponds to the 
number of open legs 
in the network

=i j

k
A

B

C
T

u v u v

X

ijk

AuikBijCvjk = Tuv

Diagrammatic notation

X

ij

uiMijvj = c



★ Hard to write down 
with all indices...  

★ We know the result is 
going to be a number

Diagrammatic notation



Introduction to tensor networks

➡Aim: Efficient representation of quantum many-body states 

Full Hilbert 
space V�V�V � dimension 2N  

grows exponentially with N
�V�V �V�V....

Lattice with 
N sites

V : local Hilbert space
{| �⇧, | ⇥⇧}e.g.....

1 2 3 4 5 N-1 N

|�⇤ =
�

i1i2...iN

�i1i2...iN |i1 ⇥ i2 ⇥ · · · ⇥ iN ⇤Represent the 
ground state

ik ⇤ {�, ⇥}

2N coefficients
~exp(N) many numbers inefficient!Complexity

Hamiltonian sum of local termsĤ =
�

�ij⇥

ĥij



26 basis statesLattice:
2 basis states per site: 

1 2 3 4 5 6

|�⇥ =
�

i1i2i3i4i5i6

�i1i2i3i4i5i6 |i1 � i2 � i3 � i4 � i5 � i6⇥State:
26 coefficients

i1 i2 i3 i4 i5 i6

Tensor/multidimensional array

Big tensor i1i2i3i4i5i6
     bond 
dimensioni1 i2 i3 i4 i5 i6

a b c d e

Tensor network: matrix product state (MPS)

A B C D E F
D

poly(   ,N) numbersexp(N) many numbers vs Efficient 
representation!D

Why is this 
possible??

Tensor network ansatz for a wave function

�i1i2i3i4i5i6

X

abcde

Aa
i1B

ab
i2 Cbc

i3 Dcd
i4 Ede

i5 F e
i6 =  ̃i1i2i3i4i5i6⇡

{| "i, | #i}



“Corner” of the Hilbert space

Ground states (local H)

Hilbert  
space

★ GS of local H’s are less entangled than a 
random state in the Hilbert space

★ Area law of the entanglement entropy



Splitting in the middle

i1 i2 i3 i4 i5 i6

Big tensor i1i2i3i4i5i6

i1 i2 i3 i4 i5 i6

=

| i =
X

lr

 lr|li|ri
X

lr

X

k

UlkskkV
⇤
rk|li|ri=

X

k

skk|uki|vki Schmidt 
decomposition

=
X

k

UlkskkV
⇤
rk

l r

U s  = UsV †

Singular value 
decomposition

skk � 0

V†

diagonal matrix!

 lr

l r l, r 2 {1, . . . ,M}
M = 2N/2

Left side Right side



How many relevant singular values?

★  Special cases:

s11 = 1, skk = 0 for k > 1

Product state| i = 1|u1i|v1i

s11 =
1p
2
, s22 =

1p
2
, skk = 0 for k > 2

| i = 1p
2
|u1i|v1i+

1p
2
|u2i|v2i Entangled state

how many non-zero 
singular values?

Maximally 
entangled state

skk =
1p
M

, for all k

| i =
MX

k

skk|uki|vki

l r

U s V†



skk

k
M

How many relevant singular values?

how many relevant 
singular values?

random state:  
all singular values important

KEY IDEA OF 
DMRG!

| i =
MX

k

skk|uki|vki

relevant 
singular values truncate this part

�

keeping the      largest 
singular values 

minimizes the error

||| i � | ̃i||

�

| i ⇡ | ̃i =
�X

k

skk|uki|vki

l r

U s

bond dimension
D = �

V†

Ground state (local H)



Reduced density matrix

★ Reduced density matrix of left side: describes system on the left side

�k = s2kk probability

S(A) = �1 log 1 = 0‣ Product state:

S(A) = �
X

k

1

M
log

1

M
= logM‣ Maximally entangled state:

...

How large is S in a ground state? How does it scale with system size?

| i =
MX

k

skk|uki|vki
A B

⇢A = trB [⇢] = trB [| ih |] =
X

k

�k|ukihuk|

★ Entanglement entropy: S(A) = �tr[⇢A log ⇢A] = �
X

k

�k log �k



Area law of the entanglement entropy 

2D

Entanglement entropy S(A) = �tr[⇥A log ⇥A] = �
�

i

�i log �i

1D

L

. . .

. . .
. . .

. . .

A

E

. . .. . .
AE E

L

1D S(L) = const � = const

2D S(L) � �L ⇥ � exp(�L)

General (random) state

(volume) S(L) ⇠ Ld

Ground state (local Hamiltonian)

(area law) S(L) ⇠ Ld�1

# relevant states
� ⇠ exp(S)

Critical ground states: 
(all in 1D but not all in 2D)

S(L) ⇠ log(L)

S(L) ⇠ L log(L)

1D

2D



MPS & PEPS

1 2 3 4 5 6 7 8

MPS
Matrix-product state 

1D

S. R. White, PRL 69, 2863 (1992)

Östlund, Rommer, PRL 75, 3537 (1995) 

Physical indices (lattices sites)

Fannes et al., CMP 144, 443 (1992)

Bond dimension D

✓ Reproduces area-law in 1D

S(L) = const



MPS & PEPS

MPS
Matrix-product state 

1D

Bond dimension D

A E

L

rank(⇢A)  D S(A)  log(D) = const

✓ Reproduces area-law in 1D

S(L) = const

➡ One bond can contribute  
at most log(D) to the 
entanglement entropy



MPS & PEPS

1 2 3 4 5 6 7 8

MPS
Matrix-product state 

1D

Bond dimension D

2D
can we use  

an MPS? 

L

S(L) � L

 !!! Area-law in 2D !!!

D ⇠ exp(L)
✓ Reproduces area-law in 1D

S(L) = const

S. R. White, PRL 69, 2863 (1992)

Östlund, Rommer, PRL 75, 3537 (1995) 

Physical indices (lattices sites)

Fannes et al., CMP 144, 443 (1992)



MPS & PEPS

1 2 3 4 5 6 7 8

MPS
Matrix-product state 

1D

S. R. White, PRL 69, 2863 (1992)

Östlund, Rommer, PRL 75, 3537 (1995) 

Physical indices (lattices sites)

Fannes et al., CMP 144, 443 (1992)

Bond dimension D

2D

F. Verstraete, J. I. Cirac, cond-mat/0407066
Nishio, Maeshima, Gendiar, Nishino, cond-mat/0401115 

 

DBond dimension 

S(L) � L

✓ Reproduces area-law in 2D✓ Reproduces area-law in 1D

S(L) = const

PEPS (TPS)
projected entangled-pair state

(tensor product state)



PEPS: Area law

S(L) � L

✓ Reproduces area-law in 2D

one “thick” bond of dimension

... ...

A B

DL

each cut auxiliary bond can 
contribute (at most) log D to 
the entanglement entropy

The number of cuts scales 
with the cut length

S(A)  L log D ⇠ L

DL

L



MPS & PEPS

1 2 3 4 5 6 7 8

MPS
Matrix-product state 

1D

S. R. White, PRL 69, 2863 (1992)

Östlund, Rommer, PRL 75, 3537 (1995) 

Physical indices (lattices sites)

Fannes et al., CMP 144, 443 (1992)

Bond dimension D

2D

F. Verstraete, J. I. Cirac, cond-mat/0407066
Nishio, Maeshima, Gendiar, Nishino, cond-mat/0401115 

 

DBond dimension 

S(L) � L

✓ Reproduces area-law in 2D✓ Reproduces area-law in 1D

S(L) = const

PEPS (TPS)
projected entangled-pair state

(tensor product state)



A A A AA A

A A A AA A

A A A AA A

A A A A AA

A A A A AA

A A A A AA

iMPS
1D 2D

iPEPS
infinite projected entangled-pair state

Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)

Infinite PEPS (iPEPS)

★ Work directly in the thermodynamic limit:  
No finite size and boundary effects!

infinite matrix-product state  
 

A A A A A A



iMPS
1D 2D

iPEPS
infinite projected entangled-pair state

Infinite PEPS (iPEPS)

★ Work directly in the thermodynamic limit:  
No finite size and boundary effects!

infinite matrix-product state  
 

B A B AB A

B A B AB A

B A B AB A

B A B A BA

B A B A BA

B A B A BA

Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)

A A AB B B



B C

F G

D A

H

D A

H E

B C

F G

D A

H E

D A

H E

B C

F G

D A

H E

D A

H E

E

1D 2D
iPEPS

with arbitrary unit cell of tensors

PC, White, Vidal, Troyer, PRB 84 (2011) 

here: 4x2 unit cell

iPEPS with arbitrary unit cells

★ Run simulations with different unit cell sizes and 
compare variational energies 

iMPS
infinite matrix-product state  

 

C DBA A B



Hierarchical tensor networks (TTN/MERA)

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11i12 i13 i14 i15i16 i17 i18

MERA

MPS

“flat”

tensors at different length scales

★ Powerful ansatz for critical systems! 
(reproduces S(L) ~ logL scaling)



Real-space renormalization group transformation

microscopic 
lattice

coarse-
grained 
lattice

L0

L1

L2

coarse-
grained 
lattice

microscopic
model H0

effective
model H1

H2
effective
model

�



Tree Tensor Network (1D)

microscopic 
lattice

L0

L1

coarse-
grained 
lattice

�

coarse-
grained 
lattice

L2

1D systems (non-critical)

�� = const

S(L) = const

isometry

# relevant 
local states

�0 = d

�

�



Tree Tensor Network (1D)

microscopic 
lattice

coarse-
grained 
lattice

# relevant 
local states

�0 = d

�1

�2

L0

L1

L2

coarse-
grained 
lattice

�

isometry

1D critical systems

S(L) � log(L)
�� � poly(L)



The MERA (The multi-scale entanglement renormalization ansatz)

microscopic 
lattice

coarse-
grained 
lattice

# relevant 
local states

�0 = d L0

L1

L2

coarse-
grained 
lattice

�

�

�� = const

KEY: disentanglers reduce the 
amount of short-range entanglement

�

1D systems (critical)

S(L) � log(L)

isometrydisentangler

G. Vidal, PRL 101, 110501 (2008)
G. Vidal, PRL 99, 220405 (2007)



MERA: Properties

��|

Let’s compute ��|O|�⇥ O : two-site operator

|��

O two-site operator



Causal cone

MERA: Properties
��

|O
|�

⇥

Isometries 
are isometric

= I

u

u†

= I

w

w†

Disentanglers 
are unitary



MERA: Properties
��

|O
|�

⇥

Causal cone

Efficient computation of expectation values of observables!

Isometries 
are isometric

= I

u

u†

= I

w

w†

Disentanglers 
are unitary



Different types of MERA’s

 
3-to-1 blocking 

 
2-to-1 blocking 

 
2-to-1 blocking 

TRADEOFF: computational cost vs efficiency of coarse-graining

Figures by G. Evenbly

( )8O χ

( )9O χ

( )7O χ



MERA: Entanglement entropy

figures from Evenbly & Vidal, J Stat Phys 145 (2011)

S(A)  n(A) log(�)

n(A) = 2 ! S(A) ⇠ const

n(A) = 4L ! S(A) ⇠ L

T

S(A) ⇠ log(L)

Reproduces log(L) scaling of 1D critical systems

n(A) ⇡ 2T ⇡ 2 log2 L



Power-law decaying correlations

slide from Glen Evenbly

quantum XX model: 
(critical, c=1) ( )XX 1 1

X X Y Y
r r r r

r

H σ σ σ σ+ += +∑
-how accurately do MPS 
and MERA approximate 
ground states in terms of  
correlators? 

poly decay 

exp decay However, critical 
systems can still 
be studied with 

MPS!



Scale invariant MERA

x

z

Translational invariance: same tensors along x

Scale invariance (at criticality): same tensors along z



2D MERA (top view)

Apply disentanglers

Apply isometries

Original lattice            

Coarse-grained lattice 

�� = const
S(L) � L

✓Accounts for area-
law in 2D systems

Evenbly, Vidal. PRL 102, 180406 (2009) 



Different structures of the 2D MERA...

Evenbly & Vidal, PRL 102, 180406 (2009)



2D MERA on the Kagome lattice

Evenbly & Vidal, PRL 104, 187203 (2010)



1D vs 2D MERA

same number of  
connections in each layer 

decreasing number 
of connections

Evenbly and G. Vidal, J Stat Phys 145, 891(2011).



Branching MERA: beyond area law scaling in 2D

G. Evenbly and G. Vidal, Physical Review Letters 112, (2014).



Summary: Tensor network ansätze
MPS PEPS

2D MERA

1D MERA

➡ A tensor network ansatz is an efficient variational  
ansatz for ground states of local H where the 
accuracy can be systematically controlled with the 
bond dimension

★ MPS: area law in 1D
★ MERA: log L scaling in 1D (critical systems)
★ PEPS/iPEPS: area law in 2D
★ 2D MERA: area law in 2D
★ branching MERA: beyond area law in 2D (e.g. L log L scaling) (Evenbly & Vidal, 2014)

➡ Different tensor networks can reproduce different  
entanglement entropy scaling:

TN ansatz 
(variational)



Snake MPS

L

D
(i)PEPS 

Bond dimension 
vs

★ Scaling of algorithm: D3

★ Simpler algorithms & implementation

★ Very accurate results for “small” L

- inaccurate beyond certain L  
because D~exp(L)

★ Large / infinite systems (scalable)!

★ Much fewer variational parameters 
because much more natural 2D ansatz

- Algorithms more complicated

- Large cost of roughly D10

Comparison: MPS in 2D vs iPEPS



Comparison MPS & iPEPS: 2D Heisenberg model

iPEPS D=6  
(variational optimization)

iPEPS D=6 in the  
thermodynamic limit

 

~ 2’600 variational pars.

MPS D=3000 on  
finite Ly=10 cylinder

~ 18’000’000⇠
similar  

accuracy

4 orders of magnitude fewer parameters (per tensor)

Stoudenmire & White, Ann. Rev. CMP 3 (2012)



iMPS vs iPEPS on infinite cylinders: Heisenberg model

W=11: D=5 iPEPS comparable to m=4096 MPS

J. Osorio Iregui, M. Troyer & PC, PRB 96 (2017)



MPS in 2D and 
iPEPS provide 

complementary 
results!!!

iMPS vs iPEPS on infinite cylinders: Hubbard model (n=1)

W=7: D=11 iPEPS comparable to m=8192 MPS

J. Osorio Iregui, M. Troyer & PC, PRB 96 (2017)



Classification by entanglement (2D)

high

Entanglement

low gapped systems
band insulators,  
valence-bond crystals,  
s-wave superconductors,  
...

gapless systems
with area law

Heisenberg model,  
d-wave / p-wave SC, 
Dirac Fermions,  
...

systems with  
“1D fermi surface”

free Fermions, Fermi-liquid 
type phases, bose-metals?

S(L) � L log L

It depends on the amount of  
entanglement in the system!

• How large does      have to be?D



Non-interacting spinless fermions (old iPEPS results)

fast convergence with D 
in gapped phases

slow convergence in phase 
with 1D Fermi surface

Hfree =
�

�rs⇥

[c†rcs + c†scr � �(c†rc
†
s + cscr)]� 2⇥

�

r

c†rcr

0 1 2 3 4
0

1

2

3

4

λ

γ critical gapped

1D Fermi 
surface

1 1.5 2 2.5 3
10−7

10−6

10−5

10−4

10−3

10−2

λ

R
el

at
iv

e 
er

ro
r o

f e
ne

rg
y

 

 

γ=0 D=2
γ=0 D=4
γ=1 D=2
γ=1 D=4
γ=2 D=2
γ=2 D=4 D: bond dimension

Li et al.,  
PRB 74, 073103 (2006)

Corboz, Orús, Bauer, and Vidal, PRB 81 (2010)



Non-interacting fermions (2D MERA)

2D MERA is 
scalable!

101 102

10−3

10−2

L

re
l. 

er
ro

r o
f e

ne
rg

y

λ=1

λ=1.5

λ=2

λ=2.5

λ=3

� = 1, ⇥ = 4

critical 
phase

gapped 
phase

Layers
1
2
3
4 

Size
6x6

18x18
54x54

162x162

Error    constant 
with L
�


