Lecture I:tensor network states (MPS, PEPS \& iPEPS, Tree TN, MERA, 2D MERA)

Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam

EDelta
erc
(D)uSoft

Outline

- Lecture I: tensor network states
- Main idea of a tensor network ansatz \& area law of the entanglement entropy
\downarrow MPS, PEPS \& iPEPS, Tree tensor networks, MERA \& 2D MERA
\uparrow Classify tensor network ansatz according to its entanglement scaling
- Lecture II: tensor network algorithms (iPEPS)
\uparrow Contraction \& Optimization
- Lecture III: Fermionic tensor networks
\uparrow Formalism \& applications to the 2D Hubbard model
\downarrow Other recent progress

Motivation: Strongly correlated quantum many-body systems

Typically:

- No exact analytical solution
- Mean-field / perturbation theory fails
- Exact diagonalization: $\mathrm{O}(\exp (\mathrm{N}))$

Accurate and efficient numerical simulations are essential!

Quantum Monte Carlo

- Main idea: Statistical sampling of the exponentially large configuration space
- Computational cost is polynomial in N and not exponential

Very powerful for many spin and bosonic systems

Quantum Monte Carlo

- Main idea: Statistical sampling of the exponentially large configuration space
- Computational cost is polynomial in N and not exponential

Very powerful for many spin and bosonic systems

Example:The Heisenberg model

Sandvik \& Evertz, PRB 82 (2010): system sizes up to 256×256

Hilbert space: 265536
sublattice magn. $\quad m=0.30743(1)$

Quantum Monte Carlo

- Main idea: Statistical sampling of the exponentially large configuration space
- Computational cost is polynomial in N and not exponential

Very powerful for many spin and bosonic systems

Quantum Monte Carlo \& the negative sign problem

Strongly correlated fermionic systems

2D Hubbard model

$$
\hat{H}=-t \sum_{\langle i, j\rangle, \sigma} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+U \sum_{i} \hat{n}_{i \uparrow} \hat{n}_{i \downarrow}
$$

Hopping between nearest-neighbor sites

On-site repulsion between electrons with opposite spin

Is it the relevant model of high-temperature superconductors?

Quantum Monte Carlo \& the negative sign problem

Non-frustrated spin systems

$t_{s i m} \sim \mathcal{O}(\operatorname{poly}(N / T))$

Frustrated
spin systems

this leads to the infamous negative sign problem

$$
t_{s i m} \sim \mathcal{O}(\exp (N / T))
$$

cannot solve large systems
at low temperature!

To make progress in strongly correlated systems it is essential to develop new accurate numerical methods!

- DMFT / DCA
- Diagrammatic Monte Carlo
- Tensor network algorithms
- Fixed-node Monte Carlo
- Series expansion
- Density Matrix Embedding Theory
- Variational Monte Carlo
- Functional renormalization group
- Coupled-cluster methods

Overview: tensor networks in ID and 2D

MPS
Matrix-product state

2D

PEPS
projected entangled-pair state

ID MERA
Multi-scale entanglement renormalization ansatz

2D MERA

and more

- ID tree tensor network
correlator product states
- ...

and more

- Entangledplaquette states
-2D tree tensor network
- String-bond states

Diagrammatic notation

\star We don't need to write down formulas with tensors with many indices!

Example I: $\quad i=j-v=i-u$

$$
\sum_{j} M_{i j} v_{j}=u_{i}
$$

\star Connected lines: sum over corresponding indices!

Diagrammatic notation

Example 2:

\star sum over all connected indices: contraction of a tensor network

Example 3:

\star The rank of the resulting tensor corresponds to the number of open legs in the network

Diagrammatic notation

\star Hard to write down with all indices...
\star We know the result is going to be a number

Introduction to tensor networks

\Rightarrow Aim: Efficient representation of quantum many-body states

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Lattice with | \circ | \circ | \circ | \circ | \circ | \cdots | \circ | \circ | e.g. $\{\|\uparrow\rangle,\|\downarrow\rangle\}$ |
| N sites | I | 2 | 3 | 4 | 5 | | $\mathrm{~N}-\mathrm{I}$ | N | |

Full Hilbert space

$$
\mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V} \otimes \ldots \otimes \mathbb{V} \otimes \mathbb{V}
$$

dimension 2^{N}
grows exponentially with N
Hamiltonian $\quad \hat{H}=\sum_{\langle i j\rangle} \hat{h}_{i j} \quad$ sum of local terms

$\mathbf{2 N}^{\mathrm{N}}$ coefficients
Complexity
$\sim \exp (\mathbb{N})$ many numbers \longrightarrow inefficient!

Tensor network ansatz for a wave function

Tensor/multidimensir

atrix product state (MPS)

$$
\Psi_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}}^{\sim} \sum_{a b c d e} A_{i_{1}}^{a} B_{i_{2}}^{a b} C_{i_{3}}^{b c} D_{i_{4}}^{c d} E_{i_{5}}^{d e} F_{i_{6}}^{e}=\tilde{\Psi}_{i_{1} i_{2} i_{3} i_{4} i_{5} i_{6}}
$$

"Corner" of the Hilbert space

Ground states (local H)

\star GS of local H's are less entangled than a random state in the Hilbert space
\star Area law of the entanglement entropy

Splitting in the middle

Singular value decomposition

$$
\begin{array}{r}
\Psi=U s V^{\dagger} \\
s_{k k} \geq 0
\end{array}
$$

diagonal matrix!

$$
\begin{aligned}
& \Psi_{l r}= \\
& \sum_{k} U_{l k} s_{k k} V_{r k}^{*} \\
&|\Psi\rangle=\sum_{l r} \Psi_{l r}|l\rangle|r\rangle=\sum_{l r} \sum_{k} U_{l k} s_{k k} V_{r} \\
&=\sum_{k} s_{k k}\left|u_{k}\right\rangle\left|v_{k}\right\rangle
\end{aligned}
$$

Schmidt decomposition

How many relevant singular values?

$$
|\Psi\rangle=\sum_{k}^{M} s_{k k}\left|u_{k}\right\rangle\left|v_{k}\right\rangle \quad \begin{gathered}
\text { how many non-zero } \\
\text { singular values? }
\end{gathered}
$$

\star Special cases:

$$
\begin{aligned}
& s_{11}=1, \quad s_{k k}=0 \quad \text { for } \quad k>1 \\
& \quad|\Psi\rangle=1\left|u_{1}\right\rangle\left|v_{1}\right\rangle \\
& s_{11}=\frac{1}{\sqrt{2}}, \quad s_{22}=\frac{1}{\sqrt{2}}, \quad s_{k k}=0 \quad \text { for } \quad k>2 \\
& |\Psi\rangle=\frac{1}{\sqrt{2}}\left|u_{1}\right\rangle\left|v_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|u_{2}\right\rangle\left|v_{2}\right\rangle
\end{aligned}
$$

$s_{k k}=\frac{1}{\sqrt{M}}, \quad$ for all k

Entangled state
Product state

Maximally entangled state

How many relevant singular values?

$$
|\Psi\rangle \approx|\tilde{\Psi}\rangle=\sum_{k}^{\chi} s_{k k}\left|u_{k}\right\rangle\left|v_{k}\right\rangle
$$

$$
|\Psi\rangle=\sum_{k}^{M} s_{k k}\left|u_{k}\right\rangle\left|v_{k}\right\rangle
$$

keeping the χ largest
singular values minimizes the error

$$
\|\| \Psi\rangle-|\tilde{\Psi}\rangle \|
$$

KEY IDEA OF DMRG!

Reduced density matrix

$$
|\Psi\rangle=\sum_{k}^{M} s_{k k}\left|u_{k}\right\rangle\left|v_{k}\right\rangle
$$

\star Reduced density matrix of left side: describes system on the left side

$$
\rho_{A}=\operatorname{tr}_{B}[\rho]=\operatorname{tr}_{B}[|\Psi\rangle\langle\Psi|]=\sum_{k} \lambda_{k}\left|u_{k}\right\rangle\left\langle u_{k}\right| \quad \lambda_{k}=s_{k k}^{2} \quad \text { probability }
$$

\star Entanglement entropy: $S(A)=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum_{k} \lambda_{k} \log \lambda_{k}$

- Product state: $\quad S(A)=-1 \log 1=0$
- Maximally entangled state: $\quad S(A)=-\sum_{k} \frac{1}{M} \log \frac{1}{M}=\log M$

How large is S in a ground state? How does it scale with system size?

Area law of the entanglement entropy $\because . E$.
ID

2D

Entanglement entropy

$$
S(A)=-\operatorname{tr}\left[\rho_{A} \log \rho_{A}\right]=-\sum_{i} \lambda_{i} \log \lambda_{i}
$$

General (random) state

$$
S(L) \sim L^{d} \quad(\text { volume })
$$

Critical ground states: (all in ID but not all in 2D)

ID $\quad S(L) \sim \log (L)$
2D $\quad S(L) \sim L \log (L)$

Ground state (local Hamiltonian)

$$
S(L) \sim L^{d-1}(\text { area law })
$$

ID $\quad S(L)=$ const $\quad \chi=$ const
2D $\quad S(L) \sim \alpha L \quad \chi \sim \exp (\alpha L)$

MPS \& PEPS

ID

MPS

Matrix-product state

Physical indices (lattices sites)
S. R. White, PRL 69, 2863 (1992)

Fannes et al., CMP 144, 443 (1992)
Östlund, Rommer, PRL 75, 3537 (1995)
\checkmark Reproduces area-law in ID

$$
S(L)=\text { const }
$$

MPS \& PEPS

ID

MPS

Matrix-product state

ϵ One bond can contribute at most $\log (\mathrm{D})$ to the entanglement entropy
$\operatorname{rank}\left(\rho_{A}\right) \leq D \quad \longrightarrow \quad S(A) \leq \log (D)=\mathrm{const}$
\checkmark Reproduces area-law in ID
$S(L)=$ const

MPS \& PEPS

MPS

Matrix-product state

can we use an MPS?

Physical indices (lattices sites)
S. R. White, PRL 69, 2863 (1992)

Fannes et al., CMP 144, 443 (1992)
Östlund, Rommer, PRL 75, 3537 (1995)
\checkmark Reproduces area-law in ID

$$
S(L)=\mathrm{const}
$$

!!! Area-law in 2D !!!

$$
\begin{aligned}
& S(L) \sim L \\
\Rightarrow & D \sim \exp (L)
\end{aligned}
$$

MPS \& PEPS

MPS

PEPS (TPS)

projected entangled-pair state (tensor product state)

Bond dimension D

Physical indices (lattices sites)
S. R. White, PRL 69, 2863 (1992)

Fannes et al., CMP 144, 443 (1992)
Östlund, Rommer, PRL 75, 3537 (1995)
\checkmark Reproduces area-law in ID

$$
S(L)=\mathrm{const}
$$

\checkmark Reproduces area-law in 2D

$$
S(L) \sim L
$$

PEPS:Area law

MPS \& PEPS

MPS

PEPS (TPS)

projected entangled-pair state (tensor product state)

Bond dimension D

Physical indices (lattices sites)
S. R. White, PRL 69, 2863 (1992)

Fannes et al., CMP 144, 443 (1992)
Östlund, Rommer, PRL 75, 3537 (1995)
\checkmark Reproduces area-law in ID

$$
S(L)=\mathrm{const}
$$

\checkmark Reproduces area-law in 2D

$$
S(L) \sim L
$$

Infinite PEPS (iPEPS)

ID
infinite matrix-product state

2D

iPEPS

infinite projected entangled-pair state

Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)
\star Work directly in the thermodynamic limit: No finite size and boundary effects!

Infinite PEPS (iPEPS)

ID
infinite matrix-product state

2D

iPEPS

infinite projected entangled-pair state

Jordan, Orus, Vidal, Verstraete, Cirac, PRL (2008)
\star Work directly in the thermodynamic limit: No finite size and boundary effects!

iPEPS with arbitrary unit cells

ID

infinite matrix-product state

iPEPS

with arbitrary unit cell of tensors

here: $\mathbf{4 x} \mathbf{2}$ unit cell
PC, White, Vidal, Troyer, PRB 84 (2011)
\star Run simulations with different unit cell sizes and compare variational energies

Hierarchical tensor networks (TTN/MERA)

MERA

MPS

tensors at different length scales
\star Powerful ansatz for critical systems! (reproduces $\mathrm{S}(\mathrm{L}) \sim \log \mathrm{scaling}$)

Real-space renormalization group transformation

Tree Tensor Network (ID)

Tree Tensor Network (ID)

ID critical systems

$$
\begin{gathered}
S(L) \sim \log (L) \\
\chi_{\tau} \sim \operatorname{poly}(L)
\end{gathered}
$$

The MERA (The multi-scale entanglement renormalization ansatz)

G. Vidal, PRL 99, 220405 (2007)

ID systems (critical)
$S(L) \sim \log (L)$

$$
\chi_{\tau}=\mathrm{const}
$$

G. Vidal, PRL 101, 110501 (2008)

KEY: disentanglers reduce the amount of short-range entanglement

MERA: Properties

Let's compute $\langle\Psi| O|\Psi\rangle \quad O$:two-site operator

MERA: Properties

Isometries are isometric

Disentanglers are unitary

MERA: Properties

Efficient computation of expectation values of observables!

Different types of MERA's

Figures by G. Evenbly

TRADEOFF: computational cost vs efficiency of coarse-graining

MERA: Entanglement entropy

$S(A) \leq n(A) \log (\chi)$

$$
n(A)=2 \rightarrow S(A) \sim \text { const }
$$

(i)

$\Omega_{A}^{\text {phys }}$
(ii)

$$
n(A)=4 L \rightarrow S(A) \sim L
$$

$$
\begin{gathered}
n(A) \approx 2 T \approx 2 \log _{2} L \\
S(A) \sim \log (L)
\end{gathered}
$$

Reproduces $\log (\mathrm{L})$ scaling of ID critical systems
figures from Evenbly \& Vidal, J Stat Phys 145 (2011)

Power-law decaying correlations

-how accurately do MPS and MERA approximate ground states in terms of correlators?
$\begin{gathered}\underset{(\text { critical, c=1) }}{\text { quantum }} \mathrm{XX} \text { model: }\end{gathered} \quad H_{\mathrm{XX}}=\sum_{r}\left(\sigma_{r}^{X} \sigma_{r+1}^{X}+\sigma_{r}^{Y} \sigma_{r+1}^{Y}\right)$

However, critical systems can still be studied with MPS!
slide from Glen Evenbly

Scale invariant MERA

Translational invariance: same tensors along x
Scale invariance (at criticality): same tensors along z

2D MERA (top view)

Original lattice

Coarse-grained lattice

Apply disentanglers

\checkmark Accounts for arealaw in 2D systems

$$
\begin{aligned}
& S(L) \sim L \\
& \chi_{\tau}=\text { const }
\end{aligned}
$$

Different structures of the 2D MERA...

Evenbly \& Vidal, PRL 102, 180406 (2009)

2D MERA on the Kagome lattice

Evenbly \& Vidal, PRL 104, 187203 (2010)

ID vs 2D MERA

same number of connections in each layer

(ii)
$\left|\partial A_{z}\right|$

decreasing number of connections

Evenbly and G. Vidal, J Stat Phys 145, 891(2011).

Branching MERA: beyond area law scaling in 2D

G. Evenbly and G. Vidal, Physical Review Letters 112, (2014).

Summary:Tensor network ansätze

\Rightarrow A tensor network ansatz is an efficient variational ansatz for ground states of local H where the accuracy can be systematically controlled with the bond dimension
\Rightarrow Different tensor networks can reproduce different entanglement entropy scaling:
\star MPS: area law in ID
\star MERA: \log L scaling in ID (critical systems)
\star PEPS/iPEPS: area law in 2D

* 2D MERA: area law in 2D

ڤ branching MERA: beyond area law in 2D (e.g. L log L scaling) (Evenbly \& Vidal, 2014)

Comparison: MPS in 2D vs iPEPS

Comparison MPS \& iPEPS: 2D Heisenberg model

\longleftarrow iPEPS D=6
(variational optimization)
iPEPS $D=6$ in the thermodynamic limit
~ 2’600 variational pars.
similar
accuracy

4 orders of magnitude fewer parameters (per tensor)

iMPS vs iPEPS on infinite cylinders: Heisenberg model

J. Osorio Iregui, M. Troyer \& PC, PRB 96 (2017)

iMPS vs iPEPS on infinite cylinders: Hubbard model $(\mathrm{n}=\mathrm{I})$
J. Osorio Iregui, M. Troyer \& PC, PRB 96 (2017)

Classification by entanglement (2D)

- How large does D have to be?

It depends on the amount of entanglement in the system!

Entanglement

Iow	gapped systems	band insulators, valence-bond crystals, s -wave superconductors, ...
	gapless systems with area law	Heisenberg model, d-wave / p-wave SC, Dirac Fermions, ...
high	systems with "ID fermi surface"	free Fermions, Fermi-liquid type phases, bose-metals?

Non-interacting spinless fermions (old iPEPS results)

```
                                    Corboz, Orús, Bauer, and Vidal, PRB }81\mathrm{ (2010)
```


fast convergence with D in gapped phases
slow convergence in phase with ID Fermi surface

Non-interacting fermions (2D MERA) Layers Size
I 6x6 218×18 $3 \quad 54 \times 54$ $4 \quad 162 \times 162$

