Origin of the slow growth of entanglement entropy in long-range interacting systems

Silvia Pappalardi (Sissa \& ICTP, Trieste, Italy)
February 10th, 2020 - Benasque
with Alessio Lerose (University of Geneva)
[to appear on arXiv]
[to appear in Phys.Rev.Research (RC) (arXiv:181 $\overline{1} .05505)]$

Non-equilibrium behaviour of an isolated quantum system

Entanglement entropy evolution

Short-range paradigm

General behaviour

[^0]
Long-range systems

Classical physics:

$$
J_{i j} \sim \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{\alpha}}
$$

$$
\alpha \leq d
$$

$$
d \text {-dimensional }
$$

[Campa, Dauxois, Fanelli, Ruffo - UOP Oxford, 2014]
Quantum experiments in AMO physics: trapped ions, Rydberg atoms, Spinor Condensates, Cavity QED...

Paul trap

$$
0.5<\alpha<1.8
$$

Maryland (C. Monroe) Innsbruck (R. Blatt)

Fast correlation spreading with long-range interactions

correlation between site 0 and site R

Violations of linear light-cone spreading

Typical behavior of spatiotemporal correlations (Picture from Lepori, Trombettoni, Vodola, JStat '17)

Long-range chains: hints from numerics

$$
\text { Quench from }\left|\psi_{0}\right\rangle=|\uparrow \uparrow \ldots \uparrow\rangle \text { with } \quad \hat{H}=-J \sum_{i \neq j}^{N} \frac{\hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}}{|i-j|^{\alpha}}-h \sum_{i}^{N} \hat{\sigma}_{i}^{z}
$$

$$
N=30,40,50 \quad D_{\mathrm{MPS}}=120
$$

different behavior. Counterintuitively, quenches above the critical point for these long-range interactions lead only to a logarithmic increase of bipartite entanglement in time, so that in this regime, long-range interactions produce a slower growth of entanglement than short-range interactions. This can be understood by the fact that the dynamics

Origin of the slow growth of entanglement entropy in long-range interacting systems

Goal: understand why this happens.
$0<\alpha<d$

Breakdown of the quasi-particle picture

Dominated by semi-classical collective squeezing induced entanglement growth

different mechanism!

Semi-classical entanglement dynamics $(\alpha=0)$

Dynamics with all-to-all interactions $(\alpha=0)$

- Collective spin $\vec{S}=\sum_{i=1}^{N} \vec{\sigma}_{i} \propto N$
- extensive
- conserved

$$
\left[|\vec{S}|^{2}, H\right]=0
$$

- small Hilbert space $\operatorname{dim} \mathscr{H}=N+1$

Entanglement dynamics of a collective model

- decompose the collective spin $\hat{\mathbf{S}}=\hat{\mathbf{S}}_{A}+\hat{\mathbf{S}}_{B}$
[Vidal, Dusuel, Barthel - JSTAT, 2007]
- Holstein-Primakoff: treat spin fluctuations as bosons
$\left(\hat{q}_{A}, \hat{p}_{A}\right)\left(\hat{q}_{B}, \hat{p}_{B}\right) \longleftrightarrow(\hat{Q}, \hat{P})$
$N_{A}+N_{B}=N$

N_{B}

- Work in the reference frame of the classical spin $\tilde{H}(t)=\hat{H}-\omega(t) \cdot \mathbf{S}$
- quadratic Hamiltonian for the fluctuations

$$
\tilde{\hat{H}}(t)=h_{Q Q}^{(2)}(t) \frac{\hat{Q}^{2}}{2}+h_{P P}^{(2)}(t) \frac{\hat{P}^{2}}{2}+h_{Q P}^{(2)}(t) \frac{\hat{Q} \hat{P}+\hat{P} \hat{Q}}{2}+\mathcal{O}(1 / \sqrt{N})
$$

$S_{A}(t)$ and collective excitations

Entanglement between bosons $\left(q_{A}, p_{A}\right)$ and $\left(q_{B}, p_{B}\right)$

the system is quadratic: $\hat{\rho}_{A}$ is gaussian

$$
S_{A}=\sqrt{1+4 f_{A} f_{B}\left\langle\hat{n}_{e x c}\right\rangle} \operatorname{arccoth}\left(\sqrt{1+4 f_{A} f_{B}\left\langle\hat{n}_{e x c}\right\rangle}\right)+\frac{1}{2} \log \left(f_{A} f_{B}\left\langle\hat{n}_{e x c}\right\rangle\right)
$$

$$
\left\langle\hat{n}_{e x c}\right\rangle=\frac{\left\langle Q^{2}\right\rangle+\left\langle P^{2}\right\rangle-1}{2}
$$

entangled $\left\langle\hat{n}_{\text {exc }}\right\rangle \gg 1$
separable states $\left\langle\hat{n}_{\text {exc }}\right\rangle=0$

$$
S_{A} \sim \frac{1}{2} \log \left\langle\hat{n}_{\text {exc }}\right\rangle+1+\frac{1}{2} \log f_{A} f_{B}
$$

$$
S_{A}=0
$$

Relation to semiclassical trajectories

$$
S_{A}(t) \sim 1+\frac{1}{2} \log f_{A} f_{B}+\frac{1}{2} \log \left\langle\hat{n}_{\mathrm{exc}}(t)\right\rangle
$$

The rate of $\left\langle\hat{n}_{\text {exc }}(t)\right\rangle$ is determined by the classical flow of the small displacements (Q, P) around the classical solution

Numerical simulations for fully-connected Ising model

Generic quenches

$$
\left\langle\hat{n}_{\mathrm{exc}}(t)\right\rangle \sim t^{2}
$$

$$
S_{A}(t) \sim \log t
$$

$$
t_{\mathrm{Ehr}} \sim \sqrt{N}
$$

validity before the Ehrenfest time $\left\langle\hat{n}_{\text {exc }}\right\rangle \sim N$

Unstable trajectory

$$
\left\langle\hat{n}_{\mathrm{exc}}(t)\right\rangle \sim e^{2 \lambda t}
$$

$$
S_{A}(t) \sim \lambda_{h_{c}} t
$$

$$
t_{\mathrm{Ehr}} \sim \log N
$$

Entanglement dynamics in semi-classical models

bipartite entanglement (entanglement entropy), multipartite entanglement (quantum Fisher information), otoc, etc.

Regular Phase (KAM)

$$
S_{\mathrm{ent}} \sim \log t
$$

Example: Kicked top

$$
\hat{H}(t)=\alpha \hat{S}_{x}+\frac{\beta}{2 N s} \hat{S}_{z}^{2} \sum_{n=-\infty}^{\infty} \delta(t-n \tau)
$$

Chaotic Phase

> Kolmogorov-Sinai entropy

$$
S_{\mathrm{ent}} \sim\left(\sum_{\lambda_{i}>0} \lambda_{i}\right) t
$$

Spatially decaying interactions $\alpha \neq 0$

Spatially decaying interactions

$$
\hat{H}=-\frac{J}{\mathcal{N}_{\alpha, N}} \sum_{i \neq j} \frac{\hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{\alpha}}-h \sum_{i} \hat{\sigma}_{i}^{z}
$$

$$
\text { Kač normalization } \quad \mathcal{N}_{\alpha, N}=\frac{1}{N} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{\alpha}} \quad \mathcal{N}_{0, N}=N
$$

$$
\tilde{\hat{H}}_{\alpha}(t)=\tilde{\hat{H}}_{0}(t)+\hat{H}_{\mathrm{sw}}(t)
$$

Approach
$k=0$ collective mode

- Fourier Transform $\mathbf{k}=\frac{2 \pi}{L}\left(n_{1}, \ldots, n_{d}\right), n_{\mu}=0,1, \ldots, L-1$

$$
\hat{H}=-\frac{1}{N} \sum_{k} \widetilde{J}_{k}(\alpha) \tilde{\sigma}_{k}^{x} \tilde{\sigma}_{-k}^{x}-h \tilde{\sigma}_{k=0}^{z}
$$

- Time-dependent rotation

$$
\tilde{\tilde{H}}(t)=\hat{H}-\boldsymbol{\omega}(t) \cdot \hat{\mathbf{S}}
$$

- Holstein-Primakoff on the individual spins

$$
\tilde{q}_{\mathbf{k}}=L^{-d / 2} \sum_{j} e^{-i \mathbf{k} \cdot \mathbf{r}_{j}} \hat{q}_{j} \quad \tilde{p}_{\mathbf{k}}=L^{-d / 2} \sum_{i} e^{-i \mathbf{k} \cdot \mathbf{r}_{j}} \hat{p}_{j}
$$

Spatially decaying interactions

$$
\tilde{\hat{H}}_{\alpha}(t)=\tilde{\hat{H}}_{0}(t)+\hat{H}_{\mathrm{sw}}(t)
$$

zero mode Hamiltonian

$$
\tilde{\hat{H}}_{\alpha=0}(t)
$$

$$
\begin{array}{ll}
\left\langle\hat{n}_{\text {sw }}\right\rangle \equiv 0 & {\left[\hat{n}_{\mathbf{k}}, \tilde{\hat{H}}_{0}\right]=0 \text { for all } \mathbf{k} \neq 0} \\
& \hat{n}_{\text {sw }}(t)=\sum_{\mathbf{k} \neq \mathbf{0}} \hat{n}_{\mathbf{k}} \equiv \sum_{\mathbf{k} \neq \mathbf{0}} \frac{\tilde{q}_{\mathbf{k}} \tilde{q}_{-\mathbf{k}}+\tilde{p}_{\mathbf{k}} \tilde{p}_{-\mathbf{k}}-1}{2}
\end{array}
$$

spin-wave Hamiltonian

$$
\hat{H}_{\mathrm{sw}}(t)=\sum_{\mathbf{k} \neq 0} \tilde{f}_{\alpha, \mathbf{k}}\left[J_{q q}(t) \frac{\tilde{q}_{\mathbf{k}} \tilde{q}_{\mathbf{q}}}{2}+J_{p p}(t) \frac{\tilde{p}_{\mathbf{k}} \tilde{p}_{-\mathbf{k}}}{2}+J_{q p}(t) \frac{\tilde{q}_{\mathbf{k}} \tilde{p}_{-\mathbf{k}}+\tilde{p}_{\mathbf{k}} \tilde{q}_{-\mathbf{k}}}{2}\right]
$$

$$
\left\langle\hat{n}_{\mathrm{sw}}(t)\right\rangle \neq 0
$$

Quasi-conservation of spin waves for $\alpha \leq d \quad \tilde{f}_{\alpha, k}=\frac{1}{N_{\alpha, N}} \sum_{i j} \frac{e^{\left.-i k^{-i(r, r}, r_{j}\right)}}{\mathbf{r}_{i}-\mathbf{r}_{j} \alpha^{K}}$
 $\alpha=0.7$
 $\alpha=0.7$

small $k \sim \frac{1}{N}$

Example:
1D Ising long-range

$$
\left|\dot{n}_{\mathbf{k} \neq 0}(t)\right|=\left|\left\langle\left[n_{\mathbf{k} \neq \mathbf{0}}, \widetilde{H}(t)\right]\right\rangle\right| \sim \frac{J}{(|\mathbf{k}| L)^{\beta}} \quad \beta \equiv \operatorname{Min}(d-\alpha, 1)
$$

long pre-thermalization regime $\quad T_{\text {pre-th }} \sim N^{\beta / d}$

- the system stays trapped near a small submanifold of the full Hilbert space $\sim N$
- Long-wavelength modes $k \sim 1 / L$ might break permutation invariance.

Spin-waves contribution

$$
\tilde{\hat{H}}(t)=\tilde{\hat{H}}_{0}(t)+\sum_{\mathbf{k} \neq 0} \tilde{f}_{\alpha, \mathbf{k}}\left[J_{q q}(t) \frac{\tilde{q}_{\mathbf{k}} \tilde{q}_{-\mathbf{k}}}{2}+J_{p p}(t) \frac{\tilde{p}_{\mathbf{k}} \tilde{p}_{-\mathbf{k}}}{2}+J_{q p}(t) \frac{\tilde{q}_{\mathbf{k}} \tilde{p}_{-\mathbf{k}}+\tilde{p}_{\mathbf{k}} \tilde{q}_{-\mathbf{k}}}{2}\right]
$$

The dynamics is described by a discrete set of periodically driven harmonic oscillators (drive = classical motion)

Stability analysis at the classical period $T_{c l}$

$$
e^{ \pm \lambda_{\mathbf{k}} T_{c l}}
$$

- $\lambda_{\mathbf{k}}=i \omega_{\mathbf{k}}$ stable
- $\lambda_{\mathbf{k}}$ real, unstable

The Kolmogorov-Sinai entropy

$h_{K S}\left(\theta_{0}, \phi_{0}\right)=\sum_{k} \Re\left[\lambda_{k}\left(\theta_{0}, \phi_{0}\right)\right]$

Numerical simulations by MPS-TDVP (converged with bond dimension $\mathrm{D}=128$)

new contributions with standard boson techniques [Hackl, Bianchi, Modak, Rigol - Phys.Rev.A, 2018]
for different initial conditions

Conclusions

1. semi-classical $S_{A}(t)$: collective squeezing induce

- Entanglement entropy directly experimentally measurable
- connection with quantum Fisher information, otoc, etc.

2. analytical $S_{A}(t)$ beyond the short-range paradigm with quasiparticle picture

- picture in the presence of a dominant zero-mode;
- typical stability of spin-waves excitations (ergodicity breaking of long-range systems)
- 'efficiency' of classical simulations: TDVP, CTWA etc

[^0]: [Calabrese, Cardy - JSTAT, 2005]
 [...]
 [Nahum, Ruhman, Vijay, Haah - Phys. Rev. X, 2017]

