
Silvia Pappalardi (Sissa & ICTP, Trieste, Italy)
February 10th, 2020 - Benasque

[to appear on arXiv] 
[to appear in Phys.Rev.Research (RC) (arXiv:1811.05505)] 

with Alessio Lerose (University of Geneva)

Origin of the slow growth of entanglement 
entropy in long-range interacting systems



/17

Non-equilibrium behaviour of an isolated quantum system 

⇢̂A(t) = TrB | (t)ih (t)|
<latexit sha1_base64="p8SDGJWViXRpnWYyv97T6VfcZ+o="></latexit>

SA(t) = �Tr ⇢̂A(t) log ⇢̂A(t)
<latexit sha1_base64="F4viwqochi1m+3vGsBYf+LIcChc=">AAACLXicbVDLSgNBEJyN7/ha9ehlMAgRNOyqoB4EHxePiokRsiH0jm0yZPbBTK8oS77FT/ArvOrJg6Be/Q03j4Mm1qmo6qa7yo+VNOQ471ZubHxicmp6Jj87N7+waC8tX5ko0QIrIlKRvvbBoJIhVkiSwutYIwS+wqrfPu361TvURkZhmR5irAfQDOWtFECZ1LAPLhvHRdrgh3zLI7yntKw73ib3WkDc062o73oqag5rDbvglJwe+ChxB6TABjhv2J/eTSSSAEMSCoypuU5M9RQ0SaGwk/cSgzGINjSxltEQAjT1tBexw9cTAxTxGDWXivdE/L2RQmDMQ+BnkwFQywx7XfE/r5bQ7X49lWGcEIaie4ikwt4hI7TMukN+IzUSQfdz5DLkAjQQoZYchMjEJCszn/XhDqcfJVfbJXen5FzsFo5OBs1Ms1W2xorMZXvsiJ2xc1Zhgj2yZ/bCXq0n6836sL76ozlrsLPC/sD6/gEmp6XZ</latexit>

2

which has long been recognized as a witness of many-body
entanglement in collective models [23–27]. By means of
a systematic expansion in quantum fluctuations around
the semiclassical collective spin, we compute the out-of-
equilibrium growth of hn̂exc(t)i after a quench, showing
that it generically leads to the reported logarithmic growth
in time of S(t). We test all our analytical results against
exact numerical computations in the paradigmatic case
of ferromagnetic quantum Ising chains with long-range
interactions, finding that the growth of S(t) is perfectly
reproduced. AL: numerics include alpha, can we
say it is reproduced?

Our findings demonstrate that, in systems with long-
range interactions, the non-equilibrium growth of entan-
glement entropy is primarily governed by the non-linearity
of the collective dynamics. This mechanism provides a
novel paradigm, which should be contrasted to the avail-
able ones for systems with local interactions, namely those
provided by the standard quasi-particle picture for fully
integrable models and by random unitary circuits for fully
chaotic models. AL: add citations

Entanglement entropy in infinite-range spin systems.—
We first consider general spin models with arbitrary all-to-
all multi-body interactions, described by a Hamiltonian
of the form
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where ŝi, i = 1, 2, . . . , N are quantum spins-1/2 (or
qubits). The rescaling factor 1/Np�1 ensures that the
energy contribution of all p-body interactions is extensive.
These Hamiltonians can be written in terms of the col-
lective spin of the system, Ŝ =

PN
i=1 ŝi. Its magnitude

|S| =
p
S(S + 1) with S = N/2, N/2� 1, N/2� 2, . . . is

extensive and conserved,
h
|Ŝ|2, Ĥ

i
= 0, and generically

maximal (S = N/2) in the ground state [28], leading to
an effective ~eff s ~/N AL: cite sciolla biroli. Hence,
the behavior of the system in the thermodynamic limit
N ! 1 is described by the classical Hamiltonian Ĥ/N !
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where now Ŝ/N ! ~S represents a classical spin on the
two-dimensional sphere of radius 1/2. The rigorous mean-
ing of this statement is that, as N ! 1, the ground
state expectation values hŜiGS /N of the spin compo-
nents converge to the minimum point ~S⇤ of the classical
Hamiltonian Hcl on the sphere, with vanishingly small
quantum fluctuations, and their non-equilibrium evolu-
tion hŜ(t)i /N is described by the classical trajectory ~S(t)

on the sphere governed by Hcl, i.e., ~̇S = { ~S,Hcl} with
the Poisson brackets {S

↵
,S

�
} = ✏

↵��
S
� . The dynamical

evolution at finite size N can thus be understood via sys-
tematic semiclassical expansions in quantum fluctuations
around this classical limit.

We aim to understand the entanglement dynamics in
spin systems described by Eq. (1). For a composite sys-
tem with Hilbert space H = HA ⌦ HB in a pure state
⇢̂ = | i h |, the entanglement between subsystems A

and B can be quantified by the Von Neumann entropy
SA = �Tr

⇥
⇢̂A log ⇢̂A

⇤
of the reduced density matrix

⇢̂A = TrB ⇢̂. In this light, we consider a bipartition of
the system described by Eq. (1) into two subsystems
A and B with NA and NB = N � NA spins, respec-
tively. The collective spin Ŝ can be correspondingly de-
composed as Ŝ = ŜA+ ŜB (see Fig. 1). Following Ref. 29
and 30, the quantum correlations between subsystems A

and B can be understood by expanding the two spins
ŜA, ŜB in quantum fluctuations around the direction
Z = (sin ✓ cos�, sin ✓ sin�, cos ✓) of hŜ(t)i by means of
Holstein-Primakoff transformations from spin to canoni-
cal bosonic operators (see, e.g., Ref. 31), expressed by

ŜA,B '

p

N

⇣
X

p
fA,B s q̂A,B +Y

p
fA,B s p̂A,B

⌘

+ Z

✓
NfA,B s�

q̂
2
A,B + p̂

2
A,B � 1

2

◆
(2)

where s = 1/2 here, fA,B = NA,B/N represent the frac-
tions of spins in the two subsystems, and X, Y form
with Z an orthonormal frame. In this description, the
entanglement between subsystems A and B is encoded
by the entanglement between these two bosonic modes.

In non-equilibrium conditions, typically generated by
preparing the system in the ground state and then varying
in time some parameters J in the Hamiltonian (quantum
quench), both the instantaneous collective spin configu-
ration hŜ(t)i and the transverse quantum fluctuations of
the spins ŜA, ŜB around it, described by the two bosonic
modes (q̂A, p̂A) and (q̂B , p̂B) respectively, evolve in time.
This problem can be approached by letting the Z-axis
follow the evolution of hŜ(t)i, i.e., by moving to a rotating
frame so that the inertial forces cancel the linear terms in
the quantum fluctuations [32, 33]. The resulting quadratic
time-dependent Hamiltonian in the bosonic excitations
(qA, pA) and (qB , pB)

governs the evolution of the transverse quantum fluctu-
ations of ŜA, ŜB around their averages NA

~S(t), NB
~S(t).

This quadratic approximation is rigorously valid as long
as spin fluctuations are subextensive, which is always true
in the ground states [34] and out of equilibrium until the
so-called Ehrenfest time scale, which diverges with the
system size N (see below).

Within this formalism, the Von Neumann entanglement
entropy between the two subsystems A and B is computed
with standard Gaussian bosonic state techniques AL: cite
SM, gaussian [35], obtaining

SA =
p

1 + 4fAfB hn̂exci arccoth
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2
log
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U(t) = eiHt
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Short-range paradigm

t
<latexit sha1_base64="84rp99RVlnULwwgBfJTXtlY5++4=">AAAB83icbVC7TsNAEFzzDOEVoKQ5ESFRRTYgQRlBQ5lI5CElVnS+bMIp57N1t0aKonwBLVR0iJYPouBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBto8QIbIlIRaYbcItKamyRJIXd2CAPA4WdYHKb+Z1HNFZG+p6mMfohH2s5koJTKjVpUKm6NTcHWyZeQapQoDGofPWHkUhC1CQUt7bnuTH5M25ICoXzcj+xGHMx4WPspVTzEK0/y4PO2WliOUUsRsOkYrmIvzdmPLR2GgbpZMjpwS56mfif10todO3PpI4TQi2yQyQV5oesMDJtANlQGiTiWXJkUjPBDSdCIxkXIhWTtJJy2oe3+P0yaZ/XvIua27ys1m+KZkpwDCdwBh5cQR3uoAEtEIDwBM/w4iTOq/PmvP+MrjjFzhH8gfPxDYD3kX8=</latexit>

[Calabrese, Cardy - JSTAT, 2005] 
[…] 
[Nahum, Ruhman, Vijay, Haah - Phys. Rev. X, 2017]
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[Žnidarič, Prosen, Prelovšek - Phys. Rev. B, 2008] 
[Bardarson, Pollmann, Moore - Phys. Rev. Lett., 2012] 

[Serbyn, Papić, Abanin - Phys. Rev. Lett., 2013] 
[…]

General behaviour Ergodicity breaking
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• new dynamical phases (DPT, Time Crystals, etc.)  

• pre-thermalization and hints of ergodicity breaking 

• existence of MBL phase

Quantum experiments in AMO physics:

Classical physics:

Long-range systems

Jij ⇠
1

|ri � rj |↵
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Paul trap

system are the valence electron spin states in the Beþ ion
ground state which, in the 4.46 T magnetic field, are split
by 124 GHz [16,17,36,37]. The interplay of the Coulomb
repulsion and the electromagnetic confining potentials
supports a set of normal vibrational modes of the crystal
[38], which we couple to the spin d.o.f. via a spin-
dependent optical dipole force (ODF), generated by the
interference of a pair of lasers with beat note frequency ωR
[36]. The frequency ωR is detuned from the center-of-mass
(c.m.) mode frequency, ωc:m:, by δ≡ ωR − ωc:m: (Fig. 1).
The detuning is chosen to predominantly excite the c.m.
mode which uniformly couples all the ions in the crystal
[16]. In the presence of an additional transverse field,

generated by resonant microwaves, we implement the
Dicke Hamiltonian [39–41]

ĤDicke=ℏ ¼ −
g0ffiffiffiffi
N

p ðâþ â†ÞŜz þ BðtÞŜx − δâ†â: ð1Þ

in the frame rotating with ωR. The operator âðâ†Þ is the
bosonic annihilation (creation) operator for the c.m. mode,
BðtÞ is the time-varying strength of the applied transverse
field, and g0 represents the homogeneous coupling between
each ion and the c.m. mode. Here, δ < 0. We have
introduced the collective spin operators Ŝα ¼ ð1=2Þ

P
jσ̂

α
j

where σ̂αj is the corresponding Pauli matrix for α ¼ x, y, z
which acts on the jth ion.
The Dicke Hamiltonian exhibits a quantum phase

transition at Bc ¼ g20=jδj in the thermodynamic limit,
i.e., N → ∞, [42–44], separating the normal (B > Bc)
and superradiant (B < Bc) phases. The Hamiltonian
remains unchanged under the simultaneous transformations
Ŝx → Ŝx, Ŝz → −Ŝz, Ŝy → −Ŝy, and â → −â. These are
generated by the parity operator Π̂ ¼ eiπ½â

†âþŜxþðN=2Þ&.
In the strong-field regime of the normal phase, B ≫ Bc,

the spins and phonons decouple into a product state. When
jBj > jδj the corresponding ground state, jψNor

0;N=2i, and low
lying excitations, jψNor

n¼1;2;…i, are jψNor
n;N=2i¼ jni⊗ j−N=2ix.

We use jni to denote Fock states and jMiα¼fx;y;zg to denote
the fully symmetric (S ¼ N=2) eigenstates which satisfy
ŜαjMiα ¼ MjMiα with −N=2 ≤ M ≤ N=2.
In the weak-field limit, B ≪ Bc, of the superradiant

phase, the spin and phonon d.o.f. are entangled and the
ground state becomes degenerate in the thermodynamic
limit. For a finite system, it approaches jψS

0;N=2i¼
ð1=

ffiffiffi
2

p
Þðjα0;0i⊗ jN=2iz' j−α0;0i⊗ j−N=2izÞ as B→0,

where we have introduced the displaced Fock states
jα; ni≡ D̂ðαÞjni with D̂ðαÞ ¼ eαâ

†−α(â the associated dis-
placement operator [45]. Here, the sign of the superposition
is dictated by the parity symmetry: for even N, the
ground state will be the symmetric superposition with
heiπ½â†âþŜxþðN=2Þ&i ¼ 1, while for odd N, the ground state is
the antisymmetric superposition with heiπ½â†âþŜxþðN=2Þ&i ¼
−1. In this weak-field regime, the spins exhibit ferromag-
netic order, characterized by the nonzero value of the
order parameter jŜzj, while the phonon mode acquires a
macroscopic expectation value equal to jα0j2, where
α0 ¼ g0

ffiffiffiffi
N

p
=ð2δÞ. The low-lying excitations correspond

to displaced Fock states, jψS
n>0;N=2i, if δ2 < g20 and to spin-

flips along ẑ, jψS
0;M<N=2i, if δ2 > g20.

Slow quench dynamics.—At the start of the experimental
sequence (see Fig. 1), we prepare the initial spin state
j−N=2ix with the aid of a resonant microwave pulse.
Doppler-limited cooling of the phonon d.o.f. leads to an
initial transverse phonon thermal state with mean

(a)

(b)

FIG. 1. Implementation and dynamical protocol. (a) The Dicke
model is engineered with a Penning trap ion crystal of N ∼ 70
ions by applying an optical dipole force, resonant only with the
center of mass mode (which generates spin-phonon interactions)
and resonant microwaves (which generate the transverse field).
The system is initially prepared in the normal phase where all the
spins point along the transverse field and are decoupled from the
phonons. (b) As the transverse field is slowly turned off [using
linear or exponential ramp (shown here) profiles with ramp time
τramp] the infinite system enters the superradiant phase after
crossing the quantum critical point at BðtcritÞ ¼ Bc where the gap
closes. The superradiant phase with macroscopic phonon pop-
ulation, ferromagnetically aligned spins and large spin-phonon
entanglement is described by the order parameter hðâþ â†ÞŜzi,
which is tracked closely by the rescaled spin observable
jα0jhjŜzji. (c) In the perfectly adiabatic regime, the ground state
evolves from a separable spin-paramagnetic and vacuum photon
Fock state into a macroscopic spin-phonon cat state: a super-
position of two opposite spin aligned and displaced-coherent
phonon states (with the sign of the superposition dictated by a
parity symmetry, see Supplemental Material [35]).
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Long-range chains: hints from numerics
| 0i = | "" . . . "i

<latexit sha1_base64="HJuRRQghJ7tZDv6YrMxOmSt+Kr0=">AAACLnicbVDLSgNBEJz1bXxFPXoZDIKnsKuCIgiiF48K5gFJCL1jGwdnZ4eZXkWi/+In+BVe9SR4CF79DGeTgI/Yp5qq6u7pio2SjsLwPRgbn5icmp6ZLczNLywuFZdXqi7NrMCKSFVq6zE4VFJjhSQprBuLkMQKa/H1ca7XbtA6mepzujPYSqCj5aUUQJ5qF/fvm8bJdti0oDsK+QG/b2YGrE1v+Te4SMn9eA687WIpLIf94qMgGoISG9Zpu9jzg0SWoCahwLlGFBpqdcGSFAofCs3MoQFxDR1seKghQdfq9m984BuZA0q5Qcul4n0Sf3Z0IXHuLom9MwG6cn+1nPxPa2R0udfqSm0yQi3yRSR9EPkiJ6z04SG/kBaJIP85cqm5AAtEaCUHITyZ+TQLPo/o7/WjoLpVjrbL4dlO6fBomMwMW2PrbJNFbJcdshN2yipMsEf2zF7Ya/AUvAW94GNgHQuGPavsVwWfX5raqaY=</latexit>

Quench from with Ĥ = �J
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increase (small error) breaks down at !! 1. For smaller
systems, boundary effects and finite-size effects become
significant, and the linear regime breaks down at larger !.
Note that the change in behavior for large systems at !! 1
can, in a sense, be understood since this marks the point at
which, in the thermodynamic limit, the sum in the interac-
tion term in the Hamiltonian begins to diverge with in-
creasing system size.

We can also identify the regime of linear growth of SvN
by looking at the mutual information between distant spins.
In the upper panel of Fig. 3(d), we plot the time evolution
of the mutual information I1;8, between sites 1 and 8, for
1 " ! " 2 in a system of 20 spins and for B ¼ !J. As a
clear signature of the regime of linear growth of the half-
chain entropy, we find that the mutual information remains
nearly zero for a certain time until it suddenly peaks at a
time corresponding to the arrival of an ‘‘entangling’’ qua-
siparticle pair originally produced on a site between the
two spins. For nearest-neighbor interactions, this arrival
time is consistent with the analytically calculated
Lieb-Robinson velocity (cf. Appendix B), and we find
that the same mechanism still holds for rather long-ranged
interactions of !! 2. In contrast, for the regime of loga-
rithmic growth of SvN, we find a markedly different be-
havior [lower panel of Fig. 3(d)], which is discussed in the
next section.

We emphasize that the fact that the entanglement growth
mechanism is directly reflected in the time dependence of
the mutual information between two distant spins is very
important for experimental observations. Instead of having
to reconstruct 2ðM=2Þ & 2ðM=2Þ density-matrix elements of a
large block via quantum-state tomography, the growth

behavior of the half-chain entropy can be directly verified
by measuring only 4& 4 density matrices for a system of
two composite spins. In Sec. IVB, we will show how the
measurement further simplifies for the particular quench
we consider here.

B. Entanglement dynamics for long-range interactions

In this section, we study the entanglement growth for
very long-range interactions with ! " 1. In this regime,
the picture of entangling quasiparticles that move freely
within a light cone breaks down, and instead distant parts
of the system can become almost instantaneously en-
tangled based on direct interactions. We observe that for
!! 0:8, 0.9, 1, the half-chain entropy can still increase
steadily as a function of time for our quench, but that the
increase becomes logarithmic instead of linear. When fur-
ther increasing the range of interactions for ! & 0:2, we
find a regime where SvN oscillates rapidly around small
values. We understand this behavior via an effective model
in a basis of Dicke states [48] for infinite-range interactions
! ¼ 0.

1. Logarithmic entropy growth

When increasing the range of interactions, eventually
the linear growth of SvN breaks down, and the growth
becomes logarithmic, as shown in Fig. 3(b). For very
long-range interactions, the time scale of the dynamics is
dominated by the interaction-energy term in the
Hamiltonian. Thus, to make a valid comparison, it is
favorable to measure the time in inverse units of the matrix
norm instead of !J. For Hamiltonian (1), we can calculate

(a) (b) (c)

FIG. 3. Entanglement growth after a quantum quench in the transverse Ising model in which algebraically decaying interactions are
introduced suddenly. (a) Time evolution of the half-chain entropy after the quench for B ¼ 1 and varying decay exponents ! ¼ 1:5, 2,
2.5, 3, and 1 (from bottom to top). Solid lines are ED results for M ¼ 20 spins; dashed lines are MPS/MPO results for 50 spins
(converged with MPS bond dimension D ¼ 192). For ! ' 2, the growth is clearly linear and independent of the system size. (b) Time
evolution of 2SvN . Each of the three bundles of lines contains the results for M ¼ 30, 40, and 50 spins and ! ¼ 0:8, 0.9, and 1 (MPS/
MPO simulation, converged with D ¼ 192). On top of the oscillations, the growth is logarithmic (straight line on the exponential
scale). Time is given in units of the inverse Hamiltonian norm, "" (cf. Sec. III B 1). (c) Finite-size scaling of the crossover from linear
SvN growth to a logarithmic one visualized by the error of a linear fit, #fit, in the interval 1< t !J < 3 as a function of ! and M (B ¼ 1,
ED and MPS/MPO simulations, D ¼ 192). For large systems, the crossover occurs around !! 1. (d) Time evolution of the mutual
information between spins 1 and 8, I1;8 (M ¼ 20, B ¼ !J, ED). The upper panel shows results for 2 ' ! ' 1, the lower panel for
1 ' ! ' 0:2. The signature of linear growth of the half-chain entropy is the arrival of a quasiparticle peak after a certain time, whereas
for ! & 1, distant spins become entangled instantaneously.
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[Buyskikh, Fagotti, Schachenmayer, Essler, Daley - Phys. Rev. A, 2016]

well described by the propagation of quasiparticles at a rate
equal to or slower than the Lieb-Robinson bound [42–44].
This leads to a linear increase in bipartite entanglement in
time, so that the dynamics cannot be efficiently computed
in existing classical simulations beyond short times
[16,17]. Interestingly, in this limit, we find that the maxi-
mum growth rate of bipartite entanglement, even in small
systems, occurs when we quench the interaction strength to
the value corresponding to the quantum-phase-transition
point, shifting accordingly for varying !.

For interactions with ! & 1, we observe qualitatively
different behavior. Counterintuitively, quenches above the
critical point for these long-range interactions lead only to
a logarithmic increase of bipartite entanglement in time, so
that in this regime, long-range interactions produce a
slower growth of entanglement than short-range interac-
tions. This can be understood by the fact that the dynamics
is constrained to take place in a small part of the total
available Hilbert space. In particular, in the case of infinite-
range interactions, the system is described by the Lipkin-
Meshkov-Glick (LMG) Hamiltonian [45,46], where the
eigenspace of the model is spanned by relatively few
Dicke states. We show that, in this case, the bipartite
entanglement is bounded by a constant value, which grows
logarithmically with the size of the system. For a large
system size, this can be thought of as a mean-field limit,
where the dynamics is simple to capture with a small
number of basis states.

Finally, we discuss specific experimental parameters for
the realization of different regimes in ion traps with finite
chain lengths, and experimental measurement protocols for
these effects, creating possibilities for the regimes consid-
ered here to be observed in the laboratory. We show that the

crossover from linear to logarithmic entanglement growth
can be observed also for inhomogeneously decaying inter-
actions. Furthermore, we take typical experimental noise
sources into account and show that the observable features
are robust against these. The result that long-range inter-
actions do not always give rise to strong entanglement in
quench dynamics has implications for the realization of
large-scale entanglement in quantum simulations in gen-
eral systems with long-range interactions.
This paper is organized as follows. In Sec. II, we in-

troduce the setup and the model, as well as the entangle-
ment measures we compute. In Sec. III, we show how the
entanglement growth depends on the model parameters
and how the entanglement distribution mechanisms can
be understood. In Sec. IV, we show entanglement growth
for typical experimental parameters with inhomogeneously
decaying interactions and how the entanglement behavior
can be measured in noisy experiments. Finally, in Sec. V,
we provide a conclusion and an outlook.

II. MODEL FOR A QUENCH WITH LONG-RANGE
INTERACTIONS

In this paper, we study the nonequilibrium dynamics of
spatial entanglement in systems with long-range interac-
tions, especially as they are realizable with variable range
in ion traps. In this section, we introduce the long-range
transverse Ising model governing the time evolution, and
the measures of entanglement we compute.

A. Transverse Ising model

We consider the transverse Ising model with long-range
interactions, described by the Hamiltonian

Ĥ ¼
X

i<j

Ji;j"̂
x
i "̂

x
j þ B

X

i

"̂z
i : (1)

Here, the "̂!
i denote the local Pauli matrices (! ¼ x, z), Ji;j

is a general interaction matrix with potentially long-range
interactions, and B is the transverse field. This Hamiltonian
can be realized experimentally, e.g., with a string of
trapped ions that are harmonically confined in a linear
trap, as depicted in Fig. 1. Using two stable (or metastable)
electronic states of these ions as local spin representations
at site i, j "ii and j #ii, it has been shown [23] that one can
use collective couplings of these local states to motional
degrees of freedom of the whole chain to produce the
effective spin model (1) [an example of Ji;j for the ion-
trap experiment, ‘‘case B’’ of Sec. IV, is shown in
Figs. 1(b) and 1(c)]. Note that, throughout this paper, we
will deal with open boundary conditions, which are typical
in ion-chain experiments.
We define the local eigenstates of "̂z

i as j0ii # j #ii and
j1ii # j "ii, with eigenvalues $1 and 1, respectively. We
consider a quench experiment [see Fig. 1(a)], where the
system starts in the fully polarized state jc 0i ¼

QM
i j0ii,

(b)

FIG. 1. (a) Illustration of the quench experiment. We consider
a linear chain of ions (effective spin model) with long-range
interactions. Initially, all spins are fully polarized along the axis
of the magnetic field B. After a time evolution, spatial entangle-
ment entropy (SvN) builds up between blocks of the system.
(b) A typical calculated experimental interaction matrix for 20
ions (see text for further details and parameters). (c) The decay
of the interactions with a tunable decay exponent !. Here, the
grey dots show the mean interactions from diagram (b).
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7

Breakdown of the quasi-particle picture 

Origin of the slow growth of entanglement entropy 
in long-range interacting systems

0 < α < d

Goal: understand why this happens.

Dominated by semi-classical collective squeezing induced entanglement growth

different mechanism! 



Semi-classical entanglement dynamics (α = 0)
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Dynamics with all-to-all interactions ( )α = 0

Nonequilibrium Dynamics = Classical trajectory on the sphere

• Collective spin               

• extensive  

• conserved               

∝ N⃗S =
N

∑
i=1

⃗σ i

[ ⃗S
2

, H ] = 0

• small Hilbert space dimℋ = N + 1

Ĥ = � J

N

NX

ij

�̂
x
i �̂

x
j � h

NX

i

�̂
z
i
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Δ ∼ ℏeff ∼ ℏ/NΔ ∼ ℏeff ∼ ℏ/N

quantum fluctuations!

[Polkovnikov - Annals of Physics, 2010] 8

     Ehrenfest time               
purely quantum dynamics

tEhr
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Δ ∼ 1
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Entanglement dynamics of a collective model

Z(t)
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• quadratic Hamiltonian for the fluctuations 
˜̂
H(t) = +N Ecl(t) +

p

N

h
h
(1)
Q (t) Q̂+ h

(1)
P (t) P̂

i

+ h
(2)
QQ(t)

Q̂
2

2
+ h

(2)
PP (t)

P̂
2

2
+ h

(2)
QP (t)

Q̂P̂ + P̂ Q̂

2

+ h
(2)
sw (t) n̂sw +O

⇣
1/

p

N

⌘
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p

N

h
h
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Q (t) Q̂+ h
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P (t) P̂

i

+ h
(2)
QQ(t)

Q̂
2

2
+ h

(2)
PP (t)

P̂
2

2
+ h

(2)
QP (t)

Q̂P̂ + P̂ Q̂

2

+ h
(2)
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⇣
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p

N

⌘

<latexit sha1_base64="FtyFcXGFFmeFLWMJCPQrUlSU81M="></latexit>

ê
H(t) = Ĥ � !(t) · Ŝ
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• Holstein-Primakoff: treat spin fluctuations as bosons
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NA
<latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit> NB

<latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit>

N
<latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit>

+
<latexit sha1_base64="5SGvRg2AmYJBD31I5OmirFji9+8=">AAAB83icbVDLSsNAFJ3UV62vqks3g0UQhJKooMuiG5ct2Ae0oUymt3XoZBJm7ggl9Avc6sqduPWDXPgvJjELbT2rwzn3cs89QSyFQdf9dEorq2vrG+XNytb2zu5edf+gYyKrObR5JCPdC5gBKRS0UaCEXqyBhYGEbjC9zfzuI2gjInWPsxj8kE2UGAvOMJVaZ8Nqza27Oegy8QpSIwWaw+rXYBRxG4JCLpkxfc+N0U+YRsElzCsDayBmfMom0E+pYiEYP8mDzumJNQwjGoOmQtJchN8bCQuNmYVBOhkyfDCLXib+5/Utjq/9RKjYIiieHUIhIT9kuBZpA0BHQgMiy5IDFYpyphkiaEEZ56lo00oqaR/e4vfLpHNe9y7qbuuy1rgpmimTI3JMTolHrkiD3JEmaRNOgDyRZ/LiWOfVeXPef0ZLTrFzSP7A+fgGDzCRNg==</latexit>

NA
<latexit sha1_base64="3xVZBslJb0DdfFZfak3uCVMB5nY=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8bWYBYY+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXlxUTNVqnSlV3urq8SEmDjL1ZC4tLyyurmbXs+sbm1nZuZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwTKSri95JL5dntuOycplRZpcKBdc9TkjFLRRZkTo2S5Enc9R6ufdOPxSxDwEKxY1pOyzC7oRrlELBNNuJDURcjPgQ2gkNuA+mO0mjTulhbDiGNAJNpaKpCN83Jtw3Zux7yaTP8cb89mbiX147xoHbncggihECMTuEUkF6yAgtkw6A9qUGRD5LDlQGVHDNEUFLyoVIxDgpJZv08fU0/Z80CrZTtNllKV89nTeTIfvkgBwRh1RIlZyTGqkTQYbknjyQR+vOerKerZfP0QVrvrNHfsB6/QD2yJJW</latexit>

NB
<latexit sha1_base64="EFIIIQiYmnqg8h9ie6O5rLdqNwI=">AAAB9XicdVDLSgNBEJyNrxhfUY9eBoPgaZnNg+QY4sWTRDQPSJYwO+nEIbMPZnqVEPIJXvXkTbz6PR78FzdrBBWtU1HVTVeXFylpkLE3K7Oyura+kd3MbW3v7O7l9w/aJoy1gJYIVai7HjegZAAtlKigG2ngvqeg403OFn7nFrSRYXCN0whcn48DOZKCYyJdXQwag3yB2dVa2SkVKbNLlQqrVBPCKkWnXKOOzVIUyBLNQf69PwxF7EOAQnFjeg6L0J1xjVIomOf6sYGIiwkfQy+hAffBuLM06pyexIZjSCPQVCqaivB9Y8Z9Y6a+l0z6HG/Mb28h/uX1YhzV3JkMohghEItDKBWkh4zQMukA6FBqQOSL5EBlQAXXHBG0pFyIRIyTUnJJH19P0/9Ju2g7JZtdlgv1xrKZLDkix+SUOKRK6uScNEmLCDIm9+SBPFp31pP1bL18jmas5c4h+QHr9QP0EJJU</latexit>

=<latexit sha1_base64="4SWzZAeGd6ZGXJa2AtF/DlTPacc=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIBCRqkCBrKRCIPKbGi82UTTjmfrbs9pMjKF9BCRYdo+SAK/gXbuICEqUYzu9rZCWIpDLrup1NaWV1b3yhvVra2d3b3qvsHHRNZzaHNIxnpXsAMSKGgjQIl9GINLAwkdIPpbeZ3H0EbEal7nMXgh2yixFhwhqnUuh5Wa27dzUGXiVeQGinQHFa/BqOI2xAUcsmM6XtujH7CNAouYV4ZWAMx41M2gX5KFQvB+EkedE5PrGEY0Rg0FZLmIvzeSFhozCwM0smQ4YNZ9DLxP69vcXzlJ0LFFkHx7BAKCfkhw7VIGwA6EhoQWZYcqFCUM80QQQvKOE9Fm1ZSSfvwFr9fJp2zunded1sXtcZN0UyZHJFjcko8ckka5I40SZtwAuSJPJMXxzqvzpvz/jNacoqdQ/IHzsc3Kz6RSA==</latexit>

pB
<latexit sha1_base64="yRV6Ais0J0FCLMJH7b0E//dEJ5M=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJll5eGN4MUjRnkkQMjs0ODE2UdmejWE8Ale9eTNePV7PPgv7iImarROlarudHV5kZIGGXuzMkvLK6tr2fXcxubW9k5+d69lwlgLaIpQhbrjcQNKBtBEiQo6kQbuewra3s1Z6rdvQRsZBlc4iaDv83EgR1JwTKTLaFAf5AvMrlRdlxUps91SuVx1E8JKrnPKqGOzOQpkgcYg/94bhiL2IUChuDFdh0XYn3KNUiiY5XqxgYiLGz6GbkID7oPpT+dRZ/QoNhxDGoGmUtG5CN83ptw3ZuJ7yaTP8dr89lLxL68b46jan8ogihECkR5CqWB+yAgtkw6ADqUGRJ4mByoDKrjmiKAl5UIkYpyUkkv6+Hqa/k9aRdtxbXZxUqjVF81kyQE5JMfEIRVSI+ekQZpEkDG5Jw/k0bqznqxn6+VzNGMtdvbJD1ivHyxvkng=</latexit>

qB
<latexit sha1_base64="9UZC0VbkL4Ee84qBCNYLdt1aayU=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJll5eGN4MUjRnkkQMjs0OCE2YczvRpC+ASvevJmvPo9HvwXF8REjdapUtWdri4vUtIgY29Waml5ZXUtvZ7Z2Nza3snu7jVMGGsBdRGqULc8bkDJAOooUUEr0sB9T0HTG53N/OYtaCPD4ArHEXR9PgzkQAqOiXR506v2sjlml8quy/KU2W6hWCy7CWEF1zll1LHZHDmyQK2Xfe/0QxH7EKBQ3Ji2wyLsTrhGKRRMM53YQMTFiA+hndCA+2C6k3nUKT2KDceQRqCpVHQuwveNCfeNGfteMulzvDa/vZn4l9eOcVDuTmQQxQiBmB1CqWB+yAgtkw6A9qUGRD5LDlQGVHDNEUFLyoVIxDgpJZP08fU0/Z808rbj2uziJFepLppJkwNySI6JQ0qkQs5JjdSJIENyTx7Io3VnPVnP1svnaMpa7OyTH7BePwAuAJJ5</latexit>

qA
<latexit sha1_base64="9USBkeKphWlBTsve62jeXAqkJ/8=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8bXYBFW6oF48Y5ZHAhswODU6YfTjTqyGET/CqJ2/Gq9/jwX9xWDFRo3WqVHWnq8uPpdDoOG/W3PzC4tJyZiW7ura+sZnb2m7oKFEc6jySkWr5TIMUIdRRoIRWrIAFvoSmPzyb+s1bUFpE4RWOYvACNghFX3CGRrq86Z50c3nHdg8LlZJLHbvkVo6csiHlQtFo1LWdFHkyQ62be+/0Ip4EECKXTOu268TojZlCwSVMsp1EQ8z4kA2gbWjIAtDeOI06ofuJZhjRGBQVkqYifN8Ys0DrUeCbyYDhtf7tTcW/vHaC/bI3FmGcIIR8egiFhPSQ5kqYDoD2hAJENk0OVISUM8UQQQnKODdiYkrJmj6+nqb/k0bBdou2c1HKV09nzWTILtkjB8Qlx6RKzkmN1AknA3JPHsijdWc9Wc/Wy+fonDXb2SE/YL1+ADZYkn8=</latexit>

pA
<latexit sha1_base64="X4YXNnC5EwXEFuDGITN1FyRZF2s=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtNkFVLihXjxilEcCGzI7NDhh9pGZXg0hfIJXPXkzXv0eD/6Ls4iJGq1Tpao7XV1+LIVGx3mzMguLS8sr2dXc2vrG5lZ+e6epo0RxaPBIRqrtMw1ShNBAgRLasQIW+BJa/ug89Vu3oLSIwmscx+AFbBiKgeAMjXQV9057+YJju0fFatmljl12q8dOxZBKsWQ06trODAUyR72Xf+/2I54EECKXTOuO68ToTZhCwSVMc91EQ8z4iA2hY2jIAtDeZBZ1Sg8SzTCiMSgqJJ2J8H1jwgKtx4FvJgOGN/q3l4p/eZ0EBxVvIsI4QQh5egiFhNkhzZUwHQDtCwWILE0OVISUM8UQQQnKODdiYkrJmT6+nqb/k2bRdku2c1ku1M7mzWTJHtknh8QlJ6RGLkidNAgnQ3JPHsijdWc9Wc/Wy+doxprv7JIfsF4/ADTHkn4=</latexit>

• Work in the reference frame of the classical spin     H̃(t) = Ĥ − ω(t) ⋅ S

[Vidal, Dusuel, Barthel - JSTAT, 2007] 

[Lerose, Marino, Žunkovič, Gambassi and Silva, PRL , 2018] 
[SP, Russomanno, Žunkovič, Iemini, Silva, Fazio, PRB, 2018] 9

collective fluctuations
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        and collective excitations 

the system is quadratic: ⇢̂A
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⟨Q2⟩ + ⟨P2⟩ − 1

2

SA = 1 + 4fA fB ⟨ ̂nexc⟩arccoth( 1 + 4fA fB ⟨ ̂nexc⟩) +
1
2

log(fA fB ⟨ ̂nexc⟩)

SA =
p
1 + 4fAfB hn̂exciarccoth

⇣p
1 + 4fAfB hn̂exci

⌘
+

1

2
log

�
fAfB hn̂exci

�
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Relation to semiclassical trajectories
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Generic quenches
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Figure 5: Entanglement dynamics from quenches starting from a paramagnetic

5

3 Figure 3 in the paper

0

0.5

1

1.5

2

2.5

3

1 10 100

J t

hf = 0.2J

(a.) � = 0
hf < hc

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

J t

hf = 0.5J

(b.) � = 0
hf = hc

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10

t J

� = 0.1

Analytical
N = 20
N = 40
N = 80

(c.) � = 0.1
hf > hc

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10

t J

� = 0.7

(d.) � = 0.7
hf > hc

Figure 5: Entanglement dynamics from quenches starting from a paramagnetic

5

9

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

0.1 1 10 100

S
N
/2
(t
)

J t

N = 50
N = 100
N = 200
N = 400
N = 800

Analytical

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10 100

0
1
2
3
4
5
6

0 2 4 6 8
S
N

A
(t
)

fA = 0.05
fA = 0.1
fA = 0.2
fA = 0.3
fA = 0.4

S
A
�
lo
g
p
f A
f B

t/
p
N

0

0.5

1

1.5

2

2.5

3

0.1 1 10 100

S
N
/2
(t
)

hf = 0.2

N = 50
N = 100
N = 200
N = 400
N = 800

Analytical

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

S
N
/2
(t
)

J t

hf = 0.5

N = 50
N = 100
N = 200
N = 400
N = 800

Analytical

Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .
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.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
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between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
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in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
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In Figs. 2, 3 we compare the predictions of our general
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the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
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converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
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lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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Figure 3. Growth in time of the half-system entanglement
entropy SN/2(t). The initial state | 0i = |!! · · · !i is
evolved with the Hamiltonian (7). Top: Fully connected
model ↵ = 0. Analytical results using Eq. (2) (black lines)
are compared with exact diagonalization data for increasing
system sizes N = 20÷800. (a.) For a shallow quenchh0 = 0 !
hf = 0.2J , numerical results follow the logarithmic growth up
to tEhr s

p
N , where they saturate to SN/2 s logN , see also

Fig. 1 for a deep quench to hf = 2J . (b.) For the critical
quench to hf = hc = J/2, SN/2(t) grows linearly in time
before tEhr s logN with a slope �hc = J in agreement with
the analytical prediction (see the main text). (a), (b) and the
plot in Fig. 1 correspond qualitatively to green, blue and red
trajectories portrayed in Fig. 2, respectively. Bottom: Slowly
decaying interactions 0  ↵  1 with hf = 2J . The formula (2)
— exact for the infinite-range limit (black line) — is compared
with MPS-TDVP computations for N = 20 ÷ 80 with bond
dimension D = 64 Preliminary data. The logarithmic growth
of SN/2(t) is dominated by the contribution of collective spin
squeezing, see the main text. (c.) For ↵ = 0.1, Tpre-th > tEhr
and the entanglement growth is entirely described by the
infinite-range result. (d) For ↵ = 0.7, Tpre-th < tEhr and
corrections due to spin waves gradually set in before saturation.

at all possible momenta k, generally expressed (up to
O(1/

p
N) terms) as [79]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending also on ✓(t), �(t) and the collective-mode
Hamiltonian eH0(t) accounts for the infinite-range part
ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k. eH0(t) describes
the dynamics of collective spin fluctuations Q̂ ⌘ q̃0 and
P̂ ⌘ p̃0 as detailed above, and conserves the bosonic occu-

pation numbers n̂k 6=0 ⌘ (q̃kq̃�k + p̃kp̃�k � 1)/2 of all the
spin-wave modes with finite wavelength [80]. As is evident
in Eq. (5), the dynamical excitation of spin waves with fi-
nite wavelengths for ↵ > 0 is controlled by the strength of
the finite-range part ef↵,k 6=0 of the interaction, leading to
corrections to the equivalent infinite-range entanglement
growth. The following estimate can be derived for ↵ < d

[69] | ef↵,k 6=0|  const ⇥ 1
(|k|L)� , with � ⌘ Min(d � ↵, 2)

(for ↵ = d the power-law is replaced by a logarithm).
This bound implies that for all fixed k 6= 0, the coupling
ef↵,k is vanishingly small in thermodynamic limit L ! 1
whenever ↵  d, as the associated number of bosons is
an approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation of
spin waves with finite wavelengths is suppressed (cf. the
results of Ref. 81) [82]. We thus conclude that long-range
interacting spin systems with ↵  d generically exhibit
logarithmic growth of entanglement entropy, dominated
by non-linear collective spin-squeezing, up to a divergent
time scale in the thermodynamic limit.

Numerical simulations.— We test all our analytical
predictions in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kač rescaling
factor introduced above. The out-of-equilibrium behav-
ior of this model has been widely studied theoretically
[63, 83–87] and experimentally [88]. add ref In the case
of a quantum quench in the transverse field h0 ! hf , it
is characterized by a dynamical phase transitions (DPT)
at hc. For ↵ ! 0, the semi-classical trajectories may
have paramagnetic or ferromagnetic character — distin-
guished by the (non-)vanishing time-averaged magnetiza-
tion hSx(t)i — and are separated by a critical trajectory
(separatrix ), as illustrated in Fig. 2.

We compare the predictions of our general formula (2)
with the results of numerical computations at finite N .
For the sake of illustration, we focus here on the initial
state | 0i = |!! · · · !i i.e., one of the two ground
states of the Hamiltonian (7) for h0 = 0. As Figs. 1 and 3
show, in all cases the finite-size numerical data are close
to the corresponding analytical curves for t  tEhr(N). In
the fully-connected limit ↵! 0, equivalent to the Lipkin-
Meshov-Glick model [89], our theoretical approach is exact
in the thermodynamic limit and the exact diagonalization
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

S
N
/2
(t
)

J t

hf = 0.5J

N = 50
N = 100
N = 200
N = 400
N = 800

Analytical

Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by
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N .
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with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tations at finite N , obtained following the decomposition
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titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
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lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/
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N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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ŝ
x
i ŝ
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between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J
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X
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ
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j

|ri � rj |↵
� h

X

i
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i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
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with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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quench dynamics from h0 = 0 to hf = 2J , for various bipar-
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lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/
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N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Growth in time of the half-system entanglement
entropy SN/2(t). The initial state | 0i = |!! · · · !i is
evolved with the Hamiltonian (7). Top: Fully connected
model ↵ = 0. Analytical results using Eq. (2) (black lines)
are compared with exact diagonalization data for increasing
system sizes N = 20÷800. (a.) For a shallow quenchh0 = 0 !
hf = 0.2J , numerical results follow the logarithmic growth up
to tEhr s

p
N , where they saturate to SN/2 s logN , see also

Fig. 1 for a deep quench to hf = 2J . (b.) For the critical
quench to hf = hc = J/2, SN/2(t) grows linearly in time
before tEhr s logN with a slope �hc = J in agreement with
the analytical prediction (see the main text). (a), (b) and the
plot in Fig. 1 correspond qualitatively to green, blue and red
trajectories portrayed in Fig. 2, respectively. Bottom: Slowly
decaying interactions 0  ↵  1 with hf = 2J . The formula (2)
— exact for the infinite-range limit (black line) — is compared
with MPS-TDVP computations for N = 20 ÷ 80 with bond
dimension D = 64 Preliminary data. The logarithmic growth
of SN/2(t) is dominated by the contribution of collective spin
squeezing, see the main text. (c.) For ↵ = 0.1, Tpre-th > tEhr
and the entanglement growth is entirely described by the
infinite-range result. (d) For ↵ = 0.7, Tpre-th < tEhr and
corrections due to spin waves gradually set in before saturation.

at all possible momenta k, generally expressed (up to
O(1/

p
N) terms) as [79]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending also on ✓(t), �(t) and the collective-mode
Hamiltonian eH0(t) accounts for the infinite-range part
ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k. eH0(t) describes
the dynamics of collective spin fluctuations Q̂ ⌘ q̃0 and
P̂ ⌘ p̃0 as detailed above, and conserves the bosonic occu-
pation numbers n̂k 6=0 ⌘ (q̃kq̃�k + p̃kp̃�k � 1)/2 of all the

spin-wave modes with finite wavelength [80]. As is evident
in Eq. (5), the dynamical excitation of spin waves with fi-
nite wavelengths for ↵ > 0 is controlled by the strength of
the finite-range part ef↵,k 6=0 of the interaction, leading to
corrections to the equivalent infinite-range entanglement
growth. The following estimate can be derived for ↵ < d

[69] | ef↵,k 6=0|  const ⇥ 1
(|k|L)� , with � ⌘ Min(d � ↵, 2)

(for ↵ = d the power-law is replaced by a logarithm).
This bound implies that for all fixed k 6= 0, the coupling
ef↵,k is vanishingly small in thermodynamic limit L ! 1
whenever ↵  d, as the associated number of bosons is
an approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation of
spin waves with finite wavelengths is suppressed (cf. the
results of Ref. 81) [82]. We thus conclude that long-range
interacting spin systems with ↵  d generically exhibit
logarithmic growth of entanglement entropy, dominated
by non-linear collective spin-squeezing, up to a divergent
time scale in the thermodynamic limit.

Numerical simulations.— We test all our analytical
predictions in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kač rescaling
factor introduced above. The out-of-equilibrium behav-
ior of this model has been widely studied theoretically
[63, 83–87] and experimentally [88]. add ref In the case
of a quantum quench in the transverse field h0 ! hf , it
is characterized by a dynamical phase transitions (DPT)
at hc. For ↵ ! 0, the semi-classical trajectories may
have paramagnetic or ferromagnetic character — distin-
guished by the (non-)vanishing time-averaged magnetiza-
tion hSx(t)i — and are separated by a critical trajectory
(separatrix ), as illustrated in Fig. 2.

We compare the predictions of our general formula (2)
with the results of numerical computations at finite N .
For the sake of illustration, we focus here on the initial
state | 0i = |!! · · · !i i.e., one of the two ground
states of the Hamiltonian (7) for h0 = 0. As Figs. 1 and 3
show, in all cases the finite-size numerical data are close
to the corresponding analytical curves for t  tEhr(N). In
the fully-connected limit ↵! 0, equivalent to the Lipkin-
Meshov-Glick model [89], our theoretical approach is exact
in the thermodynamic limit and the exact diagonalization
(ED) results are perfectly reproduced by our analytical cal-
culation up saturation at the Ehrenfest time tEhr s

p
N

for generic quenches [Fig. 1 (bottom) and Fig. 3(a)] and

Z
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Long-range interactions allow far-distance quantum correlations to build up very fast. Nevertheless,
numerical simulations demonstrated a dramatic slowdown of entanglement entropy growth after
a sudden quench. In this work, we unveil the general mechanism underlying this counterintuitive
phenomenon for d-dimensional quantum spin systems with slowly-decaying interactions. We demon-
strate that the semiclassical rate of collective spin squeezing governs the dynamics of entanglement,
leading to a universal logarithmic growth in the absence of semiclassical chaos. In fact, the standard
quasiparticle contribution is shown to get suppressed as the interaction range is sufficiently increased.
All our analytical results agree with numerical computations for quantum Ising chains with long-
range couplings. Our findings thus identify a qualitative change in the entanglement production
induced by long-range interactions, and are experimentally relevant for accessing entanglement in
highly-controllable platforms, including trapped ions, atomic condensates and cavity-QED systems.

Introduction.— Entanglement entropy has been estab-
lished as a fundamental tool for understanding the out-
of-equilibrium dynamics of quantum many-body systems,
their thermalization properties, and the complexity of
their numerical simulations [1–11]. Significant progress
has been achieved for systems with local interactions,
where the finite speed of correlation spreading generically
determines a linear growth in time of bipartite entangle-
ment entropy [2–4, 12–15], unless instances of ergodicity
breaking induced by localization or glassy behavior cause
a distinguished logarithmic slowdown [6, 16–22].

On the other hand, long-range interacting systems —
ubiquitous in quantum atomic, molecular and optical
experiments [23–42] and currently the focus of a great
attention in quantum many-body theory [43–77] — pose
a conceptually different and challenging problem. Despite
their non-local interactions allow quantum correlations be-
tween distant degrees of freedom to build up very quickly
[78–88], several numerical simulations have shown that
entanglement entropy growth after a quench features a
dramatic counterintuitive slowdown as the range of inter-
actions is increased: It becomes as slow as logarithmic
when the couplings decay algebraically with the distances
rij as r�↵

ij , with ↵ smaller than the spatial dimensionality
d, even in the absence of disorder [89–91].

In this work, we identify the qualitative change in the
mechanism which governs the growth of entanglement in
quantum spin systems as the interaction range is increased.
By means of a systematic bosonization of spin excitations,
we show that the standard quasiparticle contribution to
the von Neumann entanglement entropy S(t) is suppressed
for ↵  d in a prethermal regime. The growth of S(t)
is determined by collective spin excitations, directly re-
lated to spin squeezing [92–98] for spin-1/2 systems, as
schematically illustrated in Fig. 1. We demonstrate how
a slow dynamical rate of spin squeezing after a quench

generically leads to a universal logarithmic growth of
S(t) as reported in previous numerical studies. The the-
ory further predicts fast entanglement growth for critical
quenches. Analytical results are supported by numerical
simulations of long-range quantum Ising chains via exact
diagonalization (ED) and the matrix-product-state time-
dependent variational principle (MPS-TDVP) [99, 100].
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NA
<latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit>

NB
<latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit>
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Figure 3: Linear growth in time of the half-system entanglement entropy SN/2 at the dynamical critical point. We compare
our general formula (??) with the exact numerical computation for increasing system sizes N = 50÷400. Before the Ehrenfest
time tEhr � logN , numerical data for SN/2 are accurately reproduced by the analytical result (??) marked by the dotted line
with a slope �hc = J . This linear regime is followed by saturation to a value � logN .

1.2 From a paramagnetic initial condition
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Figure 4: Entanglement dynamics from quenches starting from a paramagnetic
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(a.)
<latexit sha1_base64="taOO7B+RK7R6ssVVUVgNTnIjYh0=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGFxrIBCcoIGsogkYeUWNH6sgmnnB/crRGRlYKvoIWKDtHyKRT8C05wAQlTjWZ2tbPjx0oacpxPa2FxaXlltbBWXN/Y3Nou7ew2TJRogXURqUi3fDCoZIh1kqSwFWuEwFfY9IeXE795j9rIKLyhUYxeAINQ9qUAyiSvQ/hAfj+tgH007pbKju1MweeJm5Myy1Hrlr46vUgkAYYkFBjTdp2YvBQ0SaFwXOwkBmMQQxhgO6MhBGi8dBp6zA8TAxTxGDWXik9F/L2RQmDMKPCzyQDo1sx6E/E/r51Q/9xLZRgnhKGYHCKpcHrICC2zNpD3pEYimCRHLkMuQAMRaslBiExMsnqKWR/u7PfzpHFsuye2c31arl7kzRTYPjtgFeayM1ZlV6zG6kywO/bEntmL9Wi9Wm/W+8/ogpXv7LE/sD6+ARAQlkQ=</latexit>

(b.)
<latexit sha1_base64="WPdCzMg4nj8XXoeHM6RqQsQPObE=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGFxrIBCcoIGsogkYeUWNH5sgmnnM/mbo2IrBR8BS1UdIiWT6HgX7CNC0iYajSzq50dP5LCoON8WguLS8srq6W18vrG5tZ2ZWe3ZcJYc2jyUIa64zMDUihookAJnUgDC3wJbX98mfnte9BGhOoGJxF4ARspMRScYSp5PYQH9IdJzbePpv1K1bGdHHSeuAWpkgKNfuWrNwh5HIBCLpkxXdeJ0EuYRsElTMu92EDE+JiNoJtSxQIwXpKHntLD2DAMaQSaCklzEX5vJCwwZhL46WTA8NbMepn4n9eNcXjuJUJFMYLi2SEUEvJDhmuRtgF0IDQgsiw5UKEoZ5ohghaUcZ6KcVpPOe3Dnf1+nrSObffEdq5Pq/WLopkS2ScHpEZcckbq5Io0SJNwckeeyDN5sR6tV+vNev8ZXbCKnT3yB9bHNxGilkU=</latexit>

(c.)
<latexit sha1_base64="A7HtLKhoSmWnZO0lfOUnsnnXf/4=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGFxrIBCcoIGsogkYeUWNH5sgmnnM/mbo2IrBR8BS1UdIiWT6HgX7CNC0iYajSzq50dP5LCoON8WguLS8srq6W18vrG5tZ2ZWe3ZcJYc2jyUIa64zMDUihookAJnUgDC3wJbX98mfnte9BGhOoGJxF4ARspMRScYSp5PYQH9IdJjdtH036l6thODjpP3IJUSYFGv/LVG4Q8DkAhl8yYrutE6CVMo+ASpuVebCBifMxG0E2pYgEYL8lDT+lhbBiGNAJNhaS5CL83EhYYMwn8dDJgeGtmvUz8z+vGODz3EqGiGEHx7BAKCfkhw7VI2wA6EBoQWZYcqFCUM80QQQvKOE/FOK2nnPbhzn4/T1rHtntiO9en1fpF0UyJ7JMDUiMuOSN1ckUapEk4uSNP5Jm8WI/Wq/Vmvf+MLljFzh75A+vjGxM0lkY=</latexit>

(d.)
<latexit sha1_base64="s6BwPWTqHxO7r486JH4L6Q2V5VM=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGFxrIBCcoIGsogkYeUWNH5sgmnnM/mbo2IrBR8BS1UdIiWT6HgX7CNC0iYajSzq50dP5LCoON8WguLS8srq6W18vrG5tZ2ZWe3ZcJYc2jyUIa64zMDUihookAJnUgDC3wJbX98mfnte9BGhOoGJxF4ARspMRScYSp5PYQH9IdJbWAfTfuVqmM7Oeg8cQtSJQUa/cpXbxDyOACFXDJjuq4ToZcwjYJLmJZ7sYGI8TEbQTeligVgvCQPPaWHsWEY0gg0FZLmIvzeSFhgzCTw08mA4a2Z9TLxP68b4/DcS4SKYgTFs0MoJOSHDNcibQPoQGhAZFlyoEJRzjRDBC0o4zwV47SectqHO/v9PGkd2+6J7VyfVusXRTMlsk8OSI245IzUyRVpkCbh5I48kWfyYj1ar9ab9f4zumAVO3vkD6yPbxTGlkc=</latexit>

(e.)
<latexit sha1_base64="DCyrsoJOIzsY4J5o5EE6wgu2N40=">AAAB/3icbVC7TsNAEDzzDOEVoKQ5ESGFxrIBCcoIGsogkYeUWNH5sgmnnM/mbo2IrBR8BS1UdIiWT6HgX7CNC0iYajSzq50dP5LCoON8WguLS8srq6W18vrG5tZ2ZWe3ZcJYc2jyUIa64zMDUihookAJnUgDC3wJbX98mfnte9BGhOoGJxF4ARspMRScYSp5PYQH9IdJDeyjab9SdWwnB50nbkGqpECjX/nqDUIeB6CQS2ZM13Ui9BKmUXAJ03IvNhAxPmYj6KZUsQCMl+Shp/QwNgxDGoGmQtJchN8bCQuMmQR+OhkwvDWzXib+53VjHJ57iVBRjKB4dgiFhPyQ4VqkbQAdCA2ILEsOVCjKmWaIoAVlnKdinNZTTvtwZ7+fJ61j2z2xnevTav2iaKZE9skBqRGXnJE6uSIN0iSc3JEn8kxerEfr1Xqz3n9GF6xiZ4/8gfXxDRZYlkg=</latexit>

Figure 1. Entanglement dynamics and collective spin squeez-
ing in long-range quantum spin systems. (a) The system is
partitioned into two blocks of NA and NB spins-1/2, initially
fully polarized. (b) Collective spins of the two blocks. (c)
Collective spin in the factorized initial state, represented on a
sphere of radius N/2. The shaded area represents the quantum
uncertainty of transverse components. (d) Nonlinear interac-
tions determine spin squeezing, which makes the two blocks
increasingly correlated (entangled). The slow rate of squeez-
ing after non-critical quenches determines the slow growth of
entanglement. (e) The analytical formula for spin-squeezing
dynamics derived in this work captures the growth of entan-
glement entropy until saturation (here, quantum quench in a
fully-connected quantum Ising model).

The rate of  is determined by the classical flow of 
the small displacements around the classical solution 

⟨ ̂nexc(t)⟩
(Q, P)
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tEhr ⇠
p
N

<latexit sha1_base64="DU9sKqiHLegGSINuj9+wZNQwWNI=">AAACEHicbVA9SwNBEN2LXzF+nVpqsRgEq3CngpZBEawkgvmAJIS9zSRZsnt37s6J4bjGn+CvsNXKTmz9Bxb+F+9iCk18xfB4b4aZeV4ohUHH+bRyc/MLi0v55cLK6tr6hr25VTNBpDlUeSAD3fCYASl8qKJACY1QA1OehLo3PM/8+h1oIwL/BkchtBXr+6InOMNU6ti72IlpC+Ee44uBThLaMkKl5VYjverYRafkjEFniTshRTJBpWN/tboBjxT4yCUzpuk6IbZjplFwCUmhFRkIGR+yPjRT6jMFph2Pv0jofmQYBjQETYWkYxF+T8RMGTNSXtqpGA7MtJeJ/3nNCHun7Vj4YYTg82wRCgnjRYZrkcYDtCs0ILLscqDCp5xphghaUMZ5KkZpXoU0D3f6+1lSOyy5RyXn+rhYPpskkyc7ZI8cEJeckDK5JBVSJZw8kCfyTF6sR+vVerPef1pz1mRmm/yB9fENTIyc5g==</latexit>

tEhr ⇠ logN
<latexit sha1_base64="8NSSYE5ih4QMMKiqrGS7LQ4V+mY=">AAACD3icbVDLSsNAFJ34rPUVddnNYBFclUQFXRZFcCUV7AOaEibT23boTBJmbsQSuvAT/Aq3unInbv0EF/6LaexCW8/qcM693HtOEEth0HE+rYXFpeWV1cJacX1jc2vb3tltmCjRHOo8kpFuBcyAFCHUUaCEVqyBqUBCMxheTPzmHWgjovAWRzF0FOuHoic4w0zy7RL6KfUQ7jG9HOjxmHpGKOrJqE+vfbvsVJwcdJ64U1ImU9R8+8vrRjxRECKXzJi268TYSZlGwSWMi15iIGZ8yPrQzmjIFJhOmocY04PEMIxoDJoKSXMRfm+kTBkzUkE2qRgOzKw3Ef/z2gn2zjqpCOMEIeSTQygk5IcM1yJrB2hXaEBkk8+BipByphkiaEEZ55mYZHUVsz7c2fTzpHFUcY8rzs1JuXo+baZASmSfHBKXnJIquSI1UiecPJAn8kxerEfr1Xqz3n9GF6zpzh75A+vjG0hpnFQ=</latexit>

validity before the Ehrenfest time hn̂exci ⇠ N
<latexit sha1_base64="o0a+ujyOd3olaQfDTWejpsEsOvw=">AAACHXicbVC7TsNAEDzzJrwClDQnIiRoIhuQoETQUCGQCIkUR9H6sklOOZ+tuzUCWfkGPoGvoIWKDtEiCv4FO7iAhKlGM7vanQliJS257qczNT0zOze/sFhaWl5ZXSuvb9zYKDECayJSkWkEYFFJjTWSpLARG4QwUFgPBme5X79FY2Wkr+k+xlYIPS27UgBlUru85yvQPYXc7wNx3U59wjtK8U4Mh74pLCtDftEuV9yqOwKfJF5BKqzAZbv85XcikYSoSSiwtum5MbVSMCSFwmHJTyzGIAbQw2ZGNYRoW+ko0pDvJBYo4jEaLhUfifh7I4XQ2vswyCZDoL4d93LxP6+ZUPe4lUodJ4Ra5IdIZhnzQ1YYmXWFvCMNEkH+OXKpuQADRGgkByEyMcnKK2V9eOPpJ8nNftU7qLpXh5WT06KZBbbFttku89gRO2Hn7JLVmGAP7Ik9sxfn0Xl13pz3n9Epp9jZZH/gfHwD9u2img==</latexit>

[Sciolla, Biroli - JSTAT, 2011]
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Sent ⇠ log t
<latexit sha1_base64="i3lBodlMg1M3V3ndRm7z24nuceE=">AAACDXicbVC5TsNAFFyHK4TLQIVoVkRIVJENSFBG0FAGQQ4ptqz15iWssj60+4yILItP4CtooaJDtHwDBf+CY1xAYKrRzDvHj6XQaFkfRmVufmFxqbpcW1ldW98wN7c6OkoUhzaPZKR6PtMgRQhtFCihFytggS+h64/Pp373FpQWUXiNkxjcgI1CMRScYS555s6VlzoId5hCiFnmaBFQR0Yjip5ZtxpWAfqX2CWpkxItz/x0BhFPgnwQl0zrvm3F6KZMoeASspqTaIgZH7MR9HMasgC0mxYvZHQ/0QwjGoOiQtJChJ8dKQu0ngR+XhkwvNGz3lT8z+snODx1UxHGCULIp4tQSCgWaa5Eng3QgVCAyKaXAxUh5UwxRFCCMs5zMcnDquV52LPf/yWdw4Z91LAuj+vNszKZKtkle+SA2OSENMkFaZE24eSePJIn8mw8GC/Gq/H2XVoxyp5t8gvG+xfT5Jwt</latexit>

Regular Phase (KAM)
<latexit sha1_base64="/f0uVt6faIPCxSz8xrwYoXVdSR4=">AAACD3icbVC7TgJBFJ31ifhCLWkmEhNsyK6aaInamBgTNPJIgJC7wwUmzD4yc9dINhR+gl9hq5WdsfUTLPwXF6RQ8FQn59zncUMlDdn2pzU3v7C4tJxaSa+urW9sZra2KyaItMCyCFSgay4YVNLHMklSWAs1gucqrLr985FfvUNtZODf0iDEpgddX3akAEqkVibbILyn+Aa7kQLNS71kFs9fnl7tD3krk7ML9hh8ljgTkmMTlFqZr0Y7EJGHPgkFxtQdO6RmDJqkUDhMNyKDIYg+dLGeUB88NM14/MSQ70UGKOAhai4VH4v4uyMGz5iB5yaVHlDPTHsj8T+vHlHnpBlLP4wIfTFaRFLheJERWibpIG9LjUQwuhy59LkADUSoJQchEjFK4koneTjT38+SykHBOSzY10e54tkkmRTLsl2WZw47ZkV2wUqszAR7YE/smb1Yj9ar9Wa9/5TOWZOeHfYH1sc3N/abpg==</latexit>

Kolmogorov-Sinai entropyChaotic Phase
<latexit sha1_base64="VItnxJ+w0KlF4dSDOL7tQMHM81M=">AAACCXicbVC7TgJBFJ3FF+ILNVY2E4mJFdlVEy2JNJaYCJIAIXeHC0yYfWTmrpFs+AK/wlYrO2PrV1j4L84ihYKnOjnnPo8fK2nIdT+d3NLyyupafr2wsbm1vVPc3WuYKNEC6yJSkW76YFDJEOskSWEz1giBr/DOH1Uz/+4etZFReEvjGDsBDELZlwLISt3iQZvwgdLqECKSgteGdtaEd4slt+xOwReJNyMlNkOtW/xq9yKRBBiSUGBMy3Nj6qSg7VCFk0I7MRiDGMEAW5aGEKDppNPzJ/w4MUARj1FzqfhUxN8dKQTGjAPfVgZAQzPvZeJ/Xiuh/mUnlWGcEIYiW0RS4XSREVraXJD3pEYiyC5HLkMuQAMRaslBCCsmNqiCzcOb/36RNE7L3lnZvTkvVa5myeTZITtiJ8xjF6zCrlmN1ZlgKXtiz+zFeXRenTfn/ac058x69tkfOB/f/paaCQ==</latexit>
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Figure 1: Dynamics of the quantum correlations in the Kicked Top with ⌧ = 1 and ↵ = ⇡/2. (Top) Poincarè map corresponding to
regular dynamics (left � = 0.5) and chaotic dynamics (right � = 5). The black star and the corresponding black trajectory indicate
the initial condition of the simulation in the bottom. There, we compare the corresponding analytical prediction for the entanglement
entropy, quantum Fisher information and square commutator, valid in the thermodynamic limit, with exact computations at finite
N = 50, 200, 800.
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bipartite entanglement (entanglement entropy), 
multipartite entanglement (quantum Fisher information) , otoc, etc. 
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Entanglement entropy and chaos in semi-classical models
Some notes
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1 The Kicked top
The model is described by the hamiltonian

Ĥ(t) = ↵Ŝx +
�

2Ns
Ŝ
2
z

1X

n=�1
�(t� n⌧) (1)

where Ŝx,y,z =
PN

i=1 ŝ
x,y,z
i with ŝ

x,y,z
i spin 1/2 operators and ⌧ the period of the periodic kicking. We

follow the standard notations (see for example [1]), and we fix ↵ = ⇡/2, ⌧ = 1. Depending on the value

of the kicking strength K, this model is known to exhibit a transition between a regular regime and a

chaotic one [2, 3].

1.1 The Quantum Kicked top

The time-evolution operator over one period reads

Û = Û� exp

h
�i↵Ŝx⌧

i
, with Û� ⌘ exp


�i

�

N
Ŝ
2
z

�
. (2)

1.2 Time-dependent Holstein-Primakoff

Let us re-write the Hamiltonian in terms of the zero mode ~S = s~�
0

as

Ĥ(t) = ↵s �̂
0
x +

�

2N
s(�̂0

z)
2

1X

n=�1
�(t� n⌧) . (3)

We chose a rotating R = (X̂, Ŷ , Ẑ), where the axis Ẑ is following h~S(t)i and this is done by

performing a time-dependent rotation:

V ( ✓(t),�(t) ) = e
�i�(t)s

P
i �̂

z
i e

�i✓(t)s
P

i �̂
y
i , (4)

where we leave the dependence s on the value of the spin (in our case is s = 1
2 , just to make the

classical limit evident. With such a choice the rotating frame R is parametrized by the Euler angles as:

X̂ =

0

@
cos ✓ cos�
cos ✓ sin�
� sin ✓

1

A , Ŷ =

0

@
� sin�
cos�
0

1

A , Ẑ =

0

@
sin ✓ cos�
sin ✓ sin�

cos ✓

1

A , (5)

where we omitted the time dependence in the angles to lighten the notation. This global rotation is

implemented spin component by spin component. For example on the component z it reads:

V (✓,�)�z
j V (✓,�)† ⌘ �

Z
j = Ẑ · ~�j = (Ẑ · ẑ)�z

j + (Ẑ · x̂)�x
j + (Ẑ · ŷ)�y

j ,

where the components of the fixed frame with respect to the unit vector in R are given by Eq. (5)- for

instance Ẑ · ẑ = cos ✓, Ẑ · x̂ = sin ✓ cos� and Ẑ · ŷ = sin ✓ sin�. In the rotating frame the operatos will

evolve according to the hamiltonian

1
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Spatially decaying interactions

Kač normalization

Approach

• Fourier Transform 

• Time-dependent rotation

• Holstein-Primakoff on the individual spins

˜̂
H↵(t) =

˜̂
H0(t) + Ĥsw(t)
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Figure 3. Growth in time of the entanglement entropy SNA(t)
after a quantum quench above (top), below (center) at and
the dynamical critical point (bottom). (Top panel) Analytical
results from Eq. (3) at hf = 2 (full lines) are compared with
exact numerical results (dots) for various bipartitions with frac-
tions of spins fA = NA/N = 0.05÷ 0.4 are considered at fixed
size N = 200. In the inset, SNA � 1/2 log fAfB is plotted as a
function of the rescaled time t/

p
N , in order to highlight the

validity of the expansion in Eq. (??). (Center/bottom panel)
half-system entanglement entropy SN/2 for increasing system
sizes N = 50÷ 800. (Center) Logarithmic increase of SN/2(t)
for a quench with hf = 0.2: the exact diagonalization results
follow the logarithmic increase up to tEhr s

p
N , where they

saturate to SN/2 s logN . (Bottom) Linear growth in time for
a quench at the dynamical critical point hf = 0.5. Before the
Ehrenfest time tEhr s logN , numerical data for SN/2 are ac-
curately reproduced by the analytical result (3) marked by the
dotted line with a slope �hc = J . This linear regime is followed
by saturation to a value s logN . AL: QUATTRO PLOT,
FERRO->FERRO LOG, FERRO->FERRO ALPHA
LOG, PARA->PARA OSCILL, CRIT LINEARE

algebraic decay of spin-spin interactions. A Kač rescaling
factor 1/N↵,N with N↵,N =

P
i 6=j |ri � rj |�↵

/N replaces
the 1/N factor in Eq. (1), ensuring the extensivity of the
Hamiltonian for ↵  d [40]. The fully-connected limit is
recovered by letting ↵ ! 0.

The spatial decay of interactions for ↵ > 0 breaks the
full permutational symmetry of the infinite-range Hamil-
tonian (??) and introduces a notion of locality in the
entanglement structure. Non-collective spin excitations
at finite wavelengths can now lead the system to explore
the full Hilbert space beyond the Dicke manifold, i.e.,
”inside” the Bloch sphere. The above two-boson approach
to entanglement dynamics was strictly based on the con-
servation of the collective spin magnitude, and is not
suitable for truly many-body problems. It can however be
refined as follows: We rewrite the Hamiltonian in terms
of the Fourier spin modes s̃

x,y,z
k =

P
j e

�ik·rj ŝx,y,zj , with

k = (2⇡/L)(n1, . . . , nd), nµ = 0, 1, . . . , L � 1 varying in
the d-dimensional Brillouin zone, and bosonize individ-
ual spin excitations around the instantaneous direction
Z k hS(t)i of the collective spin via Holstein-Primakoff
transformations [32, 33] AL: cite SM. One thus obtains a
spin-wave expansion in terms of q̃k = L

�d/2
P

j e
�ik·rj q̂j

and p̃k = L
�d/2

P
j e

�ik·rj p̂j at all possible momenta k,
generally expressed as [41]

ê
H(t) '

ê
H0(t)�

X

k 6=0

eBk(↵)


Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
,

(7)

where eBk(↵) =
1

N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending on the instantaneous direction Z(t) of
the collective spin, and the collective-mode Hamiltonian
eH0(t) accounts for the infinite-range part eB0 �k,0 = �k,0

of the interaction eBk. The latter describes the dynamics
of collective spin fluctuations q̃0 and p̃0 as detailed above,
and hence conserves the bosonic occupation numbers
n̂k 6=0 ⌘ (q̃kq̃�k+ p̃kp̃�k�1)/2 of all the spin-wave modes
at finite wavelength [42]. As is evident in Eq. (7), the
dynamical excitation of spin-waves at finite wavelengths
for ↵ > 0 is controlled by the strength of the finite-range
part eBk 6=0(↵) of the interaction, leading to corrections
to the entanglement growth generated by infinite-range
interactions. It is not difficult to derive the following
estimates

with � ⌘ Min(d� ↵, 1). This implies that for all fixed
k 6= 0, the perturbing coupling J̃k(↵) is vanishingly small
in thermodynamic limit L ! 1 whenever ↵  d, and
therefore there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation
of spin waves at finite wavelengths is suppressed, as the
associated number of bosons is an approximate constant
of motion,

���
D⇥

nk 6=0,
eH(t)

⇤E���  const ⇥
J

(|k|L)�
(8)

(cf. the results of Ref. 43). Note that this justifies a
posteriori the Holstein-Primakoff approach, as the density
of spin waves remains small over a long time window.

Within the above low-density spin-wave approximation,
the entanglement entropy can be computed with standard
free-boson techniques (see, e.g., Ref. 35), and the contri-
bution to its growth from spin waves can be understood
through the standard semiclassical picture in terms of
quasi-particles traveling at all possible momenta k, popu-
lated at density hnki by the quench, and spreading at their
corresponding group velocity vk [3]. The above discus-
sion demonstrates that long-range interactions lead to a
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Figure 4: Entanglement dynamics from quenches starting from a paramagnetic

4

Figure 3. Growth in time of the entanglement entropy SNA(t)
after a quantum quench above (top), below (center) at and
the dynamical critical point (bottom). (Top panel) Analytical
results from Eq. (3) at hf = 2 (full lines) are compared with
exact numerical results (dots) for various bipartitions with frac-
tions of spins fA = NA/N = 0.05÷ 0.4 are considered at fixed
size N = 200. In the inset, SNA � 1/2 log fAfB is plotted as a
function of the rescaled time t/

p
N , in order to highlight the

validity of the expansion in Eq. (??). (Center/bottom panel)
half-system entanglement entropy SN/2 for increasing system
sizes N = 50÷ 800. (Center) Logarithmic increase of SN/2(t)
for a quench with hf = 0.2: the exact diagonalization results
follow the logarithmic increase up to tEhr s

p
N , where they

saturate to SN/2 s logN . (Bottom) Linear growth in time for
a quench at the dynamical critical point hf = 0.5. Before the
Ehrenfest time tEhr s logN , numerical data for SN/2 are ac-
curately reproduced by the analytical result (3) marked by the
dotted line with a slope �hc = J . This linear regime is followed
by saturation to a value s logN . AL: QUATTRO PLOT,
FERRO->FERRO LOG, FERRO->FERRO ALPHA
LOG, PARA->PARA OSCILL, CRIT LINEARE

algebraic decay of spin-spin interactions. A Kač rescaling
factor 1/N↵,N with N↵,N =

P
i 6=j |ri � rj |�↵

/N replaces
the 1/N factor in Eq. (1), ensuring the extensivity of the
Hamiltonian for ↵  d [40]. The fully-connected limit is
recovered by letting ↵ ! 0.

The spatial decay of interactions for ↵ > 0 breaks the
full permutational symmetry of the infinite-range Hamil-
tonian (??) and introduces a notion of locality in the
entanglement structure. Non-collective spin excitations
at finite wavelengths can now lead the system to explore
the full Hilbert space beyond the Dicke manifold, i.e.,
”inside” the Bloch sphere. The above two-boson approach
to entanglement dynamics was strictly based on the con-
servation of the collective spin magnitude, and is not
suitable for truly many-body problems. It can however be
refined as follows: We rewrite the Hamiltonian in terms
of the Fourier spin modes s̃

x,y,z
k =

P
j e

�ik·rj ŝx,y,zj , with

k = (2⇡/L)(n1, . . . , nd), nµ = 0, 1, . . . , L � 1 varying in
the d-dimensional Brillouin zone, and bosonize individ-
ual spin excitations around the instantaneous direction
Z k hS(t)i of the collective spin via Holstein-Primakoff
transformations [32, 33] AL: cite SM. One thus obtains a
spin-wave expansion in terms of q̃k = L

�d/2
P

j e
�ik·rj q̂j

and p̃k = L
�d/2

P
j e

�ik·rj p̂j at all possible momenta k,
generally expressed as [41]

ê
H(t) '

ê
H0(t)�

X

k 6=0

eBk(↵)


Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
,

(7)

where eBk(↵) =
1

N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending on the instantaneous direction Z(t) of
the collective spin, and the collective-mode Hamiltonian
eH0(t) accounts for the infinite-range part eB0 �k,0 = �k,0

of the interaction eBk. The latter describes the dynamics
of collective spin fluctuations q̃0 and p̃0 as detailed above,
and hence conserves the bosonic occupation numbers
n̂k 6=0 ⌘ (q̃kq̃�k+ p̃kp̃�k�1)/2 of all the spin-wave modes
at finite wavelength [42]. As is evident in Eq. (7), the
dynamical excitation of spin-waves at finite wavelengths
for ↵ > 0 is controlled by the strength of the finite-range
part eBk 6=0(↵) of the interaction, leading to corrections
to the entanglement growth generated by infinite-range
interactions. It is not difficult to derive the following
estimates

with � ⌘ Min(d� ↵, 1). This implies that for all fixed
k 6= 0, the perturbing coupling J̃k(↵) is vanishingly small
in thermodynamic limit L ! 1 whenever ↵  d, and
therefore there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation
of spin waves at finite wavelengths is suppressed, as the
associated number of bosons is an approximate constant
of motion,

���
D⇥

nk 6=0,
eH(t)

⇤E���  const ⇥
J

(|k|L)�
(8)

(cf. the results of Ref. 43). Note that this justifies a
posteriori the Holstein-Primakoff approach, as the density
of spin waves remains small over a long time window.

Within the above low-density spin-wave approximation,
the entanglement entropy can be computed with standard
free-boson techniques (see, e.g., Ref. 35), and the contri-
bution to its growth from spin waves can be understood
through the standard semiclassical picture in terms of
quasi-particles traveling at all possible momenta k, popu-
lated at density hnki by the quench, and spreading at their
corresponding group velocity vk [3]. The above discus-
sion demonstrates that long-range interactions lead to a
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zero mode Hamiltonian
hn̂swi ⌘ 0
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Spatially decaying interactions

breaking of integrability 
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n̂k,

ê
H0

⇤
= 0 for all k 6= 0
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spin waves generated by the dynamics

spin-wave Hamiltonian

Ĥsw(t) =
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X
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n̂k ⌘
X

k 6=0

q̃kq̃�k + p̃kp̃�k � 1
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<latexit sha1_base64="jgeOKEzzYTP+aGlgjUTf10NQQAg=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRXaEBGUEDWUQ5CElJjpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnM/M4DaCMidYvTGPyQjZUYCc7QSjd4Vx9Uqm7NzUEXiVeQKinQHFS++sOIJyEo5JIZ0/PcGP2UaRRcwqzcTwzEjE/YGHqWKhaC8dM86oweJ4ZhRGPQVEiai/B7I2WhMdMwsJMhw3sz72Xif14vwdG5nwoVJwiKZ4dQSMgPGa6F7QDoUGhAZFlyoEJRzjRDBC0o49yKiS2lbPvw5r9fJO16zbP8+rTauCiaKZFDckROiEfOSINckSZpEU7G5Ik8kxfn0Xl13pz3n9Elp9g5IH/gfHwDq/SSIQ==</latexit><latexit sha1_base64="jgeOKEzzYTP+aGlgjUTf10NQQAg=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRXaEBGUEDWUQ5CElJjpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnM/M4DaCMidYvTGPyQjZUYCc7QSjd4Vx9Uqm7NzUEXiVeQKinQHFS++sOIJyEo5JIZ0/PcGP2UaRRcwqzcTwzEjE/YGHqWKhaC8dM86oweJ4ZhRGPQVEiai/B7I2WhMdMwsJMhw3sz72Xif14vwdG5nwoVJwiKZ4dQSMgPGa6F7QDoUGhAZFlyoEJRzjRDBC0o49yKiS2lbPvw5r9fJO16zbP8+rTauCiaKZFDckROiEfOSINckSZpEU7G5Ik8kxfn0Xl13pz3n9Elp9g5IH/gfHwDq/SSIQ==</latexit><latexit sha1_base64="jgeOKEzzYTP+aGlgjUTf10NQQAg=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRXaEBGUEDWUQ5CElJjpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnM/M4DaCMidYvTGPyQjZUYCc7QSjd4Vx9Uqm7NzUEXiVeQKinQHFS++sOIJyEo5JIZ0/PcGP2UaRRcwqzcTwzEjE/YGHqWKhaC8dM86oweJ4ZhRGPQVEiai/B7I2WhMdMwsJMhw3sz72Xif14vwdG5nwoVJwiKZ4dQSMgPGa6F7QDoUGhAZFlyoEJRzjRDBC0o49yKiS2lbPvw5r9fJO16zbP8+rTauCiaKZFDckROiEfOSINckSZpEU7G5Ik8kxfn0Xl13pz3n9Elp9g5IH/gfHwDq/SSIQ==</latexit><latexit sha1_base64="jgeOKEzzYTP+aGlgjUTf10NQQAg=">AAAB9XicbVC7TsNAEDzzDOEVoKQ5ESFRRXaEBGUEDWUQ5CElJjpfNuGU89m6W4MiK59ACxUdouV7KPgXzsYFJEw1mtnVzk4QS2HQdT+dpeWV1bX10kZ5c2t7Z7eyt982UaI5tHgkI90NmAEpFLRQoIRurIGFgYROMLnM/M4DaCMidYvTGPyQjZUYCc7QSjd4Vx9Uqm7NzUEXiVeQKinQHFS++sOIJyEo5JIZ0/PcGP2UaRRcwqzcTwzEjE/YGHqWKhaC8dM86oweJ4ZhRGPQVEiai/B7I2WhMdMwsJMhw3sz72Xif14vwdG5nwoVJwiKZ4dQSMgPGa6F7QDoUGhAZFlyoEJRzjRDBC0o49yKiS2lbPvw5r9fJO16zbP8+rTauCiaKZFDckROiEfOSINckSZpEU7G5Ik8kxfn0Xl13pz3n9Elp9g5IH/gfHwDq/SSIQ==</latexit>

hn̂���(t)i �
<latexit sha1_base64="IUTOiDjd4ubGGLKbF3wBtztpu8I=">AAACHXicbVC7TsNAEDzzDOEVoKQ5ESElDbIREpQIGsogkQQpjqL1sUlOnM/W3RoFWfkGPoGvoIWKDtEiCv6Fc0jBa6rRzK52Z6JUSUu+/+7NzM7NLyyWlsrLK6tr65WNzZZNMiOwKRKVmMsILCqpsUmSFF6mBiGOFLaj69PCb9+gsTLRF3SbYjeGgZZ9KYCc1KvUQwV6oJCHQyCue3lIOKIcR2I8rlE9NBM3tDLuVar+nj8B/0uCKamyKRq9ykd4lYgsRk1CgbWdwE+pm4MhKRSOy2FmMQVxDQPsOKohRtvNJ5HGfDezQAlP0XCp+ETE7xs5xNbexpGbjIGG9rdXiP95nYz6R91c6jQj1KI4RNLFLw5ZYaTrCvmVNEgExefIpeYCDBChkRyEcGLmyiu7PoLf6f+S1v5e4Pj5QfX4ZNpMiW2zHVZjATtkx+yMNViTCXbHHtgje/LuvWfvxXv9Gp3xpjtb7Ae8t09In6LP</latexit><latexit sha1_base64="IUTOiDjd4ubGGLKbF3wBtztpu8I=">AAACHXicbVC7TsNAEDzzDOEVoKQ5ESElDbIREpQIGsogkQQpjqL1sUlOnM/W3RoFWfkGPoGvoIWKDtEiCv6Fc0jBa6rRzK52Z6JUSUu+/+7NzM7NLyyWlsrLK6tr65WNzZZNMiOwKRKVmMsILCqpsUmSFF6mBiGOFLaj69PCb9+gsTLRF3SbYjeGgZZ9KYCc1KvUQwV6oJCHQyCue3lIOKIcR2I8rlE9NBM3tDLuVar+nj8B/0uCKamyKRq9ykd4lYgsRk1CgbWdwE+pm4MhKRSOy2FmMQVxDQPsOKohRtvNJ5HGfDezQAlP0XCp+ETE7xs5xNbexpGbjIGG9rdXiP95nYz6R91c6jQj1KI4RNLFLw5ZYaTrCvmVNEgExefIpeYCDBChkRyEcGLmyiu7PoLf6f+S1v5e4Pj5QfX4ZNpMiW2zHVZjATtkx+yMNViTCXbHHtgje/LuvWfvxXv9Gp3xpjtb7Ae8t09In6LP</latexit><latexit sha1_base64="IUTOiDjd4ubGGLKbF3wBtztpu8I=">AAACHXicbVC7TsNAEDzzDOEVoKQ5ESElDbIREpQIGsogkQQpjqL1sUlOnM/W3RoFWfkGPoGvoIWKDtEiCv6Fc0jBa6rRzK52Z6JUSUu+/+7NzM7NLyyWlsrLK6tr65WNzZZNMiOwKRKVmMsILCqpsUmSFF6mBiGOFLaj69PCb9+gsTLRF3SbYjeGgZZ9KYCc1KvUQwV6oJCHQyCue3lIOKIcR2I8rlE9NBM3tDLuVar+nj8B/0uCKamyKRq9ykd4lYgsRk1CgbWdwE+pm4MhKRSOy2FmMQVxDQPsOKohRtvNJ5HGfDezQAlP0XCp+ETE7xs5xNbexpGbjIGG9rdXiP95nYz6R91c6jQj1KI4RNLFLw5ZYaTrCvmVNEgExefIpeYCDBChkRyEcGLmyiu7PoLf6f+S1v5e4Pj5QfX4ZNpMiW2zHVZjATtkx+yMNViTCXbHHtgje/LuvWfvxXv9Gp3xpjtb7Ae8t09In6LP</latexit><latexit sha1_base64="IUTOiDjd4ubGGLKbF3wBtztpu8I=">AAACHXicbVC7TsNAEDzzDOEVoKQ5ESElDbIREpQIGsogkQQpjqL1sUlOnM/W3RoFWfkGPoGvoIWKDtEiCv6Fc0jBa6rRzK52Z6JUSUu+/+7NzM7NLyyWlsrLK6tr65WNzZZNMiOwKRKVmMsILCqpsUmSFF6mBiGOFLaj69PCb9+gsTLRF3SbYjeGgZZ9KYCc1KvUQwV6oJCHQyCue3lIOKIcR2I8rlE9NBM3tDLuVar+nj8B/0uCKamyKRq9ykd4lYgsRk1CgbWdwE+pm4MhKRSOy2FmMQVxDQPsOKohRtvNJ5HGfDezQAlP0XCp+ETE7xs5xNbexpGbjIGG9rdXiP95nYz6R91c6jQj1KI4RNLFLw5ZYaTrCvmVNEgExefIpeYCDBChkRyEcGLmyiu7PoLf6f+S1v5e4Pj5QfX4ZNpMiW2zHVZjATtkx+yMNViTCXbHHtgje/LuvWfvxXv9Gp3xpjtb7Ae8t09In6LP</latexit>

(a)
<latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit><latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit><latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit><latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit>

Z
<latexit sha1_base64="kapD+POohMcxckskdSyovAl/r9A=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGspEIg+RWNH5sgmnnM/W3R5SZOULaKGiQ7R8EAX/gm1cQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiazm0OaRjHQvYAakUNBGgRJ6sQYWBhK6wfQm87uPoI2I1B3OYvBDNlFiLDjDVGrdD6s1t+7moMvEK0iNFGgOq1+DUcRtCAq5ZMb0PTdGP2EaBZcwrwysgZjxKZtAP6WKhWD8JA86pyfWMIxoDJoKSXMRfm8kLDRmFgbpZMjwwSx6mfif17c4vvIToWKLoHh2CIWE/JDhWqQNAB0JDYgsSw5UKMqZZoigBWWcp6JNK6mkfXiL3y+TzlndO6+7rYta47popkyOyDE5JR65JA1yS5qkTTgB8kSeyYtjnVfnzXn/GS05xc4h+QPn4xtYcZFl</latexit>

�
<latexit sha1_base64="R+boqJyRUQvEL0v0+mjwxoN4P8k=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQ5lI5CElVrS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDMKhkhC2SpLCbaIQwUNgJJreZ33lEbWQc3dM0QT+EcSRHUgClUrM7qFTdmpuDLxOvIFVWoDGofPWHsbAhRiQUGNPz3IT8GWiSQuG83LcGExATGGMvpRGEaPxZHnTOT60BinmCmkvFcxF/b8wgNGYaBulkCPRgFr1M/M/rWRpd+zMZJZYwEtkhkgrzQ0ZomTaAfCg1EkGWHLmMuAANRKglByFS0aaVlNM+vMXvl0n7vOZd1NzmZbV+UzRTYsfshJ0xj12xOrtjDdZigiF7Ys/sxbHOq/PmvP+MrjjFzhH7A+fjG1VTkWM=</latexit>

�
<latexit sha1_base64="qO/GgpvyIQiaKEJ05XRrosYfQJI=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGspEIg+UWNH5sgmnnM/W3R5SZOULaKGiQ7R8EAX/gm1cQMJUo5ld7ewEsRQGXffTKa2srq1vlDcrW9s7u3vV/YOOiazm0OaRjHQvYAakUNBGgRJ6sQYWBhK6wfQm87uPoI2I1B3OYvBDNlFiLDjDVGrdD6s1t+7moMvEK0iNFGgOq1+DUcRtCAq5ZMb0PTdGP2EaBZcwrwysgZjxKZtAP6WKhWD8JA86pyfWMIxoDJoKSXMRfm8kLDRmFgbpZMjwwSx6mfif17c4vvIToWKLoHh2CIWE/JDhWqQNAB0JDYgsSw5UKMqZZoigBWWcp6JNK6mkfXiL3y+TzlndO6+7rYta47popkyOyDE5JR65JA1yS5qkTTgB8kSeyYtjnVfnzXn/GS05xc4h+QPn4xtW4pFk</latexit>

(�)
<latexit sha1_base64="GhOTrMjCnljcTlImpOUVpK8ipQg=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXgeNovV9yaOwNdJF5OKiRHo1/+6g0inoSgkEtmTNdzY/RTplFwCdNSLzEQMz5mI+haqlgIxk9niaf0KDEMIxqDpkLSmQi/N1IWGjMJAzsZMrwz814m/ud1Exye+6lQcYKgeHYIhYTZIcO1sFUAHQgNiCxLDlQoyplmiKAFZZxbMbHdlGwf3vz3i6R1UvMsvz6t1C/yZorkgBySKvHIGamTK9IgTcKJIk/kmbw4j86r8+a8/4wWnHxnn/yB8/ENFZOVLw==</latexit><latexit sha1_base64="GhOTrMjCnljcTlImpOUVpK8ipQg=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXgeNovV9yaOwNdJF5OKiRHo1/+6g0inoSgkEtmTNdzY/RTplFwCdNSLzEQMz5mI+haqlgIxk9niaf0KDEMIxqDpkLSmQi/N1IWGjMJAzsZMrwz814m/ud1Exye+6lQcYKgeHYIhYTZIcO1sFUAHQgNiCxLDlQoyplmiKAFZZxbMbHdlGwf3vz3i6R1UvMsvz6t1C/yZorkgBySKvHIGamTK9IgTcKJIk/kmbw4j86r8+a8/4wWnHxnn/yB8/ENFZOVLw==</latexit><latexit sha1_base64="GhOTrMjCnljcTlImpOUVpK8ipQg=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXgeNovV9yaOwNdJF5OKiRHo1/+6g0inoSgkEtmTNdzY/RTplFwCdNSLzEQMz5mI+haqlgIxk9niaf0KDEMIxqDpkLSmQi/N1IWGjMJAzsZMrwz814m/ud1Exye+6lQcYKgeHYIhYTZIcO1sFUAHQgNiCxLDlQoyplmiKAFZZxbMbHdlGwf3vz3i6R1UvMsvz6t1C/yZorkgBySKvHIGamTK9IgTcKJIk/kmbw4j86r8+a8/4wWnHxnn/yB8/ENFZOVLw==</latexit><latexit sha1_base64="GhOTrMjCnljcTlImpOUVpK8ipQg=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXgeNovV9yaOwNdJF5OKiRHo1/+6g0inoSgkEtmTNdzY/RTplFwCdNSLzEQMz5mI+haqlgIxk9niaf0KDEMIxqDpkLSmQi/N1IWGjMJAzsZMrwz814m/ud1Exye+6lQcYKgeHYIhYTZIcO1sFUAHQgNiCxLDlQoyplmiKAFZZxbMbHdlGwf3vz3i6R1UvMsvz6t1C/yZorkgBySKvHIGamTK9IgTcKJIk/kmbw4j86r8+a8/4wWnHxnn/yB8/ENFZOVLw==</latexit>

(a)
<latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit><latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit><latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit><latexit sha1_base64="wFX7yK7CRinZWAme287GCefx5ao=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzHBhtwZEy2JNpaYyEcEQuaWATfs7V1254zkgr/CVis7Y+t/sfC/eIcUCr7q5b2ZzJvnR0pact1PJ7e0vLK6ll8vbGxube8Ud/caNoyNwLoIVWhaPlhUUmOdJClsRQYh8BU2/dFl5jfv0VgZ6hsaR9gNYKjlQAqgVLrtED5QUobjSa9YcivuFHyReDNSYjPUesWvTj8UcYCahAJr254bUTcBQ1IonBQ6scUIxAiG2E6phgBtN5kmnvCj2AKFPELDpeJTEX9vJBBYOw78dDIAurPzXib+57VjGpx3E6mjmFCL7BBJhdNDVhiZVoG8Lw0SQZYcudRcgAEiNJKDEKkYp90U0j68+e8XSeOk4qX8+rRUvZg1k2cH7JCVmcfOWJVdsRqrM8E0e2LP7MV5dF6dN+f9ZzTnzHb22R84H98UApUu</latexit>

Figure 2. Schematic illustration of spin-squeezing dynamics.
The classical phase space of a ferromagnetic fully-connected
Ising model [cf. Eq. (7) with ↵ = 0] is pictured on the left. It
features ferromagnetic (green) and paramagnetic (blue) peri-
odic trajectories, separated by a critical trajectory (separatrix,
red). Initial spin-coherent (non-squeezed) states (a) and (b)
at t = 0 are represented by points surrounded by small grey
circles representing the quantum fluctuations of transverse
spin components. Due to nonlinear interactions, the spin state
undergoes squeezing, quantified by the parameter ⇠(t) [cf. Eq.
(3)]. The rate of squeezing is governed by the separation of
nearby semiclassical trajectories, and by Eq. (2) it determines
the rate of growth of entanglement entropy. Right panels: (a)
For generic (non-critical) quenches, nearby trajectories sepa-
rate linearly in time, leading to a polynomially fast squeezing.
(b) For a critical quench, the collective spin lies on the stable
manifold of an unstable fixed point in phase space. In this
case, nearby trajectories separate exponentially fast in time
at a rate � set by the eigenvalue of the linearized flow.

logarithmic growth, the period being that of the under-
lying classical trajectory. In the (non-generic) case of
quenches to dynamical critical points [102], the collective
spin lies on unstable trajectories (separatrices) in the
classical phase space, around which displacements grow
exponentially in time, with a rate set by the positive eigen-
value � of the corresponding unstable fixed point on which
they terminate, see Fig. 2(b). The out-of-equilibrium
generation of collective excitations is thus exponentially
fast, hn̂exc(t)i s e

2�t, leading to a linear growth of en-
tanglement entropy with a predicted slope S(t) s �t and
without superimposed oscillations. (See also the related
discussion in Refs. [117–119].) In all cases, entanglement
entropy saturates SA s logNA at the Ehrenfest time
scale defined by hn̂exc(tEhr)i s N .

Spatially-decaying interactions.— We are now in a po-
sition to understand the effects of having slowly-decaying
interactions on entanglement dynamics. For the sake of
definiteness, we focus on periodic d-dimensional lattices
of spins with arbitrary two-body long-range interactions,
described by a Hamiltonian as in Eq. (1) with p  2,
where now j = 1, . . . , N = L

d label lattice sites at posi-
tions denoted rj , and the uniform couplings Jµ⌫ , with
µ, ⌫ = x, y, z, are replaced by Jµ⌫/|ri � rj |↵ [120]. The
exponent ↵ � 0 characterizes the algebraic decay of spin-
spin interactions. A Kac rescaling factor 1/N↵,N with

N↵,N =
P

i 6=j |ri � rj |�↵
/N replaces the 1/N factor in

Eq. (1), ensuring the extensivity of the Hamiltonian for
↵  d [121]. The fully-connected limit is recovered by
letting ↵ ! 0.

When interactions decay with the distance between
spins, the full permutational symmetry of the infinite-
range Hamiltonian (1) is broken and the finite-wavelength
spin modes participate in the dynamics. These excita-
tions now allow the system to explore the full Hilbert
space beyond the Dicke manifold, i.e., “inside the Bloch
sphere”, and the system may be expected to thermal-
ize by accumulating extensive entanglement entropy [5].
However, we demonstrate that these quasiparticles are
weakly excited in typical quenches, and hence yield only a
bounded contribution to entanglement growth for a long
temporal regime. In this case, the analysis of dynamical
spin squeezing captures the leading behavior of S(t) even
for 0 < ↵ < d.

The two-boson approach to entanglement dynamics
described above was strictly based on the conservation
of the collective spin magnitude. In order to treat a
truly many-body problem, one can refine the approach
as follows. We rewrite the Hamiltonian in terms of
the Fourier spin modes s̃

x,y,z
k =

P
j e

�ik·rj ŝx,y,zj , with
k = (2⇡/L)(n1, . . . , nd), nµ = 0, 1, . . . , L � 1 varying in
the d-dimensional Brillouin zone, and bosonize individual
spin excitations ŝj ! (q̂j ,p̂j) around the instantaneous
direction Z(t) of the collective spin hŜ(t)i via Holstein-
Primakoff transformations [103, 108, 109]. One thus
obtains a spin-wave expansion of the time-dependent
frame Hamiltonian eH(t) = Ĥ � !(t) · Ŝ in terms of
q̃k = L

�d/2
P

j e
�ik·rj q̂j and p̃k = L

�d/2
P

j e
�ik·rj p̂j

with all possible momenta k, expressed up to O(1/
p
N)

terms as [122]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(t)

q̃kq̃�k

2

+ Jpp(t)
p̃kp̃�k

2
+ Jqp(t)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�ri|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending on the collective spin trajectory, and
the collective-mode Hamiltonian eH0(t) accounts for the
infinite-range part ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k.
eH0(t) is independent of ↵ and describes the dynamics of
collective spin fluctuations Q̂ ⌘ q̃0 and P̂ ⌘ p̃0 as detailed
above, and conserves the bosonic occupation numbers
n̂k 6=0 ⌘ (q̃kq̃�k+ p̃kp̃�k�1)/2 of all the spin-wave modes
with finite wavelength [123]. The dynamical excitation of
spin waves with finite wavelengths for ↵ > 0 is responsible
for modifications to the spin-squeezing-induced entangle-
ment entropy growth. As is evident in Eq. (5), their im-
pact is controlled by the strength of the finite-range part
ef↵,k 6=0 of the interaction. In fact, the following estimate
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Figure 2. Schematic illustration of spin-squeezing dynamics.
The classical phase space of a ferromagnetic fully-connected
Ising model [cf. Eq. (7) with ↵ = 0] is pictured on the left. It
features ferromagnetic (green) and paramagnetic (blue) peri-
odic trajectories, separated by a critical trajectory (separatrix,
red). Initial spin-coherent (non-squeezed) states (a) and (b)
at t = 0 are represented by points surrounded by small grey
circles representing the quantum fluctuations of transverse
spin components. Due to nonlinear interactions, the spin state
undergoes squeezing, quantified by the parameter ⇠(t) [cf. Eq.
(3)]. The rate of squeezing is governed by the separation of
nearby semiclassical trajectories, and by Eq. (2) it determines
the rate of growth of entanglement entropy. Right panels: (a)
For generic (non-critical) quenches, nearby trajectories sepa-
rate linearly in time, leading to a polynomially fast squeezing.
(b) For a critical quench, the collective spin lies on the stable
manifold of an unstable fixed point in phase space. In this
case, nearby trajectories separate exponentially fast in time
at a rate � set by the eigenvalue of the linearized flow.

logarithmic growth, the period being that of the under-
lying classical trajectory. In the (non-generic) case of
quenches to dynamical critical points [102], the collective
spin lies on unstable trajectories (separatrices) in the
classical phase space, around which displacements grow
exponentially in time, with a rate set by the positive eigen-
value � of the corresponding unstable fixed point on which
they terminate, see Fig. 2(b). The out-of-equilibrium
generation of collective excitations is thus exponentially
fast, hn̂exc(t)i s e

2�t, leading to a linear growth of en-
tanglement entropy with a predicted slope S(t) s �t and
without superimposed oscillations. (See also the related
discussion in Refs. [117–119].) In all cases, entanglement
entropy saturates SA s logNA at the Ehrenfest time
scale defined by hn̂exc(tEhr)i s N .

Spatially-decaying interactions.— We are now in a po-
sition to understand the effects of having slowly-decaying
interactions on entanglement dynamics. For the sake of
definiteness, we focus on periodic d-dimensional lattices
of spins with arbitrary two-body long-range interactions,
described by a Hamiltonian as in Eq. (1) with p  2,
where now j = 1, . . . , N = L

d label lattice sites at posi-
tions denoted rj , and the uniform couplings Jµ⌫ , with
µ, ⌫ = x, y, z, are replaced by Jµ⌫/|ri � rj |↵ [120]. The
exponent ↵ � 0 characterizes the algebraic decay of spin-
spin interactions. A Kac rescaling factor 1/N↵,N with

N↵,N =
P

i 6=j |ri � rj |�↵
/N replaces the 1/N factor in

Eq. (1), ensuring the extensivity of the Hamiltonian for
↵  d [121]. The fully-connected limit is recovered by
letting ↵ ! 0.

When interactions decay with the distance between
spins, the full permutational symmetry of the infinite-
range Hamiltonian (1) is broken and the finite-wavelength
spin modes participate in the dynamics. These excita-
tions now allow the system to explore the full Hilbert
space beyond the Dicke manifold, i.e., “inside the Bloch
sphere”, and the system may be expected to thermal-
ize by accumulating extensive entanglement entropy [5].
However, we demonstrate that these quasiparticles are
weakly excited in typical quenches, and hence yield only a
bounded contribution to entanglement growth for a long
temporal regime. In this case, the analysis of dynamical
spin squeezing captures the leading behavior of S(t) even
for 0 < ↵ < d.

The two-boson approach to entanglement dynamics
described above was strictly based on the conservation
of the collective spin magnitude. In order to treat a
truly many-body problem, one can refine the approach
as follows. We rewrite the Hamiltonian in terms of
the Fourier spin modes s̃

x,y,z
k =

P
j e

�ik·rj ŝx,y,zj , with
k = (2⇡/L)(n1, . . . , nd), nµ = 0, 1, . . . , L � 1 varying in
the d-dimensional Brillouin zone, and bosonize individual
spin excitations ŝj ! (q̂j ,p̂j) around the instantaneous
direction Z(t) of the collective spin hŜ(t)i via Holstein-
Primakoff transformations [103, 108, 109]. One thus
obtains a spin-wave expansion of the time-dependent
frame Hamiltonian eH(t) = Ĥ � !(t) · Ŝ in terms of
q̃k = L

�d/2
P

j e
�ik·rj q̂j and p̃k = L

�d/2
P

j e
�ik·rj p̂j

with all possible momenta k, expressed up to O(1/
p
N)

terms as [122]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(t)

q̃kq̃�k

2

+ Jpp(t)
p̃kp̃�k

2
+ Jqp(t)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�ri|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending on the collective spin trajectory, and
the collective-mode Hamiltonian eH0(t) accounts for the
infinite-range part ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k.
eH0(t) is independent of ↵ and describes the dynamics of
collective spin fluctuations Q̂ ⌘ q̃0 and P̂ ⌘ p̃0 as detailed
above, and conserves the bosonic occupation numbers
n̂k 6=0 ⌘ (q̃kq̃�k+ p̃kp̃�k�1)/2 of all the spin-wave modes
with finite wavelength [123]. The dynamical excitation of
spin waves with finite wavelengths for ↵ > 0 is responsible
for modifications to the spin-squeezing-induced entangle-
ment entropy growth. As is evident in Eq. (5), their im-
pact is controlled by the strength of the finite-range part
ef↵,k 6=0 of the interaction. In fact, the following estimate

˜̂
H↵(t) =

˜̂
H0(t) + Ĥsw(t)

<latexit sha1_base64="lQnFXaxK/BqR3uwNfevJi2TMp6s="></latexit>

˜̂
H↵=0(t)
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Quasi-conservation of spin waves for

|ṅk 6=0(t)| =
���
D⇥

nk 6=0,
eH(t)

⇤E��� ⇠
J

(|k|L)�
<latexit sha1_base64="x9qoKMsWBMr5RHJVexLHrV/C2xY="></latexit>

� ⌘ Min(d� ↵, 1)
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long pre-thermalization regime Tpre-th ⇠ N�/d
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[Mori - Journ. Phys. A, 2018]

• the system stays trapped near a small submanifold of the full Hilbert space ⇠ N
<latexit sha1_base64="9fYxqfefJhogFxAmmLoOWk9a5NY=">AAAB+HicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQ4WCRB5SYkXnyyYcuTtbd2ukYOUfaKGiQ7T8DQX/gm1cQMJUo5ld7ewEkRQWXffTWVhcWl5ZLa2V1zc2t7YrO7stG8aGQ5OHMjSdgFmQQkMTBUroRAaYCiS0g/Fl5rcfwFgR6lucROArNtJiKDjDVGr1rFD0ul+pujU3B50nXkGqpECjX/nqDUIeK9DIJbO267kR+gkzKLiEabkXW4gYH7MRdFOqmQLrJ3naKT2MLcOQRmCokDQX4fdGwpS1ExWkk4rhnZ31MvE/rxvj8NxPhI5iBM2zQygk5IcsNyKtAehAGEBkWXKgQlPODEMEIyjjPBXjtJdy2oc3+/08aR3XvJOae3NarV8UzZTIPjkgR8QjZ6ROrkiDNAkn9+SJPJMX59F5dd6c95/RBafY2SN/4Hx8A8aBk1A=</latexit>

↵  d
<latexit sha1_base64="gQT/YIs8UIaMVXh9yTBJLtFmQpM=">AAAB/3icbVC7TsNAEDyHVwivACXNiQiJKrIBCcoIGsogkYeUWNH6sklOOT9yt0aKohR8BS1UdIiWT6HgX7CNC0iYajSzq50dL1LSkG1/WoWV1bX1jeJmaWt7Z3evvH/QNGGsBTZEqELd9sCgkgE2SJLCdqQRfE9hyxvfpH7rAbWRYXBP0whdH4aBHEgBlEhuF1Q0At5VOOH9XrliV+0MfJk4OamwHPVe+avbD0XsY0BCgTEdx47InYEmKRTOS93YYARiDEPsJDQAH407y0LP+UlsgEIeoeZS8UzE3xsz8I2Z+l4y6QONzKKXiv95nZgGV+5MBlFMGIj0EEmF2SEjtEzaQN6XGokgTY5cBlyABiLUkoMQiRgn9ZSSPpzF75dJ86zqnFftu4tK7TpvpsiO2DE7ZQ67ZDV2y+qswQSbsCf2zF6sR+vVerPef0YLVr5zyP7A+vgG4O6WJw==</latexit>

15

• Long-wavelength modes    might break permutation invariance.k ∼ 1/L
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Example:  
1D Ising long-range

small k ∼
1
N



/17

Spin-waves contribution

16

The dynamics is described by a discrete set of periodically driven harmonic oscillators (drive = classical motion) 

Stability analysis at the classical period  Tcl

e±λkTcl
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Figure 14: Spin waves population in time: the zero mode grows polynomially, whereas the long-wavelength modes diverge
exponentially fast in time. (Top) ↵ = 0.�. (Bottom) ↵ = 0.7

10

Figure 5. Density plot of the Kolmogorov-Sinai entropy rate hKS(✓0,�0) for different initial conditions (✓0,�0) on the Bloch
sphere for ↵ = 0.7, h = 0.5J . The picture is converged with respect to refining the k-space discretization.
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Figure 6. Comparison between finite-size MPS-TDVP numerical data (light-to-dark blue curves for increasing N), the spin-
squeezing contribution (grey) and full spin-wave entanglement (black), for ↵ = 0.1 (left panel) and 0.7 (right panel), for the
quench h0 = 0 ! hf = 2J . Numerical data exhibit convergence to the spin-wave result as N ! 1, increasingly more slowly
as ↵ is raised from 0 to 1 (cf. Fig. 1, bottom right panel).
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Figure 7. Time-dependent k-resolved spin-wave population for ↵ = 0.1 (left panel) and ↵ = 0.7 (right panel) after a quench
from h0 = 0 to hf = 2J . The blue color gradient for the spin-wave populations in Fourier modes follows the quasimomentum
|k| from the darkest (k = ±2⇡/L) down to smaller-wavelength modes with larger |k| (only the first 20 modes are shown).
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Figure 5. Density plot of the Kolmogorov-Sinai entropy rate hKS(✓0,�0) for different initial conditions (✓0,�0) on the Bloch
sphere for ↵ = 0.7, h = 0.5J . The picture is converged with respect to refining the k-space discretization.
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Figure 6. Comparison between finite-size MPS-TDVP numerical data (light-to-dark blue curves for increasing N), the spin-
squeezing contribution (grey) and full spin-wave entanglement (black), for ↵ = 0.1 (left panel) and 0.7 (right panel), for the
quench h0 = 0 ! hf = 2J . Numerical data exhibit convergence to the spin-wave result as N ! 1, increasingly more slowly
as ↵ is raised from 0 to 1 (cf. Fig. 1, bottom right panel).
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Figure 7. Time-dependent k-resolved spin-wave population for ↵ = 0.1 (left panel) and ↵ = 0.7 (right panel) after a quench
from h0 = 0 to hf = 2J . The blue color gradient for the spin-wave populations in Fourier modes follows the quasimomentum
|k| from the darkest (k = ±2⇡/L) down to smaller-wavelength modes with larger |k| (only the first 20 modes are shown).

The Kolmogorov-Sinai entropy 
  

for different initial conditions 

hKS(θ0, ϕ0) = ∑
k

ℜ[λk(θ0, ϕ0)]
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Figure 2. Schematic illustration of spin-squeezing dynamics.
The classical phase space of a ferromagnetic fully-connected
Ising model [cf. Eq. (7) with ↵ = 0] is pictured on the left. It
features ferromagnetic (green) and paramagnetic (blue) peri-
odic trajectories, separated by a critical trajectory (separatrix,
red). Initial spin-coherent (non-squeezed) states (a) and (b)
at t = 0 are represented by points surrounded by small grey
circles representing the quantum fluctuations of transverse
spin components. Due to nonlinear interactions, the spin state
undergoes squeezing, quantified by the parameter ⇠(t) [cf. Eq.
(3)]. The rate of squeezing is governed by the separation of
nearby semiclassical trajectories, and by Eq. (2) it determines
the rate of growth of entanglement entropy. Right panels: (a)
For generic (non-critical) quenches, nearby trajectories sepa-
rate linearly in time, leading to a polynomially fast squeezing.
(b) For a critical quench, the collective spin lies on the stable
manifold of an unstable fixed point in phase space. In this
case, nearby trajectories separate exponentially fast in time
at a rate � set by the eigenvalue of the linearized flow.

logarithmic growth, the period being that of the under-
lying classical trajectory. In the (non-generic) case of
quenches to dynamical critical points [102], the collective
spin lies on unstable trajectories (separatrices) in the
classical phase space, around which displacements grow
exponentially in time, with a rate set by the positive eigen-
value � of the corresponding unstable fixed point on which
they terminate, see Fig. 2(b). The out-of-equilibrium
generation of collective excitations is thus exponentially
fast, hn̂exc(t)i s e

2�t, leading to a linear growth of en-
tanglement entropy with a predicted slope S(t) s �t and
without superimposed oscillations. (See also the related
discussion in Refs. [117–119].) In all cases, entanglement
entropy saturates SA s logNA at the Ehrenfest time
scale defined by hn̂exc(tEhr)i s N .

Spatially-decaying interactions.— We are now in a po-
sition to understand the effects of having slowly-decaying
interactions on entanglement dynamics. For the sake of
definiteness, we focus on periodic d-dimensional lattices
of spins with arbitrary two-body long-range interactions,
described by a Hamiltonian as in Eq. (1) with p  2,
where now j = 1, . . . , N = L

d label lattice sites at posi-
tions denoted rj , and the uniform couplings Jµ⌫ , with
µ, ⌫ = x, y, z, are replaced by Jµ⌫/|ri � rj |↵ [120]. The
exponent ↵ � 0 characterizes the algebraic decay of spin-
spin interactions. A Kac rescaling factor 1/N↵,N with

N↵,N =
P

i 6=j |ri � rj |�↵
/N replaces the 1/N factor in

Eq. (1), ensuring the extensivity of the Hamiltonian for
↵  d [121]. The fully-connected limit is recovered by
letting ↵ ! 0.

When interactions decay with the distance between
spins, the full permutational symmetry of the infinite-
range Hamiltonian (1) is broken and the finite-wavelength
spin modes participate in the dynamics. These excita-
tions now allow the system to explore the full Hilbert
space beyond the Dicke manifold, i.e., “inside the Bloch
sphere”, and the system may be expected to thermal-
ize by accumulating extensive entanglement entropy [5].
However, we demonstrate that these quasiparticles are
weakly excited in typical quenches, and hence yield only a
bounded contribution to entanglement growth for a long
temporal regime. In this case, the analysis of dynamical
spin squeezing captures the leading behavior of S(t) even
for 0 < ↵ < d.

The two-boson approach to entanglement dynamics
described above was strictly based on the conservation
of the collective spin magnitude. In order to treat a
truly many-body problem, one can refine the approach
as follows. We rewrite the Hamiltonian in terms of
the Fourier spin modes s̃

x,y,z
k =

P
j e

�ik·rj ŝx,y,zj , with
k = (2⇡/L)(n1, . . . , nd), nµ = 0, 1, . . . , L � 1 varying in
the d-dimensional Brillouin zone, and bosonize individual
spin excitations ŝj ! (q̂j ,p̂j) around the instantaneous
direction Z(t) of the collective spin hŜ(t)i via Holstein-
Primakoff transformations [103, 108, 109]. One thus
obtains a spin-wave expansion of the time-dependent
frame Hamiltonian eH(t) = Ĥ � !(t) · Ŝ in terms of
q̃k = L

�d/2
P

j e
�ik·rj q̂j and p̃k = L

�d/2
P

j e
�ik·rj p̂j

with all possible momenta k, expressed up to O(1/
p
N)

terms as [122]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(t)

q̃kq̃�k

2

+ Jpp(t)
p̃kp̃�k

2
+ Jqp(t)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�ri|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending on the collective spin trajectory, and
the collective-mode Hamiltonian eH0(t) accounts for the
infinite-range part ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k.
eH0(t) is independent of ↵ and describes the dynamics of
collective spin fluctuations Q̂ ⌘ q̃0 and P̂ ⌘ p̃0 as detailed
above, and conserves the bosonic occupation numbers
n̂k 6=0 ⌘ (q̃kq̃�k+ p̃kp̃�k�1)/2 of all the spin-wave modes
with finite wavelength [123]. The dynamical excitation of
spin waves with finite wavelengths for ↵ > 0 is responsible
for modifications to the spin-squeezing-induced entangle-
ment entropy growth. As is evident in Eq. (5), their im-
pact is controlled by the strength of the finite-range part
ef↵,k 6=0 of the interaction. In fact, the following estimate
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Figure 2. Schematic illustration of spin-squeezing dynamics.
The classical phase space of a ferromagnetic fully-connected
Ising model [cf. Eq. (7) with ↵ = 0] is pictured on the left. It
features ferromagnetic (green) and paramagnetic (blue) peri-
odic trajectories, separated by a critical trajectory (separatrix,
red). Initial spin-coherent (non-squeezed) states (a) and (b)
at t = 0 are represented by points surrounded by small grey
circles representing the quantum fluctuations of transverse
spin components. Due to nonlinear interactions, the spin state
undergoes squeezing, quantified by the parameter ⇠(t) [cf. Eq.
(3)]. The rate of squeezing is governed by the separation of
nearby semiclassical trajectories, and by Eq. (2) it determines
the rate of growth of entanglement entropy. Right panels: (a)
For generic (non-critical) quenches, nearby trajectories sepa-
rate linearly in time, leading to a polynomially fast squeezing.
(b) For a critical quench, the collective spin lies on the stable
manifold of an unstable fixed point in phase space. In this
case, nearby trajectories separate exponentially fast in time
at a rate � set by the eigenvalue of the linearized flow.

logarithmic growth, the period being that of the under-
lying classical trajectory. In the (non-generic) case of
quenches to dynamical critical points [102], the collective
spin lies on unstable trajectories (separatrices) in the
classical phase space, around which displacements grow
exponentially in time, with a rate set by the positive eigen-
value � of the corresponding unstable fixed point on which
they terminate, see Fig. 2(b). The out-of-equilibrium
generation of collective excitations is thus exponentially
fast, hn̂exc(t)i s e

2�t, leading to a linear growth of en-
tanglement entropy with a predicted slope S(t) s �t and
without superimposed oscillations. (See also the related
discussion in Refs. [117–119].) In all cases, entanglement
entropy saturates SA s logNA at the Ehrenfest time
scale defined by hn̂exc(tEhr)i s N .

Spatially-decaying interactions.— We are now in a po-
sition to understand the effects of having slowly-decaying
interactions on entanglement dynamics. For the sake of
definiteness, we focus on periodic d-dimensional lattices
of spins with arbitrary two-body long-range interactions,
described by a Hamiltonian as in Eq. (1) with p  2,
where now j = 1, . . . , N = L

d label lattice sites at posi-
tions denoted rj , and the uniform couplings Jµ⌫ , with
µ, ⌫ = x, y, z, are replaced by Jµ⌫/|ri � rj |↵ [120]. The
exponent ↵ � 0 characterizes the algebraic decay of spin-
spin interactions. A Kac rescaling factor 1/N↵,N with

N↵,N =
P

i 6=j |ri � rj |�↵
/N replaces the 1/N factor in

Eq. (1), ensuring the extensivity of the Hamiltonian for
↵  d [121]. The fully-connected limit is recovered by
letting ↵ ! 0.

When interactions decay with the distance between
spins, the full permutational symmetry of the infinite-
range Hamiltonian (1) is broken and the finite-wavelength
spin modes participate in the dynamics. These excita-
tions now allow the system to explore the full Hilbert
space beyond the Dicke manifold, i.e., “inside the Bloch
sphere”, and the system may be expected to thermal-
ize by accumulating extensive entanglement entropy [5].
However, we demonstrate that these quasiparticles are
weakly excited in typical quenches, and hence yield only a
bounded contribution to entanglement growth for a long
temporal regime. In this case, the analysis of dynamical
spin squeezing captures the leading behavior of S(t) even
for 0 < ↵ < d.

The two-boson approach to entanglement dynamics
described above was strictly based on the conservation
of the collective spin magnitude. In order to treat a
truly many-body problem, one can refine the approach
as follows. We rewrite the Hamiltonian in terms of
the Fourier spin modes s̃

x,y,z
k =

P
j e

�ik·rj ŝx,y,zj , with
k = (2⇡/L)(n1, . . . , nd), nµ = 0, 1, . . . , L � 1 varying in
the d-dimensional Brillouin zone, and bosonize individual
spin excitations ŝj ! (q̂j ,p̂j) around the instantaneous
direction Z(t) of the collective spin hŜ(t)i via Holstein-
Primakoff transformations [103, 108, 109]. One thus
obtains a spin-wave expansion of the time-dependent
frame Hamiltonian eH(t) = Ĥ � !(t) · Ŝ in terms of
q̃k = L

�d/2
P

j e
�ik·rj q̂j and p̃k = L

�d/2
P

j e
�ik·rj p̂j

with all possible momenta k, expressed up to O(1/
p
N)

terms as [122]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(t)

q̃kq̃�k

2

+ Jpp(t)
p̃kp̃�k

2
+ Jqp(t)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�ri|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending on the collective spin trajectory, and
the collective-mode Hamiltonian eH0(t) accounts for the
infinite-range part ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k.
eH0(t) is independent of ↵ and describes the dynamics of
collective spin fluctuations Q̂ ⌘ q̃0 and P̂ ⌘ p̃0 as detailed
above, and conserves the bosonic occupation numbers
n̂k 6=0 ⌘ (q̃kq̃�k+ p̃kp̃�k�1)/2 of all the spin-wave modes
with finite wavelength [123]. The dynamical excitation of
spin waves with finite wavelengths for ↵ > 0 is responsible
for modifications to the spin-squeezing-induced entangle-
ment entropy growth. As is evident in Eq. (5), their im-
pact is controlled by the strength of the finite-range part
ef↵,k 6=0 of the interaction. In fact, the following estimate

˜Ĥ(t) = ˜Ĥ0(t) +

•  stable 

•  real, unstable
λk = iωk
λk

new contributions with standard boson techniques  
[Hackl, Bianchi, Modak, Rigol - Phys.Rev.A, 2018]

Numerical simulations by MPS-TDVP  
(converged with bond dimension D=128)

4

can be derived for ↵ < d [103] | ef↵,k 6=0|  const⇥ 1
(|k|L)� ,

with � ⌘ Min
�
d � ↵, (d + 1)/2

�
(for ↵ = d the power

law is replaced by a logarithm). This bound implies that
for all fixed k 6= 0, the coupling ef↵,k is vanishingly small
in thermodynamic limit L ! 1 whenever ↵  d, and
hence the associated number of bosonic excitations is an
approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long time scale Tsw s N
�/d,

during which the dynamical excitation of spin waves
with finite wavelengths is suppressed [124] (note the
interesting relation to the prethermalization time in
Ref. [125]). On the other hand, permutational symmetry
may severely break over large length scales via excitations
with |k| / 1/L. Their dynamics governed by the Hamil-
tonian (5), is equivalent to a discrete set of periodically
driven quantum oscillators, the drive being induced by the
precession of the collective spin. From a stability analysis,
we find that for typical quenches these long-wavelength
spin-wave modes are non-resonantly driven and hence
weakly excited. Their resulting contribution to entangle-
ment dynamics amounts to bounded oscillations on top of
the dominant, spin-squeezing induced logarithmic growth.
Near dynamical criticality, however, resonant excitation of
these modes may lead to exponentially growing quantum
fluctuations (cf. Ref. [125]) and hence linear increase of
the entanglement entropy (see the Supplemental Material
[103] for details). We thus conclude that long-range in-
teracting spin-1/2 systems with ↵ < d typically exhibit
logarithmic growth of entanglement entropy.

Numerical simulations.— We test our analytical un-
derstanding in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kac rescaling
factor introduced above.

We compare the numerical computations of entangle-
ment entropy evolution at finite N with the analytical
calculation of the spin-squeezing contribution [Eq. (2)] and
with the full spin-wave calculation, obtained from Eq. (5)
via standard bosonic techniques [103, 111, 112, 119]. For
the sake of illustration, we focus here on the initial state
| 0i = |!! · · · !i, i.e., on quenches in the transverse
field from h0 = 0 to hf . As Figs. 1 and 3 show, in all cases
the numerical data are captured by the corresponding
analytical curves for t . tEhr(N). In the fully-connected
limit ↵! 0, equivalent to the Lipkin-Meshov-Glick model
[126], Eq. (2) is exact in the thermodynamic limit and the
finite-size ED data perfectly match it before saturation
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
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i ŝ
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j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
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i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
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quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
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entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
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initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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5

Figure 3. Comparison between theory and numerical re-
sults for long-range quantum Ising chains. Quenches in the
transverse field h0 = 0 ! hf > 0 are considered, and the
evolution of the half-system entanglement entropy SN/2(t) is
shown. Top: Fully-connected limit with ↵ = 0. Analytical
results (black lines) are compared with ED data for increasing
system sizes N = 20 ÷ 800. (a.) For a non-critical quench
h0 = 0 ! hf = 0.2J , the growth of SN/2(t) is logarithmic
up to saturation around 1/2 logN at tEhr s

p
N (b.) For

the critical quench hf = hc = J/2, the growth of SN/2(t) is
linear until tEhr s logN , with a slope �hc = J . Bottom: Deep
quench with hf = 2J in long-range interacting chains with
↵ > 0. The contribution due to collective spin squeezing [Eq.
(2)] and the full spin-wave calculation of the time-dependent
entanglement (see the main text) are compared with MPS-
TDVP data for N = 20÷ 80 converged with bond dimension
D = 128, for ↵ = 0.1 (c.) and ↵ = 0.7 (d). As ↵ increases,
finite corrections due to long-wavelength spin waves appear
on top of the dominant spin-squeezing-induced logarithmic
growth, see the inset.

at the Ehrenfest time, tEhr s
p
N for generic quenches

[h0 = 0 ! hf = 2J in Fig. 1 (bottom) and hf = 0.2J
in Fig. 3(a)] and tEhr s logN for the critical quench
[hf = hc ⌘ J/2 in Fig. 3(b), cf. the red line in Fig. 2(b)],
corresponding to the dynamical phase transition of the
model [35, 102, 127, 128]. For spatially-decaying interac-
tions with 0 < ↵ < 1, we employ the MPS-TDVP [99, 100]
with periodic boundary conditions (see the Supplemental
Material [103] for details). Upon increasing N , the TDVP
data approach the full spin-wave entanglement entropy,
for all considered values of ↵ and quench parameters, as
shown in the examples in Fig. 3(c),(d). This analysis
confirms that the growth of S(t) is logarithmic for typical
initial configurations. For further discussion, including
varying initial states, bipartition sizes and details on the
spin-wave analysis, see the Supplemental Material [103].

4

can be derived for ↵ < d [103] | ef↵,k 6=0|  const⇥ 1
(|k|L)� ,

with � ⌘ Min
�
d � ↵, (d + 1)/2

�
(for ↵ = d the power

law is replaced by a logarithm). This bound implies that
for all fixed k 6= 0, the coupling ef↵,k is vanishingly small
in thermodynamic limit L ! 1 whenever ↵  d, and
hence the associated number of bosonic excitations is an
approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long time scale Tsw s N
�/d,

during which the dynamical excitation of spin waves
with finite wavelengths is suppressed [124] (note the
interesting relation to the prethermalization time in
Ref. [125]). On the other hand, permutational symmetry
may severely break over large length scales via excitations
with |k| / 1/L. Their dynamics governed by the Hamil-
tonian (5), is equivalent to a discrete set of periodically
driven quantum oscillators, the drive being induced by the
precession of the collective spin. From a stability analysis,
we find that for typical quenches these long-wavelength
spin-wave modes are non-resonantly driven and hence
weakly excited. Their resulting contribution to entangle-
ment dynamics amounts to bounded oscillations on top of
the dominant, spin-squeezing induced logarithmic growth.
Near dynamical criticality, however, resonant excitation of
these modes may lead to exponentially growing quantum
fluctuations (cf. Ref. [125]) and hence linear increase of
the entanglement entropy (see the Supplemental Material
[103] for details). We thus conclude that long-range in-
teracting spin-1/2 systems with ↵ < d typically exhibit
logarithmic growth of entanglement entropy.

Numerical simulations.— We test our analytical un-
derstanding in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kac rescaling
factor introduced above.

We compare the numerical computations of entangle-
ment entropy evolution at finite N with the analytical
calculation of the spin-squeezing contribution [Eq. (2)] and
with the full spin-wave calculation, obtained from Eq. (5)
via standard bosonic techniques [103, 111, 112, 119]. For
the sake of illustration, we focus here on the initial state
| 0i = |!! · · · !i, i.e., on quenches in the transverse
field from h0 = 0 to hf . As Figs. 1 and 3 show, in all cases
the numerical data are captured by the corresponding
analytical curves for t . tEhr(N). In the fully-connected
limit ↵! 0, equivalent to the Lipkin-Meshov-Glick model
[126], Eq. (2) is exact in the thermodynamic limit and the
finite-size ED data perfectly match it before saturation
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

S
N
/
2
(t
)

J t

hf = 0.5J

N = 50
N = 100
N = 200
N = 400
N = 800

Analytical

Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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Ġ
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(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
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a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
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in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
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It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J
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i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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ŝ
x
i ŝ
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .
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with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2
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quench dynamics from h0 = 0 to hf = 2J , for various bipar-
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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plings that decay algebraically with the distance with an
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tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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tEhr, which depends on the nature of the semiclassical
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

S
N
/
2
(t
)

J t

hf = 0.5J

N = 50
N = 100
N = 200
N = 400

Analytical

Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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5

Figure 3. Comparison between theory and numerical re-
sults for long-range quantum Ising chains. Quenches in the
transverse field h0 = 0 ! hf > 0 are considered, and the
evolution of the half-system entanglement entropy SN/2(t) is
shown. Top: Fully-connected limit with ↵ = 0. Analytical
results (black lines) are compared with ED data for increasing
system sizes N = 20 ÷ 800. (a.) For a non-critical quench
h0 = 0 ! hf = 0.2J , the growth of SN/2(t) is logarithmic
up to saturation around 1/2 logN at tEhr s

p
N (b.) For

the critical quench hf = hc = J/2, the growth of SN/2(t) is
linear until tEhr s logN , with a slope �hc = J . Bottom: Deep
quench with hf = 2J in long-range interacting chains with
↵ > 0. The contribution due to collective spin squeezing [Eq.
(2)] and the full spin-wave calculation of the time-dependent
entanglement (see the main text) are compared with MPS-
TDVP data for N = 20÷ 80 converged with bond dimension
D = 128, for ↵ = 0.1 (c.) and ↵ = 0.7 (d). As ↵ increases,
finite corrections due to long-wavelength spin waves appear
on top of the dominant spin-squeezing-induced logarithmic
growth, see the inset.

at the Ehrenfest time, tEhr s
p
N for generic quenches

[h0 = 0 ! hf = 2J in Fig. 1 (bottom) and hf = 0.2J
in Fig. 3(a)] and tEhr s logN for the critical quench
[hf = hc ⌘ J/2 in Fig. 3(b), cf. the red line in Fig. 2(b)],
corresponding to the dynamical phase transition of the
model [35, 102, 127, 128]. For spatially-decaying interac-
tions with 0 < ↵ < 1, we employ the MPS-TDVP [99, 100]
with periodic boundary conditions (see the Supplemental
Material [103] for details). Upon increasing N , the TDVP
data approach the full spin-wave entanglement entropy,
for all considered values of ↵ and quench parameters, as
shown in the examples in Fig. 3(c),(d). This analysis
confirms that the growth of S(t) is logarithmic for typical
initial configurations. For further discussion, including
varying initial states, bipartition sizes and details on the
spin-wave analysis, see the Supplemental Material [103].

4

can be derived for ↵ < d [103] | ef↵,k 6=0|  const⇥ 1
(|k|L)� ,

with � ⌘ Min
�
d � ↵, (d + 1)/2

�
(for ↵ = d the power

law is replaced by a logarithm). This bound implies that
for all fixed k 6= 0, the coupling ef↵,k is vanishingly small
in thermodynamic limit L ! 1 whenever ↵  d, and
hence the associated number of bosonic excitations is an
approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long time scale Tsw s N
�/d,

during which the dynamical excitation of spin waves
with finite wavelengths is suppressed [124] (note the
interesting relation to the prethermalization time in
Ref. [125]). On the other hand, permutational symmetry
may severely break over large length scales via excitations
with |k| / 1/L. Their dynamics governed by the Hamil-
tonian (5), is equivalent to a discrete set of periodically
driven quantum oscillators, the drive being induced by the
precession of the collective spin. From a stability analysis,
we find that for typical quenches these long-wavelength
spin-wave modes are non-resonantly driven and hence
weakly excited. Their resulting contribution to entangle-
ment dynamics amounts to bounded oscillations on top of
the dominant, spin-squeezing induced logarithmic growth.
Near dynamical criticality, however, resonant excitation of
these modes may lead to exponentially growing quantum
fluctuations (cf. Ref. [125]) and hence linear increase of
the entanglement entropy (see the Supplemental Material
[103] for details). We thus conclude that long-range in-
teracting spin-1/2 systems with ↵ < d typically exhibit
logarithmic growth of entanglement entropy.

Numerical simulations.— We test our analytical un-
derstanding in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kac rescaling
factor introduced above.

We compare the numerical computations of entangle-
ment entropy evolution at finite N with the analytical
calculation of the spin-squeezing contribution [Eq. (2)] and
with the full spin-wave calculation, obtained from Eq. (5)
via standard bosonic techniques [103, 111, 112, 119]. For
the sake of illustration, we focus here on the initial state
| 0i = |!! · · · !i, i.e., on quenches in the transverse
field from h0 = 0 to hf . As Figs. 1 and 3 show, in all cases
the numerical data are captured by the corresponding
analytical curves for t . tEhr(N). In the fully-connected
limit ↵! 0, equivalent to the Lipkin-Meshov-Glick model
[126], Eq. (2) is exact in the thermodynamic limit and the
finite-size ED data perfectly match it before saturation
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
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in Ref. 96. For the sake of definiteness, we consider as
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2
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quench dynamics from h0 = 0 to hf = 2J , for various bipar-
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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ŝ
x
i ŝ
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
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Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
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These equations are exact in the limit N ! 1, while
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.
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It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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is denoted ri,j , lattice spacing is taken to be unity, and pe-
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converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
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a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
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in Ref. 96. For the sake of definiteness, we consider as
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J
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i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2
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quench dynamics from h0 = 0 to hf = 2J , for various bipar-
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Comparison between theory and numerical re-
sults for long-range quantum Ising chains. Quenches in the
transverse field h0 = 0 ! hf > 0 are considered, and the
evolution of the half-system entanglement entropy SN/2(t) is
shown. Top: Fully-connected limit with ↵ = 0. Analytical
results (black lines) are compared with ED data for increasing
system sizes N = 20 ÷ 800. (a.) For a non-critical quench
h0 = 0 ! hf = 0.2J , the growth of SN/2(t) is logarithmic
up to saturation around 1/2 logN at tEhr s

p
N (b.) For

the critical quench hf = hc = J/2, the growth of SN/2(t) is
linear until tEhr s logN , with a slope �hc = J . Bottom: Deep
quench with hf = 2J in long-range interacting chains with
↵ > 0. The contribution due to collective spin squeezing [Eq.
(2)] and the full spin-wave calculation of the time-dependent
entanglement (see the main text) are compared with MPS-
TDVP data for N = 20÷ 80 converged with bond dimension
D = 128, for ↵ = 0.1 (c.) and ↵ = 0.7 (d). As ↵ increases,
finite corrections due to long-wavelength spin waves appear
on top of the dominant spin-squeezing-induced logarithmic
growth, see the inset.

at the Ehrenfest time, tEhr s
p
N for generic quenches

[h0 = 0 ! hf = 2J in Fig. 1 (bottom) and hf = 0.2J
in Fig. 3(a)] and tEhr s logN for the critical quench
[hf = hc ⌘ J/2 in Fig. 3(b), cf. the red line in Fig. 2(b)],
corresponding to the dynamical phase transition of the
model [35, 102, 127, 128]. For spatially-decaying interac-
tions with 0 < ↵ < 1, we employ the MPS-TDVP [99, 100]
with periodic boundary conditions (see the Supplemental
Material [103] for details). Upon increasing N , the TDVP
data approach the full spin-wave entanglement entropy,
for all considered values of ↵ and quench parameters, as
shown in the examples in Fig. 3(c),(d). This analysis
confirms that the growth of S(t) is logarithmic for typical
initial configurations. For further discussion, including
varying initial states, bipartition sizes and details on the
spin-wave analysis, see the Supplemental Material [103].
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Conclusions

• Entanglement entropy directly experimentally measurable

1.  semi-classical : collective squeezing induce SA(t)

• connection with quantum Fisher information, otoc, etc.

17

2. analytical  beyond the short-range paradigm with quasiparticle pictureSA(t)

• picture in the presence of a dominant zero-mode;

• ‘efficiency’ of classical simulations: TDVP, CTWA etc
• typical stability of spin-waves excitations (ergodicity breaking of long-range systems)

4

can be derived for ↵ < d [103] | ef↵,k 6=0|  const⇥ 1
(|k|L)� ,

with � ⌘ Min
�
d � ↵, (d + 1)/2

�
(for ↵ = d the power

law is replaced by a logarithm). This bound implies that
for all fixed k 6= 0, the coupling ef↵,k is vanishingly small
in thermodynamic limit L ! 1 whenever ↵  d, and
hence the associated number of bosonic excitations is an
approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long time scale Tsw s N
�/d,

during which the dynamical excitation of spin waves
with finite wavelengths is suppressed [124] (note the
interesting relation to the prethermalization time in
Ref. [125]). On the other hand, permutational symmetry
may severely break over large length scales via excitations
with |k| / 1/L. Their dynamics governed by the Hamil-
tonian (5), is equivalent to a discrete set of periodically
driven quantum oscillators, the drive being induced by the
precession of the collective spin. From a stability analysis,
we find that for typical quenches these long-wavelength
spin-wave modes are non-resonantly driven and hence
weakly excited. Their resulting contribution to entangle-
ment dynamics amounts to bounded oscillations on top of
the dominant, spin-squeezing induced logarithmic growth.
Near dynamical criticality, however, resonant excitation of
these modes may lead to exponentially growing quantum
fluctuations (cf. Ref. [125]) and hence linear increase of
the entanglement entropy (see the Supplemental Material
[103] for details). We thus conclude that long-range in-
teracting spin-1/2 systems with ↵ < d typically exhibit
logarithmic growth of entanglement entropy.

Numerical simulations.— We test our analytical un-
derstanding in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kac rescaling
factor introduced above.

We compare the numerical computations of entangle-
ment entropy evolution at finite N with the analytical
calculation of the spin-squeezing contribution [Eq. (2)] and
with the full spin-wave calculation, obtained from Eq. (5)
via standard bosonic techniques [103, 111, 112, 119]. For
the sake of illustration, we focus here on the initial state
| 0i = |!! · · · !i, i.e., on quenches in the transverse
field from h0 = 0 to hf . As Figs. 1 and 3 show, in all cases
the numerical data are captured by the corresponding
analytical curves for t . tEhr(N). In the fully-connected
limit ↵! 0, equivalent to the Lipkin-Meshov-Glick model
[126], Eq. (2) is exact in the thermodynamic limit and the
finite-size ED data perfectly match it before saturation
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J
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i 6=j
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i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

S
N
/
2
(t
)

J t

hf = 0.5J

N = 50
N = 100
N = 200
N = 400

Analytical

Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.1 1 10 100

0

1

2

3

4

5

6

0 2 4 6 8

S
N

A
(t
)

J t

fA = 0.05
fA = 0.1
fA = 0.2
fA = 0.3
fA = 0.4

S
N

A
�

1/
2
lo
g
f A

f B

t/
p
N

Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
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d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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ŝ
x
i ŝ
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5

Figure 3. Comparison between theory and numerical re-
sults for long-range quantum Ising chains. Quenches in the
transverse field h0 = 0 ! hf > 0 are considered, and the
evolution of the half-system entanglement entropy SN/2(t) is
shown. Top: Fully-connected limit with ↵ = 0. Analytical
results (black lines) are compared with ED data for increasing
system sizes N = 20 ÷ 800. (a.) For a non-critical quench
h0 = 0 ! hf = 0.2J , the growth of SN/2(t) is logarithmic
up to saturation around 1/2 logN at tEhr s

p
N (b.) For

the critical quench hf = hc = J/2, the growth of SN/2(t) is
linear until tEhr s logN , with a slope �hc = J . Bottom: Deep
quench with hf = 2J in long-range interacting chains with
↵ > 0. The contribution due to collective spin squeezing [Eq.
(2)] and the full spin-wave calculation of the time-dependent
entanglement (see the main text) are compared with MPS-
TDVP data for N = 20÷ 80 converged with bond dimension
D = 128, for ↵ = 0.1 (c.) and ↵ = 0.7 (d). As ↵ increases,
finite corrections due to long-wavelength spin waves appear
on top of the dominant spin-squeezing-induced logarithmic
growth, see the inset.

at the Ehrenfest time, tEhr s
p
N for generic quenches

[h0 = 0 ! hf = 2J in Fig. 1 (bottom) and hf = 0.2J
in Fig. 3(a)] and tEhr s logN for the critical quench
[hf = hc ⌘ J/2 in Fig. 3(b), cf. the red line in Fig. 2(b)],
corresponding to the dynamical phase transition of the
model [35, 102, 127, 128]. For spatially-decaying interac-
tions with 0 < ↵ < 1, we employ the MPS-TDVP [99, 100]
with periodic boundary conditions (see the Supplemental
Material [103] for details). Upon increasing N , the TDVP
data approach the full spin-wave entanglement entropy,
for all considered values of ↵ and quench parameters, as
shown in the examples in Fig. 3(c),(d). This analysis
confirms that the growth of S(t) is logarithmic for typical
initial configurations. For further discussion, including
varying initial states, bipartition sizes and details on the
spin-wave analysis, see the Supplemental Material [103].

4

can be derived for ↵ < d [103] | ef↵,k 6=0|  const⇥ 1
(|k|L)� ,

with � ⌘ Min
�
d � ↵, (d + 1)/2

�
(for ↵ = d the power

law is replaced by a logarithm). This bound implies that
for all fixed k 6= 0, the coupling ef↵,k is vanishingly small
in thermodynamic limit L ! 1 whenever ↵  d, and
hence the associated number of bosonic excitations is an
approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long time scale Tsw s N
�/d,

during which the dynamical excitation of spin waves
with finite wavelengths is suppressed [124] (note the
interesting relation to the prethermalization time in
Ref. [125]). On the other hand, permutational symmetry
may severely break over large length scales via excitations
with |k| / 1/L. Their dynamics governed by the Hamil-
tonian (5), is equivalent to a discrete set of periodically
driven quantum oscillators, the drive being induced by the
precession of the collective spin. From a stability analysis,
we find that for typical quenches these long-wavelength
spin-wave modes are non-resonantly driven and hence
weakly excited. Their resulting contribution to entangle-
ment dynamics amounts to bounded oscillations on top of
the dominant, spin-squeezing induced logarithmic growth.
Near dynamical criticality, however, resonant excitation of
these modes may lead to exponentially growing quantum
fluctuations (cf. Ref. [125]) and hence linear increase of
the entanglement entropy (see the Supplemental Material
[103] for details). We thus conclude that long-range in-
teracting spin-1/2 systems with ↵ < d typically exhibit
logarithmic growth of entanglement entropy.

Numerical simulations.— We test our analytical un-
derstanding in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kac rescaling
factor introduced above.

We compare the numerical computations of entangle-
ment entropy evolution at finite N with the analytical
calculation of the spin-squeezing contribution [Eq. (2)] and
with the full spin-wave calculation, obtained from Eq. (5)
via standard bosonic techniques [103, 111, 112, 119]. For
the sake of illustration, we focus here on the initial state
| 0i = |!! · · · !i, i.e., on quenches in the transverse
field from h0 = 0 to hf . As Figs. 1 and 3 show, in all cases
the numerical data are captured by the corresponding
analytical curves for t . tEhr(N). In the fully-connected
limit ↵! 0, equivalent to the Lipkin-Meshov-Glick model
[126], Eq. (2) is exact in the thermodynamic limit and the
finite-size ED data perfectly match it before saturation
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
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i ŝ
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j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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ŝ
x
i ŝ
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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Ġ
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Ġ
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.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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computation for increasing system sizes N = 50÷ 400. Before
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos � sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
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i ŝ
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j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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Ġ
PP = �4J cos � sin� cos�GPP � 4J cos2 � sin2 �GQP

Ġ
QP = �2J cos2 � sin2 �GQQ + 2J cos 2�GPP

.

(49)

with � = �(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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tude s = 1/2 whose position on the d-dimensional lattice
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riodic boundary conditions are assumed for simplicity.98
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the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.
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Hamiltonian (46), nor on the specific choice of pre- and
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with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions �0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point � = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Comparison between theory and numerical re-
sults for long-range quantum Ising chains. Quenches in the
transverse field h0 = 0 ! hf > 0 are considered, and the
evolution of the half-system entanglement entropy SN/2(t) is
shown. Top: Fully-connected limit with ↵ = 0. Analytical
results (black lines) are compared with ED data for increasing
system sizes N = 20 ÷ 800. (a.) For a non-critical quench
h0 = 0 ! hf = 0.2J , the growth of SN/2(t) is logarithmic
up to saturation around 1/2 logN at tEhr s

p
N (b.) For

the critical quench hf = hc = J/2, the growth of SN/2(t) is
linear until tEhr s logN , with a slope �hc = J . Bottom: Deep
quench with hf = 2J in long-range interacting chains with
↵ > 0. The contribution due to collective spin squeezing [Eq.
(2)] and the full spin-wave calculation of the time-dependent
entanglement (see the main text) are compared with MPS-
TDVP data for N = 20÷ 80 converged with bond dimension
D = 128, for ↵ = 0.1 (c.) and ↵ = 0.7 (d). As ↵ increases,
finite corrections due to long-wavelength spin waves appear
on top of the dominant spin-squeezing-induced logarithmic
growth, see the inset.

at the Ehrenfest time, tEhr s
p
N for generic quenches

[h0 = 0 ! hf = 2J in Fig. 1 (bottom) and hf = 0.2J
in Fig. 3(a)] and tEhr s logN for the critical quench
[hf = hc ⌘ J/2 in Fig. 3(b), cf. the red line in Fig. 2(b)],
corresponding to the dynamical phase transition of the
model [35, 102, 127, 128]. For spatially-decaying interac-
tions with 0 < ↵ < 1, we employ the MPS-TDVP [99, 100]
with periodic boundary conditions (see the Supplemental
Material [103] for details). Upon increasing N , the TDVP
data approach the full spin-wave entanglement entropy,
for all considered values of ↵ and quench parameters, as
shown in the examples in Fig. 3(c),(d). This analysis
confirms that the growth of S(t) is logarithmic for typical
initial configurations. For further discussion, including
varying initial states, bipartition sizes and details on the
spin-wave analysis, see the Supplemental Material [103].


