Advancing the optimization of iPEPS: Direct energy minimization with automatic differentiation

Juraj Hasik
(13.2.2020)

Outline

1) Introduction

- Problems of interest - (spin) lattice models
- Tensor networks - motivation \& main concepts of iPEPS

2) Solving 2D spin systems with iPEPS

- Observables - Corner transfer matrix
- Optimization I - imaginary time evolution
- Case study: Coupled Iadders
- Optimization II - gradients \& algorithmic differentiation
- Application to J1-J2 model

3) Conclusions \& Future directions

Intro: Spin Models

Many-body electron problem is reduced to interacting magnetic moments (spins) ...

$$
\begin{aligned}
H= & \sum_{\langle i, j\rangle} J_{1, i j} S_{i} \cdot S_{j}+\sum_{\langle\langle i, j\rangle\rangle} J_{2, i j} S_{i} \cdot S_{j}+\ldots \\
& +\sum_{\langle i, j, k, l\rangle} Q_{i j k l}\left(S_{i} \cdot S_{j}\right)\left(S_{k} \cdot S_{l}\right)+\ldots
\end{aligned}
$$

... usually arranged on a regular lattice

Rich physics - Landau symm. breaking theory, deconfined critical point, topological order, ...

Intro: Tensor Networks

Variational states targeting GS lattice models

F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066, (2004)

- area law by construction
- no sign problem
- no FS effects
- can break or impose lattice symmetries and/or internal symmetries

$$
|\psi\rangle=\sum_{s_{1} s_{2} \ldots} . C_{s_{1} s_{2} . .}\left|s_{1} s_{2} \ldots\right\rangle \quad \text { \#parameters: } 2^{\wedge} \# \text { spins }
$$

$\operatorname{Tr}_{\text {aux }}\left(a^{s_{1}} a^{s_{2}} \ldots\right) \quad$ dimension $(u, \boldsymbol{l}, \boldsymbol{d}, \boldsymbol{r})=\mathbf{D}$

$$
\left.|\psi\rangle=\sum_{s_{1} s_{2} \ldots} T r_{a u x}\left(a^{s_{1}} a^{s_{2}} \ldots\right)\left|s_{1} s_{2} \ldots\right\rangle\right\rangle \begin{gathered}
\text { \#parameters: } \\
\text { 2D }
\end{gathered}
$$

Intro: Diagrammatics

$$
\begin{aligned}
& V_{i}:=V-\quad T_{i j k}:=-\frac{T}{T}-\quad A_{u l d r}:=-\mathrm{O} \\
& M_{i j}:=\frac{M}{\mid} \quad a_{u d t r}^{s}:=-\varnothing- \\
& T_{i_{12} i_{2}, i_{N}}:=\square \ldots \\
& \prod_{\prod \ldots}^{T_{i_{i 2}, \ldots, i_{N}}} \Leftrightarrow \overbrace{1}^{T_{i_{1} I}} \Leftrightarrow \square_{\mathrm{I}}^{T_{I^{\prime}}}
\end{aligned}
$$

Basic operation: Tensor contraction

Observables of iPEPS

Expectation values must be approximated

Construct environment

- corners C
- half-row/-columns T Baxter, J. Stat. Phys. 17, 1 (1977)

New control parameter: env. dimension χ

Observables of iPEPS

From reduced environments (E_{R}) of region R build reduced density matrices (ρ_{R}) of region R

Any observable inside the region R is: $\langle\mathcal{O}\rangle_{\chi} \approx \operatorname{Tr}\left(\rho_{R}(\chi) \mathcal{O}\right)$

Corner Transfer Matrix

Corner transfer matrix renormalization group (CTMRG)

Complexity \mathbf{O} (${ }^{3}{ }^{3}$ ©)
T. Nishino and K. Okunishi, JPSJ 65, 891 (1996), R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008) Corboz et al., Phys. Rev. Lett. 113, 046402, (2014)

... iterate until fixed point C,T

Optimization I

Warning: Optimization is hard !

(I) Find the fixed point of imag. time evolution ...

$$
U(\tau)=\exp (-\tau H)
$$

... use Trotter decomposition

$U_{p=3}(\Delta \tau)$

Simple and Full Update contract layer by layer

Jordan et al., Phys. Rev. Lett. 101, 250602, (2008); Phien et al., Phys. Rev. B 92, 035142 (2015)

Coupled Spin-1/2 Ladders

Non-frustrated model featuring transition from Néel phase to paramagnet

$$
\begin{aligned}
H= & J \sum_{r} \vec{S}_{r} \cdot \vec{S}_{r+\hat{x}}+J \sum_{r \mid r_{y} \in \text { even }} \vec{S}_{r} \cdot \vec{S}_{r+\hat{y}} \\
& +\alpha \sum_{r \mid r_{y} \in o d d} \vec{S}_{r} \cdot \vec{S}_{r+\hat{y}}
\end{aligned}
$$

For small inter-ladder coupling α

- GS is a gapped and paramagnetic
- "VBS" - Singlets form along rungs of the ladder

Continuous phase transition at $\boldsymbol{\alpha}_{\mathbf{c}} \boldsymbol{\approx} \mathbf{0 . 3 1 4}$

QMC: M. Matsumoto et. al, PRB 65 (2001); L. Capriotti, F. Becca, PRB 65 (2002)

Realized in $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{CuBr}_{4}$ Hong et al., Nat. Phys. 13, 2017;

Coupled Ladders: Full Update

- Initialize by a set of 24 VBS states with noise
- Fast-full update (FFU), use adaptive timestep

Large α (Néel):

JH and F. Becca, Phys. Rev. B 100, 054429 (2019)

- FU shows narrow distributions of minima (in e and m)
- slight quantitative difference between D=4 and D=5

Small α (paramagnet):

- striking difference between FU for $\mathrm{D}=4$ and $\mathrm{D}=5$
- at $\mathrm{D}=5$ minima are broadly distributed in magnetization!

Optimizing II

(II) Direct energy minimization

$$
\min \langle\psi| H|\psi\rangle
$$

1. get gradient

$$
\partial_{a}\langle\psi| H|\psi\rangle
$$

2. steepest descent, CG, L-BFGS, ...

Caveat: How to evaluate the gradient for iPEPS ?

- Finite-Difference: simple, but only for few parameters
D. Poilblanc and M. Mambrini, Phys. Rev. B 96, 014414 (2017)
- Summation schemes: harder with increasing range of H -terms P. Corboz, Phys. Rev. B 94, 035133 (2016); Vanderstraeten et al., Phys. Rev. B 94, 155123 (2016)
- Algorithmic differentiation (AD): ???

Primer: Algorithmic differentiation

Central question:

-

How to evaluate the gradient of a complicated scalar function of many variables?

Simple model of a variational energy:

$$
\begin{aligned}
& E: \mathbb{R}^{N} \xrightarrow{F^{1}} \mathbb{R}^{M_{2}} \xrightarrow{F^{2}} \mathbb{R}^{M_{3}} \xrightarrow{F^{3}} \mathbb{R}^{M_{4}} \xrightarrow{F^{4}} \mathbb{R} \\
& F^{4}\left(F^{3}\left(F^{2}\left(F^{1}(\mathbf{x})\right)\right)\right)=F^{4}\left(F^{3}\left(F^{2}\left(\mathbf{v}^{2}\right)\right)\right)=F^{4}\left(F^{3}\left(\mathbf{v}^{3}\right)\right)=F^{4}\left(\mathbf{v}^{4}\right)=: E
\end{aligned}
$$

Option 1: Finite difference
pick a direction \mathbf{e}_{i} in the space of parameters and a small h

$$
\left(\mathbf{g}_{0}\right)_{i} \approx \frac{E\left(\mathbf{x}_{0}+h \mathbf{e}_{i}\right)-E\left(\mathbf{x}_{0}\right)}{h},
$$

- finite precision error, complexity $\mathbf{O}(\mathrm{N}) \times \mathbf{O}(\mathrm{E})$

Primer: Algorithmic differentiation

Core premise of Algorithmic differentiation:

Functions are ultimately composed of (many) simple operations as,,$+- /,{ }^{*}$, exp, log, sin, ...

Assume that Jacobians are known: $J^{n}\left(\mathbf{v}_{0}^{n}\right)=\left.\left(\frac{\partial F^{n}}{\partial \mathbf{v}^{n}}\right)\right|_{\mathbf{v}^{n}=\mathbf{v}_{0}^{n}}$.
The forward mode AD

$$
\begin{aligned}
\mathbf{x}_{0} \equiv \mathbf{v}_{0}^{1} & \rightarrow \mathbf{v}_{0}^{2}=F^{1}\left(\mathbf{v}_{0}^{1}\right) & \rightarrow \mathbf{v}_{0}^{3}=F^{2}\left(\mathbf{v}_{0}^{2}\right) & \rightarrow \mathbf{v}_{0}^{4}=F^{3}\left(\mathbf{v}_{0}^{3}\right) \\
& \rightarrow E=F^{4}\left(\mathbf{v}_{0}^{4}\right), & & \\
\mathbf{e}_{i} \equiv \mathbf{g}_{0, i}^{1} & \rightarrow \mathbf{g}_{0, i}^{2}=J^{1}\left(\mathbf{v}_{0}^{1}\right) \cdot \mathbf{g}_{0, i}^{1} & \rightarrow \mathbf{g}_{0, i}^{3}=J^{2}\left(\mathbf{v}_{0}^{2}\right) \cdot \mathbf{g}_{0, i}^{2} & \rightarrow \mathbf{g}_{0, i}^{4}=J^{3}\left(\mathbf{v}_{0}^{3}\right) \cdot \mathbf{g}_{0, i}^{3} \\
& \rightarrow\left(\mathbf{g}_{0}\right)_{i}=J^{4}\left(\mathbf{v}_{0}^{4}\right) \cdot \mathbf{g}_{0, i}^{4} . & &
\end{aligned}
$$

In short: $\left(\mathbf{g}_{0}\right)_{i}=J^{4}\left(\mathbf{v}_{0}^{4}\right) \cdot\left(J^{3}\left(\mathbf{v}_{0}^{3}\right) \cdot\left(J^{2}\left(\mathbf{v}_{0}^{2}\right) \cdot\left(J^{1}\left(\mathbf{x}_{0}\right) \cdot \mathbf{e}_{i}\right)\right)\right) \quad$ Cost: O(N) $\mathbf{x} \mathbf{O}$ (E)

Primer: Algorithmic differentiation

The reverse mode AD

I. Evaluate $\mathrm{E}\left(\mathbf{x}_{0}\right)$ and store all the intermediate variables

$$
\mathbf{x}_{0} \equiv \mathbf{v}_{0}^{1} \rightarrow \mathbf{v}_{0}^{2}=F^{1}\left(\mathbf{v}_{0}^{1}\right) \rightarrow \mathbf{v}_{0}^{3}=F^{2}\left(\mathbf{v}_{0}^{2}\right) \rightarrow \mathbf{v}_{0}^{4}=F^{3}\left(\mathbf{v}_{0}^{3}\right) \rightarrow E=F^{4}\left(\mathbf{v}_{0}^{4}\right)
$$

II. Accumulate the gradient in the reverse order $1 \cdot J^{4}\left(\mathbf{v}_{0}^{4}\right)=\overline{\mathbf{v}}_{0}^{4} \rightarrow \overline{\mathbf{v}}_{0}^{4} \cdot J^{3}\left(\mathbf{v}_{0}^{3}\right)=\overline{\mathbf{v}}_{0}^{3} \rightarrow \overline{\mathbf{v}}_{0}^{3} \cdot J^{2}\left(\mathbf{v}_{0}^{2}\right)=\overline{\mathbf{v}}_{0}^{2} \rightarrow \overline{\mathbf{v}}_{0}^{2} \cdot J^{1}\left(\mathbf{x}_{0}\right)=\overline{\mathbf{x}}_{0}$

Observe: $\overline{\mathbf{x}}_{0}$ holds all components of the gradient

$$
\overline{\mathbf{x}}_{0} \cdot \mathbf{e}_{i}=\left(\left(\left(J^{4}\left(\mathbf{v}_{0}^{4}\right) \cdot J^{3}\left(\mathbf{v}_{0}^{3}\right)\right) \cdot J^{2}\left(\mathbf{v}_{0}^{2}\right)\right) \cdot J^{1}\left(\mathbf{x}_{0}\right)\right) \cdot \mathbf{e}_{i}=\left(\mathbf{g}_{0}\right)_{i}
$$

Define vector-matrix products - Adjoint functions
$\bar{F}^{n}: \mathbb{R}^{M_{n}} \times \mathbb{R}^{M_{n+1}} \xrightarrow{\bar{F}^{n}} \mathbb{R}^{M_{n}}$

$$
\Rightarrow \begin{aligned}
& F^{4}\left(F^{3}\left(F^{2}\left(F^{1}\left(\mathbf{x}_{0}\right)\right)\right)\right) \\
& \bar{F}^{1}\left(\mathbf{x}_{0}, \bar{F}^{2}\left(\mathbf{v}_{0}^{2}, \bar{F}^{3}\left(\mathbf{v}_{0}^{3}, \bar{F}^{4}\left(\mathbf{v}_{0}^{4}, 1\right)\right)\right)\right)=\overline{\mathbf{x}}_{0}
\end{aligned}
$$

Primer: Algorithmic differentiation

A (central) example of the adjoint function

$$
\begin{gathered}
C=f(A, B) \longrightarrow \mathrm{d} C=\frac{\partial f}{\partial A} \mathrm{~d} A+\frac{\partial f}{\partial B} \mathrm{~d} B \quad E=E(C) \longrightarrow \mathrm{d} E=: \operatorname{Tr}\left(\bar{C}^{T} \mathrm{~d} C\right) \\
d E=\operatorname{Tr}\left(\bar{C}^{T} \frac{\partial f}{\partial A} \mathrm{~d} A\right)+\left(\bar{C}^{T} \frac{\partial f}{\partial B} \mathrm{~d} B\right) \longrightarrow\left\{\begin{array}{l}
\bar{A}=\left(\frac{\partial f}{\partial A}\right)^{T} \bar{C} \\
\bar{B}=\left(\frac{\partial f}{\partial B}\right)^{T} \bar{C}
\end{array}\right.
\end{gathered}
$$

Take matrix multiplication (= tensor contraction)

$$
C=A B \longrightarrow \mathrm{~d} C=\mathrm{d} A B+A \mathrm{~d} B \longrightarrow\left\{\begin{array}{l}
\bar{A}=\bar{C} B^{T} \\
\bar{B}=A^{T} \bar{C}
\end{array}\right.
$$

Many other matrix functions (ED, SVD, Inverse, ...)
Fresh developments: Complex SVD, Lanczos,

Algorithmic Differentiation

- Both Forward mode and Reverse mode evaluate derivatives with machine precision

III • Forward mode has complexity $O(N)$ * $O(E)$

- Reverse mode has complexity $O(1)$ * $O(E)$
- Caveat: Memory requirements are not bounded!
- Implemented in major machine-learning frameworks: TensorFlow, PyTorch, ...
... or in one of the libraries for your favorite language Fortran, C++, Julia, etc. (see http://www.autodiff.org)

J1-J2 Model: Energy as DAG

$E(a)=\langle\psi(a)| H|\psi(a)\rangle$

Great hands-on (in Julia):
http://blog.rogerluo.me/ 2018/10/23/write-an-ad-in-one-day/

J1-J2 Model: Energy as DAG

Enlarged corner

Forward

Backward

Analogy?
S.P.G. Crone, P. Corboz arXiv:1912.00908

Ladders: Revisited with AD

Identical protocol: Initialize by a set of 24 VBS states with noise

- energy minimization gives sound result even at $D=3$!
- at $\mathbf{D = 5}$, despite rough landscape the expected magnetization curve is recovered

Intro: Square Lattice J1-J2 Model

Prototypical example of a frustrated magnet

$$
H=J_{1} \sum_{\langle i, j\rangle} S_{i} \cdot S_{j}+J_{2} \sum_{\langle\langle i, j\rangle\rangle} S_{i} \cdot S_{j}
$$

- Classically: transition at $\boldsymbol{J}_{2} / \boldsymbol{J}_{\mathbf{1}}=\mathbf{0 . 5}$

Spin waves:

- Transition from Néel to paramagnetic phase near maximally frustrated point $\boldsymbol{J}_{2} / \boldsymbol{J}_{1} \approx 0.5$
- For $\boldsymbol{J}_{2} / \boldsymbol{J}_{1} \gtrsim \mathbf{0 . 6}$ system orders again in stripes

$Q M$

Intro: Square Lattice J1-J2 Model

Open question: the intermediate phase?

Spin liquid: gapless $U(1)$, gapped \mathbb{Z}_{2}, gapless \mathbb{Z}_{2}

DMRG: Jiang et al., Phys. Rev. B 86, 024424 (2012)
VMC: Hu et al., Phys. Rev. B 88, 060402 (2013)
PFFRG: Herring et al., Phys. Rev. B 99, 100405(R) (2019)
PEPS: Liu et al., Phys. Rev. B 98, 241109(R) (2018)
iPEPS: D. Poilblanc and M. Mambrini, Phys. Rev. B 96, 014414 (2017)
Valence bond solids: columnar, plaquette

PEPS: Wang et al., Phys. Rev. B 94, 075143 (2016)
iPEPS: R. Haghshenas and D. N. Sheng, Phys. Rev. B 97, 174408 (2018)
Gapless spin liquid into VBS

DMRG: L. Wang and A. Sandvik, PRL 121, 107202 (2018)
Gapless(?) spin liquid into Plaquettes

DMRG: Gong et al., Phys. Rev. Lett. 113, 027201 (2014) \longrightarrow

J1-J2 Model: Phase diagram with AD

Gradient of the energy is obtained by AD

- iPEPS: single $\mathbf{C}_{4 v}$ invariant tensor
- several random tensors initializations
- X used in optimization: 72, 96, 100 and 144

J1-J2 Model: Highly-frustrated

Analysis at highly-frustrated point $J_{2}=0.5$

- power law extrapolation of energy compatible with VMC
- small but finite magnetization

J1-J2 Model: Deep in the phase

Analysis at point $J_{2}=0.55$, inside non-magnetic region

- very good iPEPS variational energy
- odd-D data point to non-magnetic GS

J1-J2 Model: Spin-liquid vs VBS

Generalize to larger unit cells - 2x1, 2x2

- transition to VBS at $\mathrm{J}_{2} \approx 0.52$ (1st order ?)
- Finite-D effect or genuine order in thermodynamic limit?

J1-J2 Model vs J-Q Model

J-Q model

$$
J \sum_{\langle i j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}-Q \sum_{\langle i j k l\rangle}\left(\mathbf{S}_{i} \cdot \mathbf{S}_{j}-1 / 4\right)\left(\mathbf{S}_{k} \cdot \mathbf{S}_{l}-1 / 4\right)
$$

DQCP around $\mathrm{J} / \mathrm{Q}=0.04$

(A. Sandvik PRL 98, 227202 (2007))

- [Prelim.] Finite-D seems to converge toward a sharp feature

Concluding remarks I

Open-source suite of codes: tn-torch
($\underset{\substack{\text { github.com } \\ \text { j.hask and } 6 \text {. Mbeng }}}{\text { jurajHasik/tn-torch }}$
CTM + AD optimization based on PyTorch with CPU and/or GPU (nttos://pytorch.org)

- CTM for arbitrary unit cells
- Examples for NN, NNN, plaquette, ...
- Some extra stuff: correlation functions, transfer matrix spectrum, ...

Concluding remarks II

Optimization with FU can be problematic
Gradient optimization (with AD) is a way forward

- easy to extend beyond the nearest-neighbour Hamiltonians
- highly-optimized implementation out-of-the box (TensorFlow, PyTorch, ...)
iPEPS + AD: a step closer to DMRG-like variational method in two dimensions

Devil is in the details: adjoint for iterative SVD / ED, not enough memory, derivative at the fixed point ?, ...

