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● Problems of interest – (spin) lattice models
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● Optimization I – imaginary time evolution
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Intro: Spin ModelsIntro: Spin Models

Many-body electron problem is reduced to interacting 
magnetic moments (spins) …

... usually arranged on a regular lattice

Rich physics – Landau symm. breaking theory, deconfined 
critical point, topological order, ...



  

Intro: Tensor NetworksIntro: Tensor Networks

Variational states targeting GS lattice models
F. Verstraete and J. I. Cirac, arXiv:cond-mat/0407066, (2004)

● area law by construction
● no sign problem
● no FS effects

#parameters: 2^#spins

● can break or impose lattice 
symmetries and/or 
internal symmetries

iPEPS

#parameters: 
2D^4 per tensor

dimension(u,l,d,r) = D  



  

Intro: DiagrammaticsIntro: Diagrammatics

Basic operation: Tensor contraction



  

Observables of iPEPSObservables of iPEPS

Expectation values must be approximated

Construct environment
● corners C 
● half-row/-columns T
Baxter, J. Stat. Phys. 17, 1 (1977)

New control parameter:

env. dimension     χ



  

Observables of iPEPSObservables of iPEPS

From reduced environments (ER) of region R build
reduced density matrices (ρR) of region R

Any observable inside the region R is:



  

Corner Transfer MatrixCorner Transfer Matrix

Corner transfer matrix renormalization group (CTMRG) 
Complexity O(χ3D6)   T. Nishino and K. Okunishi, JPSJ 65, 891 (1996), R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008)         

                                                                                                                                                              Corboz et al., Phys. Rev. Lett. 113, 046402, (2014) 

                                                                                                                                                                                                                                                                         

... iterate until fixed point C,T     



  

Optimization IOptimization I

Warning: Optimization is hard !

(I) Find the fixed point 
of imag. time evolution ...

                                               ... use Trotter decomposition

                                                                                      Simple and      
                                                                                                  Full Update
                                                                                        contract 
                                                                                    layer by layer

Jordan et al., Phys. Rev. Lett. 101, 250602, (2008);  Phien et al., Phys. Rev. B 92, 035142 (2015)



  

Coupled Spin-1/2 LaddersCoupled Spin-1/2 Ladders

Non-frustrated model featuring transition from Néel phase to 
paramagnet

For small inter-ladder coupling α
● GS is a gapped and paramagnetic
● “VBS” - Singlets form along rungs of the ladder

Continuous phase transition at αc ≈ 0.314

QMC: M. Matsumoto et. al, PRB 65 (2001); L. Capriotti, F. Becca, PRB 65 (2002) 

Realized in C9H18N2CuBr4  Hong et al., Nat. Phys. 13, 2017;   



  

Coupled Ladders: Full UpdateCoupled Ladders: Full Update

● Initialize by a set of 24 
VBS states with noise

● Fast-full update (FFU), 
use adaptive timestep

Large α (Néel):                                                      JH and F. Becca, Phys. Rev. B 100, 054429 (2019)

● FU shows narrow distributions of minima (in e and m)
● slight quantitative difference between D=4 and D=5
 
Small α (paramagnet):
● striking difference between FU for D=4 and D=5
● at D=5 minima are broadly distributed in magnetization !



  

Optimizing IIOptimizing II

(II) Direct energy minimization

1. get gradient

2. steepest descent, CG, L-BFGS, ...

Caveat: How to evaluate the gradient for iPEPS ?

● Finite-Difference: simple, but only for few parameters
D. Poilblanc and M. Mambrini, Phys. Rev. B 96, 014414 (2017)

● Summation schemes: harder with increasing range of H-terms
P. Corboz, Phys. Rev. B 94, 035133 (2016); Vanderstraeten et al., Phys. Rev. B 94, 155123 (2016)

● Algorithmic differentiation (AD): ???
Liao et al., Phys. Rev. X 9, 031041 (2019)



  

Primer: Algorithmic differentiationPrimer: Algorithmic differentiation

Central question: 

How to evaluate the gradient of a complicated 
scalar function of many variables ?

Simple model of a variational energy:

Option 1: Finite difference
                    pick a direction ei in the space of parameters and a small h

● finite precision error, complexity O(N) x O(E) 



  

Primer: Algorithmic differentiationPrimer: Algorithmic differentiation

Core premise of Algorithmic differentiation:

      Functions are ultimately composed of  (many)     
 simple operations as +, -, /, *, exp, log, sin, ...

Assume that Jacobians are known:

The forward mode AD

In short:                                                                           Cost: O(N) x O(E) 



  

Primer: Algorithmic differentiationPrimer: Algorithmic differentiation

The reverse mode AD

I. Evaluate E(x0) and store all the intermediate variables

II. Accumulate the gradient in the reverse order 

Observe: x0 holds all components of the gradient                                        
                                   

Define vector-matrix products - Adjoint functions



  

Primer: Algorithmic differentiationPrimer: Algorithmic differentiation

Take matrix multiplication (= tensor contraction) 

 

Many other matrix functions (ED, SVD, Inverse, …)
                                                                                                                                     M. Giles, https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf

Fresh developments: Complex SVD, Lanczos, …
                                                                                                 Z.Q. Wan, S.X. Zhang arXiv:1909.02659, H. Xie, J.G. Liu, L. Wang arXiv:2001.04121

A (central) example of the adjoint function



  

Algorithmic DifferentiationAlgorithmic Differentiation
● Both Forward mode and Reverse mode evaluate derivatives

with machine precision

● Forward mode has complexity O(N) * O(E)

● Reverse mode has complexity O(1) * O(E)

● Caveat: Memory requirements are not bounded !

● Implemented in major machine-learning frameworks: TensorFlow , 
PyTorch, …

   … or in one of the libraries for your favorite language Fortran, C++,    
       Julia, etc. (see http://www.autodiff.org)



  

J1-J2 Model: Energy as DAGJ1-J2 Model: Energy as DAG

Variational energy

Great hands-on (in Julia):

http://blog.rogerluo.me/
2018/10/23/write-an-ad-
in-one-day/



  

J1-J2 Model: Energy as DAGJ1-J2 Model: Energy as DAG
Enlarged corner
Forward                        Backward

Analogy ? 
S.P.G.  Crone, P.  Corboz 
arXiv:1912.00908



  

Ladders: Revisited with ADLadders: Revisited with AD

Identical protocol: Initialize by a set of 24 VBS states with noise

● energy minimization gives sound result even at D=3 !

● at D=5, despite rough landscape the expected 
magnetization curve is recovered 



  

Intro: Square Lattice J1-J2 ModelIntro: Square Lattice J1-J2 Model

Prototypical example of a frustrated magnet

● Classically: transition at J2/J1 = 0.5

Spin waves:                                               P. Chandra and B. Doucot, Phys. Rev. B 38, 9335 (1988) 

● Transition from Néel to paramagnetic phase near maximally 
frustrated point J2/J1 ≈ 0.5

● For J2/J1  0.6≳  system orders again in stripes

https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf


  

Intro: Square Lattice J1-J2 ModelIntro: Square Lattice J1-J2 Model

Open question: the intermediate phase ?

Spin liquid: gapless U(1),  gapped ℤ2, gapless ℤ2

DMRG: Jiang et al., Phys. Rev. B 86, 024424 (2012)
VMC: Hu et al., Phys. Rev. B 88, 060402 (2013)
PFFRG: Herring et al., Phys. Rev. B 99, 100405(R) (2019)
PEPS: Liu et al., Phys. Rev. B 98, 241109(R) (2018)
iPEPS: D. Poilblanc and M. Mambrini, Phys. Rev. B 96, 014414 (2017)

Valence bond solids: columnar, plaquette

PEPS: Wang et al.,  Phys. Rev. B 94, 075143 (2016)
iPEPS: R. Haghshenas and D. N. Sheng, Phys. Rev. B 97, 174408 (2018)

Gapless spin liquid into VBS

DMRG: L. Wang and A. Sandvik, PRL 121, 107202 (2018)

Gapless(?) spin liquid into Plaquettes

DMRG: Gong et al., Phys. Rev. Lett. 113, 027201 (2014)



  

J1-J2 Model: Phase diagram with ADJ1-J2 Model: Phase diagram with AD

Gradient of the energy is obtained by AD
● iPEPS: single C4v invariant tensor
● several random tensors initializations
● χ used in optimization: 72, 96, 100 and 144



  

J1-J2 Model: Highly-frustrated J1-J2 Model: Highly-frustrated 

Analysis at highly-frustrated point J2=0.5

● power law extrapolation of energy compatible with VMC

● small but finite magnetization



  

J1-J2 Model: Deep in the phase J1-J2 Model: Deep in the phase 

Analysis at point J2=0.55, inside non-magnetic region

● very good iPEPS variational energy 

● odd-D data point to non-magnetic GS



  

J1-J2 Model: Spin-liquid vs VBSJ1-J2 Model: Spin-liquid vs VBS

Generalize to larger unit cells – 2x1, 2x2

● transition to VBS at J2 ≈ 0.52 (1st order ?)

● Finite-D effect or genuine order in thermodynamic limit ?



  

J1-J2 Model vs J-Q ModelJ1-J2 Model vs J-Q Model

J-Q model 

DQCP around J/Q = 0.04              (A. Sandvik PRL 98, 227202 (2007))

● [Prelim.] Finite-D seems to converge toward a sharp feature  



  

Concluding remarks IConcluding remarks I

Open-source suite of codes: tn-torch 

CTM + AD optimization based on PyTorch with CPU 
and/or GPU (https://pytorch.org/)

● CTM for arbitrary unit cells 

● Examples for NN, NNN, plaquette, ...

● Some extra stuff: correlation functions, transfer matrix 
spectrum, ...

github.com/jurajHasik/tn-torch
J. Hasik and G. Mbeng



  

Concluding remarks IIConcluding remarks II

Optimization with FU can be problematic

Gradient optimization (with AD) is a way forward
● easy to extend beyond the nearest-neighbour Hamiltonians

● highly-optimized implementation out-of-the box
(TensorFlow, PyTorch, ...)

iPEPS + AD: a step closer to DMRG-like variational method 
in two dimensions

Devil is in the details: adjoint for iterative SVD / ED, not 
enough memory, derivative at the fixed point ?, ... 
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