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Quantum dynamics and thermalisation

Quantum ergodicity: from a non-equilibrium initial condition |ψ〉
local observable expectation values converge on thermal values as if

U(t) : |ψ〉 7→ ρ ∼ e−βH .

As a consequence, eigenstates should look typical for their energy
(eigenstate thermalisation).

Exceptions:-

I Non-interacting,

I integrable,

I and many-body localised
systems.

}
Generically fails to equilibrate.
Ergodicity is completely
broken.

What would be weak ergodicity breaking?
• Sensitivity to initial conditions, • some atypical eigenstates.



Experimental surprise!

A surprising finding in a Rydberg atom chain experiment!
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Each atom has two states — a ground state ◦ and an excited
Rydberg state •.
If the interaction energy is made very large, then we get the
Rydberg blockade where adjacent excited atoms •• are forbidden.

Starting from a Rydberg crystal state, |Z2〉 = |•◦•◦ · · ·〉, robust
oscillations were observed, but other initial conditions thermalise
much more rapidly.

Bernien et al. Nature 551(7682), 579 (2017)



Effective PXP model
In the blockade regime, the effective Hamiltonian is

H =
∑N

j=1
Pj−1XjPj+1. ◦◦◦ ↔ ◦•◦(c.f. Toffoli gate)

Oscillations in local observables is
reflected in periodic quantum revival
in the many-body wavefunction.
This is shown with the fidelity g(t).

The level statistics is Wigner-Dyson.
This rules out the previously known
examples of non-ergodic quantum
systems.
What’s going on?
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Turner et al. Nat. Phys. 14, 745 (2018)
Turner et al. PRB 98, 155134 (2018)



From quantum revival to special eigenstates
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I A special subspace spanned by
a small number of special
eigenstates which account for
most of the Néel state.

I These have approximately
equally spaced eigenvalues, and
converging with system size.

I Explains the oscillatory
dynamics.

So, what’s behind these atypical
eigenstates?
Where else have we seen
something like this?



Quantum scars for quantum billiards

I Unstable periodic orbits of the chaotic classical billiards (left)
imprint upon a wavefunction (right) after quantisation.

I This is surprising! One might expect unstable classical period
orbits to be lost in the transition to quantum mechanics as
the particle becomes “blurred”.

How can we understand what happens in this system?

Heller PRL 53(16), 1515 (1984)



Quasi-modes and scarred eigenstates
Approximate eigenfunctions of the form
φ = χ(x) sin (ny) for suitable χ [O’Connor
and Heller 1988]. These are like “bouncing
ball” trajectories. But, how to relate this to
the exact eigenstates?

If the quasi-mode has an energy variance
K 2 and there’s at most M eigenstates in a
4K interval around the quasi-mode, then
there exists eigenstates with anomalously
large overlap [Zelditch 2004].This is the
corresponding scarred eigenstate.

Constructing the quasi-modes was simple enough, but showing
that the density of states is non-pathological was much more
challenging [Hassell 2010].

Could we follow this recipe for our many-body system?



Quasi-modes for the PXP model
Split the Hamiltonian into two parts, H = H+ + H−, where H+ is a
raising operator for the Hamming distance DZ2 from the initial
state. This forms a ladder algebra somewhat like a large spin.

Using H+ we can generate a low-dimensional Krylov subspace

K = span
{

(H+)k |Z2〉
}

H 7→ K†HK (1)

and produce approximate eigenstates. This entire construction is
solvable in poly(N) time.



Quasi-modes for the PXP model
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The crosses are the quasi-modes. From these we can approximate
expectations values for eigenstates and for time evolution from a
Néel state.

Could we deform the Hamiltonian to straighten-out the spin?



Deformed Hamiltonian: enhanced revivals
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We can improve the quantum revivals by adding a
perturbation (c.f. Khemani et al. 2018),

H = H0 +
∑
d

hdPj−1XjPj+1(Zj+d + Zj−d),

where hd ≈ cφ−2d . Most of the effect is obtained
by adding just the d = 2 correction.

Choi et al. PRL 122,
220603 (2019)



Deformed Hamiltonian: effective large spin

We can look at matrix elements of H+ and Hz = [H+,H−] and
compare against predictions for an SU(2) representation.
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I The quasi-modes have become essentially exact eigenstates –
the subspace energy variance is around 10−7 for N = 32 sites.

I Outside of the space of scarred states, the dynamics remains
complicated. Level statistics remains WD.

Choi et al. PRL 122,
220603 (2019)



Wider context: PXP model

I TDVP dynamics for PXP model. Periodic orbits in the
Hamiltonian flow on the variational manifold suggested to be
analogous to the periodic orbits of classical billiard systems.
[Ho et al. PRL 2019] and [Michailidis et al. PRX 2020].

I A couple of exact highly-excited eigenstates have been
constructed [Lin et al. PRL 2019]. This proves PXP is not
fully ergodic, but is insufficient to explain the experiment.



Wider context: other models

I Constructing models with atypical eigenstates through a
method of embedding. [Shiraishi et al. PRL 2017] Many
examples by now [1,2,3,...].

I Exact atypical eigenstates have been discovered in the AKLT
model. [Moudgalya et al. PRB 2018]

I Also interesting are models of ‘fractons’ in 1D (effects of
charge-and-dipole conservation). There is a ‘fracturing’ of the
Hilbert space beyond of local symmetry classification.
[Sala et al. arXiv:1904.04266] and [Khemani et al.
arXiv:1904.04815]

Diagram from M. Pretko’s thesis.



Summary and outlook
A strange many-body system which displays a new kind of
ergodicity breaking. An analogy:–

Quantum many-body scar ↔ Single particle quantum scar

Quantum revival ↔ Oscillatory wavepackets
Atypical eigenstates ↔ Scarred wavefunctions
TDVP dynamics regular trajectories ↔ Classical periodic orbits
K-subspace quasimodes ↔ ’bouncing-ball’ quasimodes

I How generic? Necessary or
sufficient conditions.

I Can we find a precise
quantum–classical
correspondence? Hint: Yes!
[Desaules et al. Benasque
poster 2020]
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