Macroscopic entanglement, spin liquids \& Kitaev models

Entanglement in Strongly Correlated Systems Benasque, February 2020

This week's menu

classical spin liquids

quantum spin liquids

Kitaev materials

Matter - a collective phenomenon

water

superconductor

Bose-Einstein condensate

Motivation - a paradigm

interacting many-body system

$$
\mathcal{H}=-\sum_{\langle i j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}
$$

Motivation - a paradigm

interacting many-body system

Motivation - a paradigm

interacting many-body system

Spontaneous symmetry breaking

- ground state has less symmetry than Hamiltonian
- local order parameter
- phase transition / Landau-Ginzburg-Wilson theory

$$
\mathcal{H}=-\sum_{\langle i j\rangle} \sigma_{i}^{z} \sigma_{j}^{z}
$$

Beyond the paradigm - frustrated magnets

Insulating magnets with competing interactions.

long-range	cooperative	high temperature
order	paramagnet	paramagnet

0
T_{c}
Θ_{CW}

How can we quantify 'frustration'?

$$
f=\frac{\Theta_{\mathrm{CW}}}{T_{c}}
$$

Why we should look for the misfits

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

interacting
many-body system

'accidental' degeneracy

residual effects
select ground state
phase diagram of cuprate superconductors

When do interesting things happen?

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

interacting
many-body system

'accidental'
degeneracy

residual effects
select ground state

But they are also notoriously difficult to handle, due to

- multiple energy scales
- complex energy landscapes / slow equilibration
- macroscopic entanglement
- strong coupling

Examples in this talk

interacting many-body system

'accidental' degeneracy

residual effects
select ground state
classical spin liquids
in layered Iridates

spiral spin liquids
in spinel compounds

classical spin liquids

Frustration

Competing interactions lead to frustration.
We will see that frustration can originate interesting spin liquid behavior.

geometric frustration

exchange frustration
classical Kitaev model
triangular lattice antiferromagnet diamond lattice antiferromagnet

The Kitaev model

A. Kitaev, Ann. Phys. 321, 2 (2006)

\vec{S}_{i} O(3) Heisenberg spins

$$
H_{\mathrm{Kitaev}}=\sum_{\gamma-\text { links }} J_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}
$$

Ising-like* interaction

* preferred direction of spin alignment depends on spatial direction of bond

Its quantum mechanical cousin (see also next lecture) is well known for its rare combination of a model of fundamental conceptual importance and an exact analytical solution.

But to a good extent this is also true for the classical model (though much less known).

A first step - numerical simulation

$$
H_{\underline{\text { Heisenberg }}}=\sum_{\gamma \text {-links }} J_{\gamma} \vec{S}_{i} \vec{S}_{j}
$$

$$
H_{\text {Kitaev }}=\sum_{\gamma-\text { links }} J_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}
$$

$$
H_{\underline{\text { Ising }}}=\sum_{\gamma-\text { links }} J_{\gamma} S_{i}^{z} S_{j}^{z}
$$

Frustration in the Kitaev model

Observation: no spin configuration can simultaneously satisfy all exchange terms.

$H_{\text {Kitaev }}=\sum_{\gamma-\text { links }} J_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}$
Ising-like* interaction

* preferred direction of spin alignment depends on spatial direction of bond

$$
\mathrm{T}=0 \text { spin configuration }
$$

Every spin can minimize its energy by pointing parallel to precisely one neighbor.

Emergent magnetostatics

$\mathrm{T}=0$ spin configuration

every spin is parallel to precisely one neighbor
dimer covering

every site is part of precisely one dimer
divergence-free field

$$
\operatorname{div} \vec{B}=0
$$

$$
\begin{aligned}
\boldsymbol{R} & =\hat{e}_{i j} \\
\boldsymbol{K} & =-\hat{e}_{i j} / 2
\end{aligned}
$$

Long-range correlations

divergence-free field

$$
\begin{aligned}
& \sum_{i} \vec{b}_{i}=\vec{M} \\
& \sum_{i} \vec{b}_{i}=-\vec{M} \\
& \operatorname{div} \vec{B}=0
\end{aligned}
$$

An immediate consequence from the strictly enforced local constraint of a divergence-free field is the emergence of long-range correlations.

Emergent magnetostatics - Coulomb phase

look also at D.A. Huse et al., Phys. Rev. Lett. 91, 167004 (2003)
divergence-free field

$$
\begin{gathered}
\operatorname{div} \vec{B}=0 \\
\boldsymbol{B}=\hat{e}_{i j} \\
\boldsymbol{K}=-\hat{e}_{i j} / 2
\end{gathered}
$$

dimer-dimer correlations

Emergent magnetostatics - Coulomb phase

Such analogies to electromagnetism have also been exploited to discuss the frustrated magnetism in spin ice materials and the physics of skyrmion lattices in chiral magnets.

spin ice on the pyrochlore lattice

skyrmion lattice in MnSi

degeneracy - the imprint of frustration

dimer covering

every site is part of precisely one dimer

The number of dimer coverings for the hexagonal lattice grows as

At finite temperature

this degeneracy will be immediately lifted. Monomer defects are introduced (and screened).
\longrightarrow screened Coulomb phase
= high-temperature paramagnet

Triangular lattice Ising model

G.H. Wannier, Phys. Rev. 79, 357 (1950)

$$
H_{\text {Ising }}=\sum_{\gamma-\text { links }} J_{\gamma} S_{i}^{z} S_{j}^{z}
$$

antiferromagnetic
$\mathrm{T}=0$ spin configuration
precisely one frustrated bond per triangle

Triangular lattice Ising model

G.H. Wannier, Phys. Rev. 79, 357 (1950)

$$
Z \propto 1.402581^{N}
$$

degenerate spin configurations

$$
H_{\mathrm{Ising}}=\sum_{\gamma-\mathrm{links}} J_{\gamma} S_{i}^{z} S_{j}^{z}
$$

antiferromagnetic
$\mathrm{T}=0$ spin configuration
precisely one frustrated bond per triangle
$\mathrm{T}=0$ dual dimer configuration
precisely one dimer per site on dual honeycomb lattice

Coulomb correlations

$$
\left\langle S^{z}(\vec{r}) S^{z}(0)\right\rangle \propto \frac{1}{r^{2}}
$$

Spin spirals

Coplanar spirals typically arise in the presence of competing interactions

Elementary ingredient for

- multiferroics
- spin textures/multi-q states
- skyrmion lattices
- Z_{2} vortex lattices
- spiral spin liquids

Description in terms of a single wavevector

$$
\vec{S}(\vec{r})=\operatorname{Re}\left(\left(\vec{S}_{1}+i \vec{S}_{2}\right) e^{i \vec{q} \vec{r}}\right)
$$

Spin spirals

Coplanar spirals typically arise in the presence of competing interactions

Familiar example

- $\mathbf{1 2 0}^{\circ}$ order of Heisenberg AFM on triangular lattice

$$
\vec{q}=\left(\pm \frac{2 \pi}{3}, \frac{2 \pi}{\sqrt{3}}\right)
$$

$$
\vec{S}(\vec{r})=\operatorname{Re}\left(\left(\vec{S}_{1}+i \vec{S}_{2}\right) e^{i \vec{q} \vec{r}}\right)
$$

Spin spirals

Frustrated diamond lattice antiferromagnets

A-site spinels

$\mathrm{MnSc}_{2} \mathrm{~S}_{4}$

$\mathrm{FeSc}_{2} \mathrm{~S}_{4}$
$\mathrm{CoAl}_{2} \mathrm{O}_{4}$
$\mathrm{NiRh}_{2} \mathrm{O}_{4}$

$$
\begin{aligned}
& S=5 / 2 \\
& S=2 \\
& S=3 / 2 \\
& S=1
\end{aligned}
$$

$\mathcal{H}=J_{1} \sum_{\langle i, j\rangle} \vec{S}_{i} \vec{S}_{j}+J_{2} \sum_{\langle\langle i, j\rangle\rangle} \vec{S}_{i} \vec{S}_{j}$
degenerate coplanar spirals form spin spiral surfaces in k-space

$J_{2} / J_{1}=0.2$

$J_{2} / J_{1}=0.4$

$J_{2} / J_{1}=3$

$J_{2} / J_{1}=100$

Spin spirals

Experimental observation of spin spiral surface in inelastic neutron scattering of $\mathrm{MnSc}_{2} \mathrm{~S}_{4}$.

Nature Phys. 3, 487 (2007)

Nature Phys. 13, 157 (2017)

Order by disorder

Nature Physics 3, 487 (2007).

thermal fluctuations

degeneracy of spiral states

supersymmetry

Spin spiral manifolds

Spiral manifolds are extremely reminiscent of Fermi surfaces

triangular lattice

Dirac points

FCC lattice

nodal lines
diamond lattice

Fermi surface

But:
Spiral manifolds describe ground state of classical spin system, while Fermi surfaces are features in the middle of the energy spectrum of an electronic quantum system.

Spin spiral manifolds

spin spirals in a nutshell

$$
\begin{aligned}
\mathcal{H} & =\sum_{\langle i, j\rangle} J_{i j} \vec{S}_{i} \vec{S}_{j} \quad \begin{array}{c}
\text { Fourier transform } \\
\text { of spin model }
\end{array} \\
& =\sum_{\vec{k}} \sum_{A, B} S_{\vec{k}}^{A} \mathbf{M}_{A, B}(\vec{k}) S_{-\vec{k}}^{B}
\end{aligned}
$$

$\underset{\text { matrix }}{\text { diagonalize }} \quad \mathbf{M}_{A, B}(\vec{k})=\sum_{\vec{r}_{B, j}^{A}} J_{\vec{r}_{j}} e^{-i \vec{k} \cdot \vec{r}_{j}}$

find minimal eigenvalues

$$
\lambda_{j}(\vec{k})
$$

free fermions in a nutshell

$$
\begin{aligned}
\mathcal{H} & =\sum_{\langle i, j\rangle} t_{i j} c_{i}^{\dagger} c_{j} \quad \begin{array}{c}
\text { Fourier transform } \\
\text { of spin model }
\end{array} \\
& =\sum_{\vec{k}} \sum_{A, B} c_{A, \vec{k}}^{\dagger} \mathbf{H}_{A, B}(\vec{k}) c_{B, \vec{k}}
\end{aligned}
$$

$$
\underset{\text { matrix }}{\text { diagonalize }} \quad \mathbf{H}_{A, B}(\vec{k})=\sum_{\vec{r}_{B, j}^{A}} t_{\vec{r}_{j}} e^{-i \vec{k} \cdot \vec{r}_{j}}
$$

find zero
eigenvalues

$$
\epsilon_{j}(\vec{k})
$$

Spin spiral manifolds

spin spirals in a nutshell

make ansatz
$\mathbf{M}(\vec{k})=\mathbf{H}(\vec{k})^{2}-E_{0} \cdot \mathbf{1}$
free fermions in a nutshell
$\mathbf{H}_{A, B}(\vec{k})$
with zero
eigenvalues
$\epsilon_{j}(\vec{k})$

$\mathbf{H}(\vec{k})^{2}$ has eigenvalues $\epsilon_{j}(\vec{k})^{2}$
zero eigenvalues of $\mathbf{H}(\vec{k})$
are minimal eigenvalues of $\mathbf{H}(\vec{k})^{2}$

Mapping classical to quantum

spin spirals in a nutshell
$\mathbf{M}_{A, B}(\vec{k})$
with minimal
eigenvalues $\lambda_{j}(\vec{k})$

$\mathbf{H}_{A, B}(\vec{k})$
with zero eigenvalues
$\epsilon_{j}(\vec{k})$

$$
\mathbf{M}(\vec{k})=\mathbf{H}(\vec{k})^{2}-E_{0} \cdot \mathbf{1}
$$

mapping of a classical to quantum system (of same spatial dimensionality) via a 1:1 matrix correspondence

Mapping classical to quantum

$$
\mathbf{M}(\vec{k})=\mathbf{H}(\vec{k})^{2}-E_{0} \cdot \mathbf{1}
$$

What does "squaring" of quantum system mean?
Explicit lattice construction.

coplanar spirals on triangular lattice

$$
\vec{q}=\left(\pm \frac{2 \pi}{3}, \frac{2 \pi}{\sqrt{3}}\right)
$$

free fermions on honeycomb lattice

$$
\vec{q}=\left(\pm \frac{2 \pi}{3}, \frac{2 \pi}{\sqrt{3}}\right)
$$

Mapping classical to quantum

$$
\mathbf{M}(\vec{k})=\mathbf{H}(\vec{k})^{2}-E_{0} \cdot \mathbf{1}
$$

What does "squaring" of quantum system mean?
Explicit lattice construction.

Dirac points
free fermions honeycomb lattice
spin spirals FCC lattice
degenerate spirals

nodal lines
free fermions diamond lattice
general lattice construction

Examples

Spectra of the kagome and extended honeycomb lattice.
spins

fermions

Examples

Spectra of the pyrochlore and extended diamond lattice.
spins

fermions

SUSY formulation

$$
\mathcal{H}^{2}=\left(\begin{array}{cc}
\mathbf{Q}^{\dagger} \mathbf{Q} & 0 \\
0 & \mathbf{Q Q}^{\dagger}
\end{array}\right)
$$

square root

SUSY charge

$$
\mathcal{H}=\left(\begin{array}{cc}
0 & \mathbf{Q}^{\dagger} \\
\mathbf{Q} & 0
\end{array}\right)
$$

We are done with part I.

So what did we learn?

Summary

- Frustrated magnets are a source of remarkably diverse behavior
- complex collective phenomena
- exotic ordered phases
- spin liquids

- Frustration brings along an enhanced sensitivity to otherwise residual effects, which will split degenerate states and reorganize the collective state of a system.

Thanks!

@SimonTrebst

