Macroscopic entanglement, spin liquids & Kitaev models

Entanglement in Strongly Correlated Systems Benasque, February 2020

> Simon Trebst University of Cologne

trebst@thp.uni-koeln.de

This week's menu

classical spin liquids quantum spin liquids Kitaev materials

prelude

Matter – a collective phenomenon

water

Bose-Einstein condensate

Motivation – a paradigm

many-body system

Motivation – a paradigm

many-body system

Motivation – a paradigm

interacting many-body system

Spontaneous symmetry breaking

- ground state has **less symmetry** than Hamiltonian
- local order parameter
- phase transition / Landau-Ginzburg-Wilson theory

Beyond the paradigm – frustrated magnets

© Simon Trebst

Why we should look for the misfits

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

When do interesting things happen?

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of 'accidental' degeneracies.

But they are also notoriously difficult to handle, due to

- multiple energy scales
- complex energy landscapes / slow equilibration
- macroscopic entanglement
- strong coupling

Examples in this talk

classical spin liquids -Kitaev model-

Frustration

Competing interactions lead to frustration.

We will see that frustration can originate interesting spin liquid behavior.

geometric frustration

triangular lattice antiferromagnet diamond lattice antiferromagnet

exchange frustration

classical Kitaev model

The Kitaev model

A. Kitaev, Ann. Phys. 321, 2 (2006)

Its quantum mechanical cousin (see also next lecture) is well known for its rare combination of a model of fundamental conceptual importance and an exact analytical solution.

But to a good extent this is also true for the classical model (though much less known).

© Simon Trebst

A first step – numerical simulation

Frustration in the Kitaev model

Observation: no spin configuration can simultaneously satisfy all exchange terms.

 $H_{\rm Kitaev} = \sum_{\gamma-\rm links} J_{\gamma} S_i^{\gamma} S_j^{\gamma}$

Ising-like* interaction

* preferred direction of spin alignment depends on spatial direction of bond

T=0 spin configuration

Every spin can minimize its energy by pointing parallel to precisely one neighbor.

Emergent magnetostatics

Long-range correlations

An immediate consequence from the strictly enforced **local constraint** of a divergence-free field is the emergence of **long-range correlations**.

Emergent magnetostatics – Coulomb phase

look also at D.A. Huse et al., Phys. Rev. Lett. 91, 167004 (2003)

divergence-free field

dimer-dimer correlations

 $\langle n(\vec{r})n(0)\rangle \propto \frac{1}{r^2}$

point

1.0

Coulomb phase

Emergent magnetostatics – Coulomb phase

Such analogies to electromagnetism have also been exploited to discuss the frustrated magnetism in **spin ice** materials and the physics of **skyrmion lattices** in chiral magnets.

spin ice on the pyrochlore lattice

Moessner group MPI-PKS Dresden

skyrmion lattice in MnSi

Rosch group University of Cologne

degeneracy – the imprint of frustration

dimer covering

every site is part of *precisely* one dimer

The number of dimer coverings for the hexagonal lattice grows as

(for periodic boundary conditions) G.H. Wannier, Phys. Rev. 79, 357 (1950) P.W. Kasteleyn, J. Math. Phys. 4, 287 (1963) V. Elser, J. Phys. A: Math. Gen 17, 1509 (1984)

 $Z \propto 1.402581^N$

At finite temperature

this degeneracy will be immediately lifted. Monomer defects are introduced (and screened).

= high-temperature paramagnet

degeneracy @ T = 0

Simon Trebs

Triangular lattice Ising model

G.H. Wannier, Phys. Rev. 79, 357 (1950)

$$H_{\rm Ising} = \sum_{\gamma-{\rm links}} J_{\gamma} S_i^z S_j^z$$

T=0 spin configuration

precisely one frustrated bond per triangle

Triangular lattice Ising model

G.H. Wannier, Phys. Rev. 79, 357 (1950)

$$H_{\rm Ising} = \sum_{\gamma - \rm links} J_{\gamma} S_i^z S_j^z$$

T=0 spin configuration

precisely one frustrated bond per triangle

T=0 dual dimer configuration

precisely one dimer per site on dual honeycomb lattice

 $Z \propto 1.402581^N$ degenerate spin configurations

Coulomb correlations $\langle S^z(\vec{r})S^z(0)
angle \propto rac{1}{r^2}$

spiral spin liquids

Coplanar spirals typically arise in the presence of competing interactions

Elementary ingredient for

- multiferroics
- spin textures/multi-q states
 - skyrmion lattices
 - Z₂ vortex lattices
- spiral spin liquids

Description in terms of a single wavevector

 $\vec{S}(\vec{r}) = \operatorname{Re}\left(\left(\vec{S}_1 + i\vec{S}_2\right)e^{i\vec{q}\vec{r}}\right)$

Coplanar spirals typically arise in the presence of competing interactions

Familiar example

• **120° order** of Heisenberg AFM on triangular lattice

Frustrated diamond lattice antiferromagnets

A-site spinels	
MnSc ₂ S ₄	S=5/2
FeSc ₂ S ₄	S=2
$CoAl_2O_4$	S=3/2
NiRh ₂ O ₄	S=1

$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} \vec{S}_i \vec{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \vec{S}_i \vec{S}_j$$

degenerate coplanar spirals form **spin spiral surfaces** in *k*-space

 $J_2/J_1 = 0.2$

 $J_2/J_1 = 0.4$

 $J_2/J_1 = 100$

© Simon Trebst

Experimental observation of spin spiral surface in inelastic neutron scattering of MnSc₂S₄.

Order by disorder

Nature Physics 3, 487 (2007).

supersymmetry

Spin spiral manifolds

Spiral manifolds are extremely reminiscent of Fermi surfaces

But:

Spiral manifolds describe ground state of classical spin system, while Fermi surfaces are features in the middle of the energy spectrum of an electronic quantum system.

Spin spiral manifolds

Spin spiral manifolds

Mapping classical to quantum

spin spirals in a nutshell

free fermions in a nutshell

with **minimal** eigenvalues

 $\lambda_i(\vec{k})$

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

mapping of a classical to quantum system (of same spatial dimensionality) via a 1:1 matrix correspondence

→ reminiscent of "topological mechanics"

Mapping classical to quantum

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

What does "**squaring**" of quantum system mean? Explicit **lattice construction**.

Mapping classical to quantum

$$\mathbf{M}(\vec{k}) = \mathbf{H}(\vec{k})^2 - E_0 \cdot \mathbf{1}$$

What does "**squaring**" of quantum system mean? Explicit **lattice construction**.

© Simon Trebst

Examples

Spectra of the **kagome** and **extended honeycomb** lattice.

Examples

Spectra of the **pyrochlore** and **extended diamond** lattice.

SUSY formulation

We are done with part I.

So what did we learn?

Summary

- Frustrated magnets are a source of **remarkably diverse behavior**
 - complex collective phenomena
 - exotic ordered phases
 - spin liquids

 Frustration brings along an enhanced sensitivity to otherwise residual effects, which will split degenerate states and reorganize the collective state of a system.

All slides of this presentation will become available on our group webpage at www.thp.uni-koeln.de/trebst

Thanks!

