
Algorithms for  
Tensor Network Contraction Ordering

Frank Schindler

Adam Jermyn

Benasque, February 17th 2020



Motivation: Machine Learning in Physics
Previously: Use ML models (neural networks, …) as models of nature

ML models as  
variational wavefunctions

Restricted Boltzmann Machines
Carleo & Troyer, Science (2017)

Many-body localization
Schindler, Regnault  
& Neupert, PRB (2017)

Many-body systems w/ sign problem
Broecker, Carrasquilla, Melko  
& Trebst, Scientific Reports (2017)

ML models as phase classifiers

These were good exploratory proof of concepts, but we need to move on!

— and many more —

physically motivated, 

interpretable, controlled 

models of nature

machine learning  
algorithms

replace by

use to find and improve



Tensor Network Contraction
physically motivated, 

interpretable, controlled 

variational wavefunctions

Tensor networks are 

(1) contracting TNs exactly without special structure is exponentially costly in D > 1
many successful approximation schemes (MPOs, CTM, TRG, TNR, …)

Ψ = ,

PEPS Random Graphs

(2) finding exact optimal contraction sequences is exponentially costly in D > 1
NETCON algorithm: Pfeifer, Haegeman & Verstraete, PRE (2014)
Are there good approximation schemes?



Nklmn =
χ

∑
ij

TijklXiYjmn : =

Tensor contraction involves simultaneous sums: 

Nklmn =
χ

∑
j

QjklYjmn,

Qjkl =
χ

∑
i

TijklXi .

32 + 64 = 96 addition and  
multiplication operations

Nklmn =
χ

∑
i

Q′ iklmnXi,

Q′ iklmn =
χ

∑
j

TijklYjmn .

There are two ways to split up the sum:

128 + 64 = 192 addition and  
multiplication operations

Let : Then naively need to perform 
(1+2)*26 = 192 addition and multiplication operations

χ = 2

order of summation matters!



Naive approximation: Greedy algorithm
always contracts the cheapest bond

consider a 6x6 
square tensor  
network (PEPS)

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47
48

49 50 51 52 53 54

55 56 57 58 59 60

0

0.2

0.4

0.6

0.8

1.0
cost

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47
48

49 50 51 52 53 54

55 56 57 58 59 60

greedy sequence:



Can we do better than greedy?

both algorithms often beat 
Greedy using less runtime

(plot: 10x10 PEPS, )χ = 10

their contraction sequences involve 
seemingly suboptimal early contractions 
that avoid high costs later

(plot: 6x6 PEPS, )χ = 10

Simulated Annealing:

global, Monte-Carlo-inspired search

Genetic Algorithm:

global, biological evolution-inspired search



Greedy

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50
51 52 53 54

55 56 57 58 59 60

Annealing

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

55
56 57 58 59 60

Baseline

6x6 PEPS contraction Hall of Fame



System Size Scaling for Random Graphs

System Size Scaling for PEPS



That’s it!


for more, check out 
arXiv:2001.08063 

or find the source code on

https://github.com/frankschindler/OptimizedTensorContraction

1 2 3 4
5 6

7 8 9
10 11 12

13
14

15
16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15
16 17 18

19
20 21 22 23 24

25 26 27 28 29 30


