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OUTLINE

What?

How?

Why?

Or… What is a dynamical structure factor? (Brief)

Or… How can I measure it in a quantum simulator? (Somewhat brief)

Or… Why should anyone care?

In Benasque, we know this one
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We propose to use Ramsey interferometry and single-site addressability, available in synthetic matter
such as cold atoms or trapped ions, to measure real-space and time-resolved spin correlation functions.
These correlation functions directly probe the excitations of the system, which makes it possible to
characterize the underlying many-body states. Moreover, they contain valuable information about phase
transitions where they exhibit scale invariance. We also discuss experimental imperfections and show that
a spin-echo protocol can be used to cancel slow fluctuations in the magnetic field. We explicitly consider
examples of the two-dimensional, antiferromagnetic Heisenberg model and the one-dimensional, long-
range transverse field Ising model to illustrate the technique.
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In condensed matter systems, there exists a common
framework for understanding such diverse probes as neu-
tron and x-ray scattering, electron energy loss spectros-
copy, optical conductivity, scanning tunneling microscopy,
and angle-resolved photoemission. All of these techniques
can be understood in terms of dynamical response func-
tions, which are Fourier transformations of retarded
Green’s functions [1]
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erators are given in the Heisenberg representation AðtÞ ¼
eiĤtAe!iĤt (@ is set to one in this Letter), signs ! ðþÞ
correspond to commutator (anticommutator) Green’s func-
tions, and !ðtÞ is the Heaviside function. Correlation func-
tions provide a direct probe of many-body excitations and
their weight, describe many-body states, and give particu-
larly important information about quantum phase transi-
tions, where they exhibit characteristic scaling forms [2].

In the past few years, the experimental realization of
many-body systems with ultracold atoms [3], polar mole-
cules [4], and ion chains [5] has opened new directions
for exploring quantum dynamics. However, most dynami-
cal studies of such ‘‘synthetic matter’’ correspond to
quench or ramp experiments: The initial state is prepared,

then it undergoes some nontrivial evolution j!ðtÞi ¼
Tte

!i
R

t

0
dt0Ĥðt0Þj!ð0Þi, and some observable A is measured

hAðtÞi ¼ h!ðtÞjAj!ðtÞi. These experiments provide an
exciting new direction for exploring many-body dynamics,
but they do not give direct information about excitations of

many-body systems as contained in dynamical response
functions. Notable exceptions are phase or amplitude shak-
ing of the optical lattice (see, e.g., [6–8], and references
therein) and radio frequency spectroscopy [9], which can
be understood as measuring the single-particle spectral
function (i.e., the imaginary part of the corresponding
response function). However, these techniques cannot be
extended to measuring other types of correlation functions,
such as spin correlation functions in magnetic states as
realized in optical lattices or ion chains, and are often
carried out in a regime far beyond linear response, which
would be required to relate the measurement to theory
within Kubo formalism [1].
In this Letter, we demonstrate that a combination of

Ramsey interference experiments and single-site address-
ability available in ultracold atoms and ion chains can be
used to measure real-space and time-resolved spin corre-
lation functions; see Fig. 1 for an illustration of the

FIG. 1 (color online). Many-body Ramsey interferometry con-
sists of the following steps: (1) A spin system prepared in its
ground state is locally excited by #=2 rotation; (2) the system
evolves in time; (3) a global #=2 rotation is applied, followed by
the measurement of the spin state. This protocol provides the
dynamic many-body Green’s function.
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Tomographic extension to treat a wider class of problems
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The dynamical structure factor is one of the experimental quantities crucial in scrutinizing the validity of
the microscopic description of strongly correlated systems. However, despite its long-standing importance, it
is exceedingly difficult in generic cases to numerically calculate it, ensuring that the necessary approximations
involved yield a correct result. Acknowledging this practical difficulty, we discuss in what way results on the
hardness of classically tracking time evolution under local Hamiltonians are precisely inherited by dynamical
structure factors; and hence offer in the same way the potential computational capabilities that dynamical quan-
tum simulators do: We argue that practically accessible variants of the dynamical structure factors are BQP-hard
for general local Hamiltonians. Complementing these conceptual insights, we improve upon a novel, readily
available, measurement setup allowing for the determination of the dynamical structure factor in different archi-
tectures, including arrays of ultra-cold atoms, trapped ions, Rydberg atoms, and superconducting qubits. Our
results suggest that quantum simulations employing near-term noisy intermediate scale quantum devices should
allow for the observation of features of dynamical structure factors of correlated quantum matter in the presence
of experimental imperfections, for larger system sizes than what is achievable by classical simulation.

I. INTRODUCTION

The field of condensed matter physics has seen a lot of suc-
cesses since its origin. On one hand, analytical tools and the
concept of integrability allows us to use several toy models to
study different natural phenomena to a great deal of success,
as in the case of spin systems or superconducting behaviour
[1–8]. On the other hand, with the advent of powerful com-
putational tools, the field kept advancing, now being able to
study more complex, non-integrable systems, closer to real-
istic materials. For the last several decades, classical algo-
rithms such as Monte Carlo techniques [9], exact diagonaliza-
tion [10], tensor networks [11] and more, have offered some
of the greatest insights into the most surprising behaviour of
many different systems. However, the field of computational
condensed matter physics has been confronted with the same
problem time and time again: the more we understand, the
more complex the models we wish to study become. And
while the current numerical techniques are still extremely use-
ful, in many cases the system sizes need to be constrained to a
couple dozen atomic sites to obtain an efficient simulation, or
the algorithms are just efficient for a narrow class of models.
The fundamental reason this crisis is manifesting arises from
the fact that each one of these physical problems can be con-
nected to a computational problem which belong to a (in many
cases) well determined complexity class [12]. The computa-
tional complexity of these problems tells us how efficiently a
given problem can be solved with a given resource, bounding
the possible performance of any algorithm using that resource.
Despite the field slowly pushing the boundaries of what is
possible with recent new methodology in the form of tensor
network methods, AI algorithms, and others, the complexity

⇤ Corresponding author: baez@pks.mpg.de

boundary cannot be surpassed with classical algorithms. As
long as the resource is a classical simulation, and considering
certain assumptions believed to be true in the field of com-
plexity theory [13, 14], we know how far we can go. For ex-
ample, in higher dimensional frustrated quantum magnets or
high-Tc superconductors, we have no generic efficient way of
calculating some of the most important time dependent quan-
tum expectation values needed to understand the properties
of the particular phase of interest. In particular, the extent to
which these systems can be simulated classically is limited.
Quantum Monte Carlo is a powerful method that however is
affected by strong sign problems for frustrated and fermionic
systems, and there are severe complexity-theoretic obstacles
to the extent to which the sign problem can be cured [15, 16]
or eased [17]. Exact diagonalization can yield a plethora of
useful results for many different physical systems, but the
computational resources required scale exponentially in the
system size, allowing one to only solve systems with a handful
of lattice sites in the generic case. Other more sophisticated
methods such as MPS, PEPS, MERA, etc. are efficient for one
dimensional short-range systems, but these methods are con-
strained by the amount of entanglement present in the system,
rendering an efficient simulation of higher dimensional, long-
ranged, systems and excited states a challenging task.

In this work, we propose dynamical analogue quantum sim-
ulators [18, 19] as an alternative method to simulate low en-
ergy excitations of strongly correlated matter. In particular
we suggest that dynamical structure factors, which provide
key physical insights into quantum matter, can be accessed
with quantum simulators, while at the same time is a quantity
which is significantly less accessible with classical computers.

Large scale analogue quantum simulation platforms are
unique systems in that they show exceptionally strong quan-
tum effects and allow for measuring expectation values of
microscopic observables [20–27]. These simulators create
synthetic systems featuring the same physical behaviour we

ar
X

iv
:1

91
2.

06
07

6v
2 

 [c
on

d-
m

at
.st

r-
el

]  
6 

Ja
n 

20
20

arXiv: 1912.0607 



WHAT? DYNAMICAL STRUCTURE FACTOR FOR SPIN SYSTEMS

Sa,b(q, ω) =
1
N ∑

ij
∫

∞

−∞
dte−iq.(ri−rj)eiωtCa,b

i,j (t) , Ca,b
i,j (t) = ⟨σa

i (0)σb
j (t)⟩

Approximating the dynamical structure factor  within a constant error  
over an interval of time  is BQP-hard. 

For polynomially large ( ) then it is BQP-hard to approximate  
within an error .

Sα,β
t0,t1

(q, ω) ε ≤ 1/8
[t0, t1]

t1 − t0 = poly(n) Sα,β
t0,t1

(q, ω)
ε = poly−1(n)

L

⟨σa
i (t)σb

j (t′ )⟩

⟨σa
i (t)⟩

| | [σz
i (t), σz

j ] | |

19

Sa,b(q, ω)
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ED - Krylov
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Trapped ions 
Rydberg atoms

Neutron Scattering

Neutron Scattering

Magnetization

27 53

This proposal

Two body observables Simulation leap for two body observables

Simulation of time dependent two body observables in long range models

25

J. Haferkamp, J. Bermejo-Vega, J. Eisert

arXiv: 1912.0607 

 

Confined Quasiparticle Dynamics in Long-Range Interacting Quantum Spin Chains
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We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising
model with power-law (1=rα) interactions. We find that long-range interactions give rise to a confining
potential, which couples pairs of domain walls (kinks) into bound quasiparticles, analogous to mesonic
states in high-energy physics. We show that these quasiparticles have signatures in the dynamics of order
parameters following a global quench, and the Fourier spectrum of these order parameters can be exploited
as a direct probe of the masses of the confined quasiparticles. We introduce a two-kink model to
qualitatively explain the phenomenon of long-range-interaction-induced confinement and to quantitatively
predict the masses of the bound quasiparticles. Furthermore, we illustrate that these quasiparticle states can
lead to slow thermalization of one-point observables for certain initial states. Our work is readily applicable
to current trapped-ion experiments.

DOI: 10.1103/PhysRevLett.122.150601

Long-range interacting quantum systems occur naturally
in numerous quantum simulators [1–10]. A paradigmatic
model considers interactions decaying with distance r as
a power law 1=rα. This describes the interaction term in
trapped-ion spin systems [3,11–15], polar molecules
[16–19], magnetic atoms [5,20,21], and Rydberg atoms
[1,2,22,23]. One remarkable consequence of long-range
interactions is the breakdown of locality, where quantum
information bounded by linear “light cones” in short-range
interacting systems [24] can propagate superballistically or
even instantaneously [25–31]. The nonlocal propagation of
quantum correlations in 1D systems has been observed in
trapped-ion experiments [12,13]. Moreover, 1D long-range
interacting quantum systems can host novel physics that is
absent in their short-range counterparts, such as continuous
symmetry breaking [32,33].
Recently, it has been shown that confinement—which

has origins in high-energy physics—has dramatic signa-
tures in the quantum quench dynamics of short-range
interacting spin chains [34]. Owing to confinement, quarks
cannot be directly observed in nature as they form mesons
and baryons due to strong interactions [35,36]. An arche-
typal model with analogous confinement effects in quan-
tum many-body systems is the 1D short-range interacting
Ising model with both transverse and longitudinal fields
[37–42]. For a vanishing longitudinal field, domain-wall
quasiparticles propagate freely and map out light-cone
spreading of quantum information [41–44]. As first pro-
posed by McCoy and Wu [45,46] (see also Ref. [47]), a
nonzero longitudinal field induces an attractive linear
potential between two domain walls and confines them
into mesonic quasiparticles. Recently, Kormos et al.

investigated global quenches in this system and showed
that the nonequilibrium dynamics can be used to probe the
confined quasiparticle excitations [34].
In thiswork,we study the nonequilibriumdynamics of the

long-range interacting transverse-field Ising model without
a longitudinal field after a global quantum quench. We find
that long-range interactions introduce an effective attractive
force between a pair of domain walls, thus, confining them
into a bound state analogous to the meson in high-energy
physics. We calculate time-dependent order parameters and
connected correlation functions, both of which feature clear
signatures of confined quasiparticle excitations [41,42]. The
masses of these bound quasiparticles—the energy gaps
relative to the ground state—can be directly extracted from
the Fourier spectrum of time-dependent order parameters
[34,41,42]. We introduce a two-kink model to explicitly
show that the confining potential comes from long-range
interactions. This effective model also gives good predic-
tions for the quasiparticles’ masses and their dispersion
relations. Furthermore, we study the effect of confined
quasiparticles on the thermalization of different initial states.
We find that for certain initial states, one-point observables
exhibit slow thermalization [41,42,48,49], whichmight help
protect ordered phases in the prethermal region [50–52].
We note that our study is in agreement with the general

mechanism of global quantum quenches, first formulated
in Refs. [41,42,44] for short-range interacting systems,
and demonstrates that the general theory developed in
Refs. [41,42,44] holds for systems with long-range inter-
actions. Our work is well within the reach of current
trapped-ion experiments [15] and other atomic, molecular,
and optical (AMO) experimental platforms [1,9,53].

PHYSICAL REVIEW LETTERS 122, 150601 (2019)
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HOW? DSFS IN QUANTUM SIMULATORS

Analogue quantum simulator: Non universal, designed to tackle a specific class of problems

Optical lattices Fermi and Bose Hubbard models, Lattice gauge theories, spin systems

Trapped ions Long range transverse field Ising model with variable interaction range

Rydberg atoms Long range transverse field Ising and XXZ models

Superconducting qubits Designed for universal computations. Used for Hubbard and XY models

Fukuhara, et. al. Nature 2013, Nature 2013, PRL 2015. Mazurenko, et. al, Nature 2017. etc…

Islam, et. al. Science 2013. Bohnet, et. al. Science 2016. Zhang, et. al. Nature 2017. etc…

Bernien, et. al. Nature 2017. Levine, et. al. PRL 2018. Labuhn, et. al. Nature 2016. etc… 

Hacohen-Gourgy, et. al. PRL 2015. Roushan, et. al. Science 2017. etc…?

Measurement is usually done by a single shot. Based on the fluorescence of the ions or atoms

We need to get an unequal time correlation from one single measurement

Ready to perform the experiment



Transverse field Ising model:

Spin-reflection parity
σx → − σx σz → − σzσy → σy

H(J, B) = ∑
i

Bzσz
i − ∑

i<j

Ji, jσx
i σx

j .

Expectation value of an odd 
number of Paulis vanishes

U( j) =
1

2
(1 − iσx

j )Controlled local initial operation

|ψ⟩ = U(t)U( j) |ψ0⟩Free time evolution

⟨ψ |σx
i |ψ⟩ = ⟨ψ0 |U( j)†σx

i (t)U( j) |ψ0⟩ = Gret(i, j,t)
x,x

Local measurement

Sxx(q, ω) = −
1
π

[1 + nB(ω)]Im[Gret
x,x(q, ω)]

Fluctuation-Dissipation within linear response theory

Gret
x,x(t) = −

i
2

⟨σx
i (t)σx

j (0) − σx
j (0)σx

i (t)⟩0

|ψ0⟩

Initial state 
vector Local excitation

Time evolution

Measurement
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Without symmetries -> Tomographic 
recovery of the dynamical structure factor
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WHY? TEST CASES 

Ĥ(J, B) = ∑
i

Bzσz
i − ∑

i<j

Jijσx
i σx

j Ji, j =
J

| i − j |α

Transverse field Ising model:
Long range interactions Full ED: 16-18 sites

Lanczos: 28 sites, 250 states

Dynamics

TVDP: 128 sites, equal time correlators
Confinement “Nearest neighbour”
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WHY? TEST CASES 

Ĥ(J, B) = ∑
i

Bzσz
i − ∑

i<j

Jijσx
i σx

j Ji, j =
J

| i − j |α

Transverse field Ising model:
Long range interactions Full ED: 16-18 sites

Lanczos: 28 sites, 250 states

Dynamics

TVDP: 128 sites, equal time correlators

critical exponents that can be tuned by the decay of the
interactions !; see Fig. 3(a) for the rich phase diagram.

The transverse field Ising model obeys the global sym-
metry "x ! !"x, "y ! "y, and "z ! !"z, and thus
only expectation values with an odd number of "x opera-
tors vanish in Eq. (5). However, when choosing the phases
#1 ¼ 0 and#2 ¼ $=2 it can be shown that the many-body
Ramsey protocol measures [12]

Mijð0;$=2; tÞ ¼
1

2
Gxx;!

ij : (10)

We illustrate that insight into the many-body physics can
be obtained by studying systems which are currently
experimentally realizable. To this end, we solve systems
of up to 22 ions with exact diagonalization based on the
Lanczos technique [46] and calculate their dynamical
Green’s functions. As realized in experiments, we gener-
ally consider open boundary conditions. In Fig. 4(a), we
show dynamic Green’s functions Gxx;!

L=2;L=2 for the interac-

tion exponent ! ¼ 2 in the FM and in the PM phase. The
time-resolved Green’s functions characterize the many-
body states: In the FM phase (h smaller than the critical
field hc that determines the QPT) the response in the
direction of the ferromagnet is small, which manifests in
Gxx;!

L=2;L=2 through small amplitude oscillations whose enve-

lope decays very slowly, whereas in the PM phase (h > hc)
the response is large, which in Gxx;!

L=2;L=2 manifests in oscil-

lations that initially have a large amplitude but decay
quickly in time.

The oscillations in the dynamic Green’s functions
contain information about the excitations in the system.
In particular, in the PM phase oscillations with a frequency
corresponding to the gap [2] are expected. In addition, the
spectrum is cut off due to the lattice, which gives rise to a
second energy scale present in both the PM and the FM

phase. In Fig. 4(b), we show the frequency components
extracted from the Fourier transform of Gxx;!

L=2;L=2ðtÞ with
error bars given by the resolution in frequency space for
both short-ranged interactions (1=! ¼ 0, squares) and
long-ranged interactions (1=! ¼ 1=2, circles). For short-
range interactions 1=! ¼ 0, the gap can be evaluated
analytically ! ¼ 2jh! Jj [2], which grows linearly with
the transverse field as indicated by the solid red (dark) line
in Fig. 4(b). The upper band edge at!þ 4J is indicated by
the dashed red (dark) line. At the critical point hc ¼ J, the
gap closes; however, oscillations from the finite bandwidth
are still present. For long-ranged interactions, we extract
the excitation gap and the bandwidth numerically. Results
are shown by blue (light) solid and dashed lines, respec-
tively. The upper band edge [blue (light) dashed line]
almost coincides with the short-range system. The gap
and the upper band edge are in good agreement with the
frequency components extracted from the correlation
functions.
Along the quantum critical line h ¼ hcð!Þ, which can be

determined experimentally by measuring, for example, the
Binder ratio [47], the system becomes scale invariant, and
thus spatial and temporal correlations decay as power laws
[see Fig. 3(b)]. In Ref. [12], we show in detail that a change
in the critical exponents should be observable in current
experiments already with a medium number of ions.
Conclusions and outlook.—In summary, we proposed a

protocol to measure real-space and time-resolved spin
correlation functions by using many-body Ramsey inter-
ference. We discuss the protocol for two relevant examples
of the Heisenberg and the long-range transverse field Ising
model, which can be experimentally realized with cold
atoms, polar molecules, and trapped ions. In this work
we focused on spin-1=2 systems. However, the proposed
protocol can be generalized to higher-spin systems when
realizing the Rabi pulses (2) with the respective higher-
spin operators. In order to implement the generalized spin
rotations, spin states should be encoded in internal atomic
states with isotropic energy spacing which can be simul-
taneously addressed by Rabi pulses.
The measurement of the time-dependent Green’s func-

tions provides important information on many-body exci-
tations and on quantum phase transitions where they
exhibit specific scaling laws. Having such tools at hand
makes it possible to explore fundamental, theoretically
much debated many-body phenomena. In particular, we
believe that the many-body localization transition [48–50]
and many-body localized phases, which are characterized
by a dephasing time that grows exponentially with the
distance between two particles in the sample [51–53],
can be explored by using the ideas described in this work.
Another question is whether the many-body Ramsey

protocol can be applied to systems out of equilibrium.
The protocol we propose is based on discrete symmetries
of many-body eigenstates and thus holds for ensembles
described by diagonal density matrices, while a generic

(a) (b)

FIG. 4 (color online). Dynamic Green’s function Gxx;!
L=2;L=2ðtÞ

(a) of the long-range, transverse field Ising model (9) for
interaction exponent ! ¼ 2 in the ferromagnetic (h ¼ J) and
in the paramagnetic (h ¼ 6J) phases; see the legend. (b)
Oscillation frequencies (symbols) in Gxx;!

L=2;L=2ðtÞ obtained from

a Fourier transform of the time-dependent data as a function of
the transverse field h for two different values of the interaction
exponent !. Error bars indicate the resolution of the Fourier
transform in frequency space. Solid lines illustrate the excitation
gap, and the dashed line the upper band edge, which defines the
oscillations contributing to the dynamic correlations.
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Frequency of oscillations is 
related to the gap

Quantum phase transition 
at h /J = 1
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Confinement “Nearest neighbour”



WHY? TEST CASES AND NOISE MODELS

Initial state 
fidelity

Globally fluctuating Ising couplings

J =
J(0)
rα

(1 + A sin(wt))

Random Ising interactions

J =
J(0)
rα

(1 + Aξ)

Random transverse field

Bz = B + Aξ

Bad ground state 
preparation

Adiabatically or 
QAOA preparation

Periodic oscillations of the 
Rabi frequency induced by 

non-uniform laser frequency

Trapped ions: Spin-spin interactions 
generated by coupling hyperfine 

states to normal mode of motion of 
the ions

 depends on atom-atom distance and on 
coupling to the ions

Ω

Finite temperatures, and imperfect 
control over ions/atoms leads to 

changes on the distance between 
components 

Random interactions in both 
architectures 

& 

Random fields in Rydberg 
atom setups 

Rabi frequency is not uniform in the 
chain nor from shot to shot

Experiments have control up to A ∝ 0.01

J ∝ Ω
Bz ∝ Ω

Trapped ionsRydberg atoms
J ∝ Ω

 is the Rabi frequencyΩ

α ∝ 6
α ∈ [0,3]
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DSF: FOURIER TRANSFORM AS A NOISE FILTER
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DSF: FOURIER TRANSFORM AS A NOISE FILTER
Random fields - Long range model
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TEST CASES AND NOISE MODELS

Long range scaling up to L = 14 ΔS =
1

L2Nω ∑
q

∑
ω

S(q, ω)

Globally fluctuating Ising 
couplings

Random Ising interactions Random transverse field

14

Figure 6. Effect of experimental imperfections in the DSF for the long range transverse field Ising model. We plot the average error, �S =
1

N!

1
L2

P
!

P
q �S(q,!) as a function of the interaction range, ↵, for L = 14 sites. a) Effects of laser intensity fluctuations. These

fluctuations are more noticeable for higher interactions ranges, with the error being minimal at ↵ = 1, and saturating at ↵ > 3. b) and c)
Effect of lattice imperfection for random fields (b)) and random interactions (c)). For both these cases the effect is the same, the DSF is
highly susceptible to randomness at low values of ↵, and it monotonically becomes more robust as ↵ is increased, recovering the short range
behaviuor for ↵ ! 1.

(a)

(d)

(b)

(e)

Figure 7. Average DSF error as a function of sizes for the long range transverse field Ising model for ↵ = 1.5 ((a), (b), and (c)), as well as for
↵ = 6 ((d), (e), and (f)). (a) and (d) Effects of laser intensity fluctuations for . (b) and (e) Effect of lattice imperfection. (c) and (f) random
fields, (c) random interactions. For all these cases, at the experimental level of control over the different imperfections, A < 5% the error is
small and constant along the whole range of sizes, hinting at a good scalability.

confinement in long range models via DSF measurements in
quantum simulators.

In Fig. [[this will be in the appendix]] we show the maxi-
mal error as a function of frequency (reciprocal space) Eqs. 26
(Eqs.27), where we can see that the overall behavior of the er-
ror is qualitatively the same as for the short range TFIM. The
error is concentrated around the gap, with small fluctuations
at other values of ! for strong imperfections. For small noise
levels (1%�5%) the error in the DSF is negligible, for all im-
perfections models, as it was found for the short range TFIM.

In Fig. 6 we show the integrated error (Eq. 29) as a function
of the interactions range ↵ (see Eq. 23) for the models cor-
responding to evolution imperfections. Fig. 6(a) show the er-
ror for the case of laser intensity fluctuations, while Fig. 6(b)
and (c) show the random fields and random interactions re-
spectively. In both cases we see two regimes, where the error
drastically changes for 1 < ↵ < 3, while it stabilizes for

↵ > 3. For the laser intensity fluctuations, the error monoton-
ically increases in the first regime, and saturates in the second.
On the other hand, the opposite behavior is observed for the
lattice imperfections, where the error decreases as a function
of ↵. We remind the reader that for ↵ > 3 the system quali-
tatively behaves as the short range TFIM, following a gener-
alized Lieb-Robinson bound, and exactly recovering the short
range model at ↵ ! 1.

While the errors change as the value of ↵ is changed at
the noise levels present in the current architectures, the in-
tegrated error is negligible indicating the DSF at all values
of ↵ can be probed [[using]] these setups and the measure-
ment would yield correct results [[(what is the meaning of
correct?)]]. Please note that the behavior, when the errors are
not negligible is also interesting since they connect to Flo-
quet (laser intensity fluctuations), and disorder (random fields
and interactions) physics, [[e :)]]specially at small values of

α = 1.5 α = 1.5 α = 1.5

α = 6 α = 6 α = 6
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Experiments have control up to A ∝ 0.01

Imperfection effects are negligible and scale in a controlled way up to A ∝ 0.05



TEST CASES AND NOISE MODELS
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highly susceptible to randomness at low values of ↵, and it monotonically becomes more robust as ↵ is increased, recovering the short range
behaviuor for ↵ ! 1.

Figure 7. Average DSF error as a function of sizes for the long range transverse field Ising model for ↵ = 1.5 ((a), (b), and (c)), as well as for
↵ = 6 ((d), (e), and (f)). (a) and (d) Effects of laser intensity fluctuations for . (b) and (e) Effect of lattice imperfection. (c) and (f) random
fields, (c) random interactions. For all these cases, at the experimental level of control over the different imperfections, A < 5% the error is
small and constant along the whole range of sizes, hinting at a good scalability.

confinement in long range models via DSF measurements in
quantum simulators.

In Fig. [[this will be in the appendix]] we show the maxi-
mal error as a function of frequency (reciprocal space) Eqs. 26
(Eqs.27), where we can see that the overall behavior of the er-
ror is qualitatively the same as for the short range TFIM. The
error is concentrated around the gap, with small fluctuations
at other values of ! for strong imperfections. For small noise
levels (1%�5%) the error in the DSF is negligible, for all im-
perfections models, as it was found for the short range TFIM.

In Fig. 6 we show the integrated error (Eq. 29) as a function
of the interactions range ↵ (see Eq. 23) for the models cor-
responding to evolution imperfections. Fig. 6(a) show the er-
ror for the case of laser intensity fluctuations, while Fig. 6(b)
and (c) show the random fields and random interactions re-
spectively. In both cases we see two regimes, where the error
drastically changes for 1 < ↵ < 3, while it stabilizes for

↵ > 3. For the laser intensity fluctuations, the error monoton-
ically increases in the first regime, and saturates in the second.
On the other hand, the opposite behavior is observed for the
lattice imperfections, where the error decreases as a function
of ↵. We remind the reader that for ↵ > 3 the system quali-
tatively behaves as the short range TFIM, following a gener-
alized Lieb-Robinson bound, and exactly recovering the short
range model at ↵ ! 1.

While the errors change as the value of ↵ is changed at
the noise levels present in the current architectures, the in-
tegrated error is negligible indicating the DSF at all values
of ↵ can be probed [[using]] these setups and the measure-
ment would yield correct results [[(what is the meaning of
correct?)]]. Please note that the behavior, when the errors are
not negligible is also interesting since they connect to Flo-
quet (laser intensity fluctuations), and disorder (random fields
and interactions) physics, [[e :)]]specially at small values of

Effect of α ΔS =
1

L2Nω ∑
q

∑
ω

S(q, ω)

Globally fluctuating Ising 
couplings Random Ising interactions Random transverse field

J =
J(0)
rα

(1 + A sin(wt)) J =
J(0)
rα

(1 + Aξ) Bz = B + Aξ

Small noise: equilibrium 
dynamics. 

Strong noise: Floquet physics (?)

Small noise: equilibrium dynamics. 

Strong noise: Many body localisation (?)

Confinement of excitations

MLB, et al. arXiv: 1912.0607 

Access to confined regime up to A ∝ 0.05



We have shown that DSFs can be accessed with analog quantum simulators

For the case of short and long range TFIM, the DSF is robust to experimental imperfections

Strong levels of imperfections can lead to interesting many body phenomena on exotic states

We can access exotic confined states of the long range TFIM

CONCLUSIONS

Which other initial excitations can we use? 

Do we recover useful Green functions? ARPES, Raman?

Transport properties of Hubbard models out of equilibrium?

Can we study many body effects from strong imperfection levels?

PROMISING 
DIRECTIONS
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