Macroscopic entanglement, spin liquids & Kitaev materials

Entanglement in Strongly Correlated Systems Benasque, February 2020

> Simon Trebst University of Cologne

trebst@thp.uni-koeln.de

When do interesting things happen?

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of **'accidental' degeneracies**.

When do interesting things happen?

Some of the most intriguing phenomena in condensed matter physics arise from the splitting of **'accidental' degeneracies**.

But they are also **notoriously difficult** to handle, due to

- multiple energy scales
- complex energy landscapes / slow equilibration
- strong coupling
- macroscopic entanglement

Example – frustrated magnets

interacting many-body system

'accidental' degeneracy

residual effects select ground state

Example – quantum Hall liquids

Landau level degeneracy

fractional quantum Hall

orbital states

incompressible liquid

partially filled level Coulomb repulsion **incompressible** liquid

Example – twisted bilayer graphene

electronic band structure with a flat band in twisted bilayer graphene

Jarillo-Herrero group, Nature **556**, 43 (April 2018)

spin-orbit materials

Spin-orbit coupling

Spin-orbit coupling 101 – quantum mechanics lecture

relativistic correction

$$\Delta E = \frac{\lambda}{\hbar^2} \, \vec{l} \cdot \vec{s} = \frac{\lambda}{2} \left[j(j-1) - l(l-1) - s(s-1) \right]$$

$$\lambda = \frac{Z e^2 \mu_0 \hbar^2}{8\pi m_e^2 r^3} \qquad r \propto 1/Z \qquad \lambda \propto Z^4$$

Spin-orbit coupling in condensed matter

4d/5d transition metal compounds

Transition metal oxides with **partially filled 4d/5d shells** exhibit an intricate interplay of **spin-orbit coupling**, **electronic correlations**, and **crystal field effects** resulting in a **broad variety of metallic and insulating states**.

spin-orbit coupling λ/t

W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annual Review of Condensed Matter Physics 5, 57 (2014).

j=1/2 Mott insulators

Why are these spin-orbit entangled j=1/2 Mott insulators interesting?

spin-orbit entangled Mott insulators

Why are these spin-orbit entangled j=1/2 Mott insulators interesting?

bond-directional exchange

spin-orbit entangled moments

Ba₂CelrO₆

Revelli et al., PRB 100, 085139 (2019)

The double perovskite Ba₂CeIrO₆ is the **best j=1/2 system** we have ever seen, but not really a "Kitaev material".

pristine j=1/2 physics

$$|0\rangle = 0.991 \left| \frac{1}{2}, \frac{1}{2} \right\rangle - 0.130 \left| \frac{3}{2}, \frac{1}{2} \right\rangle$$

- frustrated FCC magnetism, but Kitaev interaction relieves frustration
- strong magneto-elastic effect

Ba₂CelrO₆

Revelli et al., PRB 100, 085139 (2019)

The double perovskite Ba₂CeIrO₆ is the **best j=1/2 system** we have ever seen, but not really a "Kitaev material".

pristine j=1/2 physics

$$|0\rangle = 0.991 \left| \frac{1}{2}, \frac{1}{2} \right\rangle - 0.130 \left| \frac{3}{2}, \frac{1}{2} \right\rangle$$

- frustrated FCC magnetism, but Kitaev interaction relieves frustration
- strong magneto-elastic effect

honeycomb Kitaev materials

proximate spin liquids

honeycomb Kitaev materials

Na₂IrO₃, a-Li₂IrO₃, RuCl₃, H₂LiIr₂O₆

exchange frustration

Kitaev materials - really?

H₂Lilr₂O₆

Candidate materials tend to exhibit magnetic ordering at low T.

© Simon Trebst

honeycomb Kitaev materials

	magnetic moment	ordering temperature	Curie-Weiss temperature
	$\mu_{ m eff}/\mu_{ m B}$	$T_{\rm N}$	Θ_{CW}
Na ₂ IrO ₃	1.79(2)	15 K zig-zag order	-125 K
a-Li ₂ IrO ₃	1.83(5)	15 K counterrotating spirals	-33 K
RuCl ₃	2.2	7 K zig-zag order	-150 K
$H_2LiIr_2O_6$?		?

Neution scattering Banerjee *et al.*, Nature Materials 4604 (2016)

h

a

RuCl₃

neutron scattering Banerjee *et al.*, Nature Materials 4604 (2016)

Proximate spin liquids

Spin liquids?!

Something interesting happens for **RuCl₃ in a magnetic field**.

a new quantum Hall effect

Something interesting happens for **RuCl₃ in a magnetic field**.

$$\kappa_{xy} = \frac{n}{2} \cdot \frac{\pi}{3} \frac{k_B^2 T}{\hbar}$$

A half-quantized thermal Hall response is direct evidence for gapless Majorana modes.

Kitaev material RuCl₃ Y. Kasahara et al., Nature **559**, 227-231 (2018)

v=5/2 FQH state in a 2DEG M. Banerjee et al., Nature **559**, 205–210 (2018)

A half-quantized thermal Hall response is direct evidence for gapless Majorana modes.

Y. Vinkler-Aviv & A. Rosch, PRX **8**, 031032 (2018) M. Ye, G. Halász, L. Savary, and L. Balents, PRL **121**, 147201 (2018)

© Simon Trebs

A half-quantized thermal Hall response is direct evidence for gapless **Majorana modes**.

Y. Vinkler-Aviv & A. Rosch, PRX **8**, 031032 (2018) M. Ye, G. Halász, L. Savary, and L. Balents, PRL **121**, 147201 (2018)

Y. Kasahara et al., Nature **559**, 227-231 (2018)

But why is it quantized in the first place? Why is there no leakage into the bulk, via gapless acoustic phonons?

A half-quantized thermal Hall response is direct evidence for gapless Majorana modes.

How can we distinguish whether the quantized thermal Hall effect arises from the formation of **Landau levels** or a non-trivial **Chern insulator**?

The Kitaev spin liquid is a **chiral spin liquid**, a Chern insulator of Majoranas.

Kitaev material RuCl₃ Y. Kasahara et al., Nature **559**, 227-231 (2018) Its Hall quantization is **angle-dependent** and occurs even for an in-plane field (**anomalous thermal Hall effect**).

T. Yokoi et al., arXiv:2001.01899

back to the Kitaev model

microscopic relevance

Kitaev model – magnetic field effects

$$\mathcal{H} = -\sum_{\gamma - \text{bonds}} K_{\gamma} S_i^{\gamma} S_j^{\gamma} - \sum_i \mathbf{h} \cdot \mathbf{S}_i$$

FM Kitaev coupling

AFM Kitaev coupling

bond-directional exchange

Microscopic relevance to RuCl₃

Gordon et al., Nature Comm. 10, 2470 (2019)

Kaib, Winter & Valenti, PRB **100**, 144445 (2019)

Higgsed U(1) spin liquid?

© Simon Trebst

Summary

Kitaev materials

- a family of spin-orbit assisted j=1/2 Mott insulators
- bond-directional exchange induces frustration
- unconventional forms of magnetism

Bond-directional exchange

- (proximate) spin liquids
- signatures of Majorana fermions and Z₂ gauge field
- spin textures

Family of lattice geometries

- honeycomb Na₂IrO₃, α-Li₂IrO₃, (H_{3/4}Li_{1/4})₂IrO₃, RuCl₃
- triangular Ba₃IrTi₂O₉, Ba₃Ir₂TiO₉, Ba₃Ir₂InO₉
- $3D \beta Li_2 IrO_3$, $\gamma Li_2 IrO_3$, metal-organic compounds

Thanks!