Combining Tensor Networks and Monte Carlo for Lattice Gauge Theories

Entanglement in Strongly Correlated Systems, Benasque

21st of February 2020 | Patrick Emonts, E. Zohar, M. C. Banuls, I. Cirac | MPI of Quantum Optics

Why do we need Lattice Gauge Theories?

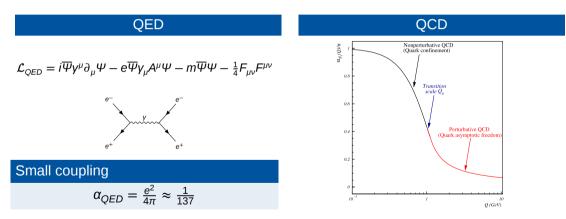


Image adapted from Alexandre Deur, Stanley J. Brodsky, and Guy F. de Téramond, 2016, Progress in Particle and Nuclear Physics

Path integral formalism in QFT

pure QED

$$S_{QED}[A_{\mu}] = -\frac{1}{4} \int dx^{\alpha} F_{\mu\nu}(x_{\alpha}) F^{\mu\nu}(x^{\alpha}) = \int dx^{\alpha} \partial_{\mu} A_{\nu}(x^{\alpha}) \partial^{\nu} A^{\mu}(x^{\alpha})$$

vacuum expectation value

$$\langle \Omega | O[A_{\mu}] | \Omega \rangle = \frac{\int \mathcal{D}AO[A_{\mu}] e^{iS_{QED}[A_{\mu}]}}{\int \mathcal{D}A e^{iS_{QED}[A_{\mu}]}}$$

Problems

- X Numerator oscillating
- ✗ Integration measure ill-defined

Wick rotation

Shift to imaginary time

$$t \rightarrow -i\tau$$

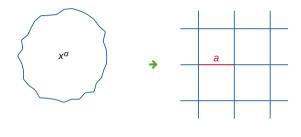
Change of metric from Minkowski to Euclidean

$$e^{iS_{M}} = e^{i\int dx_{M}^{\alpha}\mathcal{L}(x_{M}^{\alpha})} \longrightarrow e^{-\int dx_{E}^{\alpha}\mathcal{L}(x_{E}^{\alpha})} = e^{-S_{E}}$$

Problems

- Numerator converging
- X Integration measure ill-defined

Discretization: Lattice Gauge Theory



$$A_{\mu}
ightarrow U_{\mu} = e^{i a A_{\mu}}$$

Find the lattice action \tilde{S}_E that agrees with S_E in the continuum limit of vanishing a

$$\tilde{S}_E[U] \rightarrow S_E[A](a \rightarrow 0)$$

Kenneth G. Wilson, 1974, Physical Review D

Vacuum expectation value in the action formalism

Vacuum expectation value

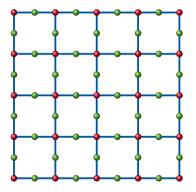
$$\langle O[U] \rangle = \frac{\int \mathcal{D} U O[U] e^{-S_E[U]}}{\int \mathcal{D} U e^{-S_E[U]}}$$
 with $\mathcal{D} U = \prod_{x^{\alpha}} dU_{\mu}(x^{\alpha})$

Problems

Numerator converging

Integration with the Haar measure

Lattice Systems



Hilbert space

$$\mathcal{H} \subset \mathcal{H}_{\text{gauge fields}} \otimes \mathcal{H}_{\text{fermions}}$$

A general state

$$\begin{aligned} |\Psi\rangle &= \int \mathcal{DG} |\mathcal{G}\rangle \left|\Psi_F(\mathcal{G})\right\rangle \\ \text{with } \mathcal{DG} &= \prod_{\mathbf{x},k} dg(\mathbf{x},k) \end{aligned}$$

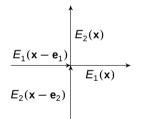
Erez Zohar and J. Ignacio Cirac, 2018, *Physical Review D* Patrick Emonts and Erez Zohar, 2020, *SciPost Physics Lecture Notes*

Gauss law

Gauss law

$$\sum_{k} (E_{k}(\mathbf{x}) - E_{k}(\mathbf{x} - \mathbf{e}_{i})) |\text{phys}\rangle = 0 \quad \forall \mathbf{x}$$

$$\nabla \cdot \mathbf{E} = \mathbf{0}$$



Expectation value of an Observable

Assume that *O* acts only on the gauge field and is diagonal in the group element basis:

$$\begin{split} \langle O \rangle &= \frac{\langle \Psi | O | \Psi \rangle}{\langle \Psi | \Psi \rangle} \\ &= \frac{\int \mathcal{D}\mathcal{G} \langle \mathcal{G} | O | \mathcal{G} \rangle \left\langle \Psi_F(\mathcal{G}) | \Psi_F(\mathcal{G}) \right\rangle}{\int \mathcal{D}\mathcal{G}' \left\langle \Psi_F(\mathcal{G}') | \Psi_F(\mathcal{G}') \right\rangle} \\ &= \int \mathcal{D}\mathcal{GF}_O(\mathcal{G}) p(\mathcal{G}) \end{split}$$
with $p(\mathcal{G}) &= \frac{\langle \Psi_F(\mathcal{G}) | \Psi_F(\mathcal{G}) \rangle}{\int \mathcal{D}\mathcal{G}' \langle \Psi_F(\mathcal{G}') | \Psi_F(\mathcal{G}') \rangle} = \frac{\langle \Psi_F(\mathcal{G}) | \Psi_F(\mathcal{G}) \rangle}{Z} \end{split}$

The rest of this talk

Expectation value

$$\langle O \rangle = \int \mathcal{DGF}_O(\mathcal{G}) p(\mathcal{G})$$

with $p(\mathcal{G}) = \frac{\langle \Psi_F(\mathcal{G}) | \Psi_F(\mathcal{G}) \rangle}{Z}$

TODO List

- **1** How do we construct $|\Psi_F(\mathcal{G})\rangle$?
- 2 How do we efficiently calculate $p(\mathcal{G})$?
- 3 Are those states useful?

Creation of the fermionic state

Desirable properties

- $|\Psi\rangle$ fulfills the Gauss law
- $|\Psi_F(\mathcal{G})
 angle$ allows efficient calculations of
 - the norm
 - expectation values

Definition of Ψ

$$\left| \Psi
ight
angle = \int \mathcal{DG} \left| \mathcal{G}
ight
angle \left| \Psi_F(\mathcal{G})
ight
angle$$

Choice for $|\Psi_F(\mathcal{G})\rangle$

We construct $|\Psi_F(\mathcal{G})\rangle$ with a tensor network.

Patrick Emonts and Erez Zohar, 2020, SciPost Physics Lecture Notes

Definition of Modes

Gauss law in terms of our modes

$$G_0 = E_r - E_l + E_u - E_d$$

= $r_+^{\dagger}r_+ - r_-^{\dagger}r_- - l_+^{\dagger}l_+ + l_-^{\dagger}l_- + u_+^{\dagger}u_+ - u_-^{\dagger}u_- - d_+^{\dagger}d_+ + d_-^{\dagger}d_-$

Definition of positive and negative modes

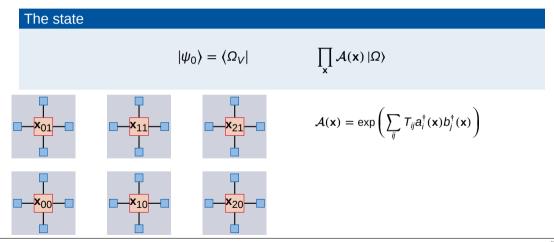
a: $\{I_+, r_-, u_-, d_+\}$ (neg. modes) b: $\{I_-, r_+, u_+, d_-\}$ (pos. modes)

Erez Zohar et al., 2015, Annals of Physics

Creating a fermionic state

The state $|\psi_0\rangle = \langle \Omega_V | \qquad \qquad |\Omega\rangle$

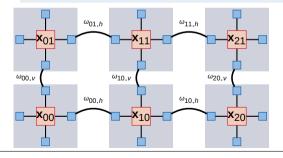
Creating a fermionic state



Creating a fermionic state

The state

$$|\psi_0\rangle = \langle \Omega_V | \prod_{\mathbf{x},k} \omega(\mathbf{x},k) \prod_{\mathbf{x}} \mathcal{A}(\mathbf{x}) | \Omega \rangle$$



$$\mathcal{A}(\mathbf{x}) = \exp\left(\sum_{ij} T_{ij} a_i^{\dagger}(\mathbf{x}) b_j^{\dagger}(\mathbf{x})\right)$$

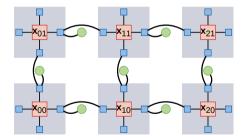
$$\omega(\mathbf{x}, k) = \omega_k(\mathbf{x})\Omega_k(\mathbf{x})\omega_k^{\dagger}(\mathbf{x})$$
$$\omega_0(\mathbf{x}) = \exp(l_+^{\dagger}(\mathbf{x} + \mathbf{e}_1)r_-^{\dagger}(\mathbf{x}))$$
$$\exp(l_-^{\dagger}(\mathbf{x} + \mathbf{e}_1)r_+^{\dagger}(\mathbf{x}))$$

Moving towards local symmetry

Lattice Gauge theory

We demand a local symmetry

$$\sum_{\mathbf{x}} G(\mathbf{x}) |\Psi\rangle = 0 \rightarrow G(\mathbf{x}) |\Psi\rangle = 0$$



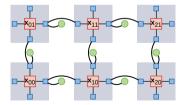
Erez Zohar et al., 2015, *Annals of Physics* Erez Zohar and Michele Burrello, 2016, *New Journal of Physics*

Slide 14

Local symmetry – The state

Substitution

$$\begin{aligned} r^{\dagger}_{\pm}(\mathbf{x}) &\to e^{\pm i\theta(\mathbf{x})} r^{\dagger}_{\pm}(\mathbf{x}) \\ u^{\dagger}_{\pm}(\mathbf{x}) &\to e^{\pm i\theta(\mathbf{x})} u^{\dagger}_{\pm}(\mathbf{x}) \end{aligned}$$



Fermionic state

Fermionic state

$$|\psi(\mathcal{G})\rangle = \langle \Omega_{V}|\prod_{\mathbf{x}} \omega(\mathbf{x}) \prod_{\mathbf{x}} \mathcal{U}_{\Phi(\mathbf{x})} \prod_{\mathbf{x}} A(\mathbf{x}) |\Omega\rangle$$

- ✓ Gauge invariance of $|\Psi\rangle$ by constructing $\Psi(\mathcal{G})$
- ✓ Obeys all demanded symmetries
- ? Efficient to calculate with

Is $|\Psi_{\mathsf{F}}(\mathcal{G}) angle$ special?

The fermionic state $|\Psi_F(\mathcal{G})\rangle$

$$|\Psi_{\mathsf{F}}(\mathcal{G})\rangle = \langle \Omega_{\mathsf{V}}|\prod_{\mathsf{x}}\omega(\mathsf{x})\prod_{\mathsf{x}}\mathcal{U}_{\Phi(\mathsf{x})}\prod_{\mathsf{x}}\mathcal{A}(\mathsf{x})|\Omega\rangle$$

$$\mathcal{A}(\mathbf{x}) = \exp\left(\sum_{ij} T_{ij} a_i^{\dagger}(\mathbf{x}) b_j^{\dagger}(\mathbf{x})\right)$$
$$\omega(x) = \omega_0(\mathbf{x}) \omega_1(\mathbf{x}) \Omega(\mathbf{x}) \omega_1^{\dagger}(\mathbf{x}) \omega_0^{\dagger}(\mathbf{x})$$
$$\omega_0(\mathbf{x}) = \exp\left(l_+^{\dagger}(\mathbf{x} + \mathbf{e}_1) r_-^{\dagger}(\mathbf{x})\right) \exp\left(l_-^{\dagger}(\mathbf{x} + \mathbf{e}_1) r_+^{\dagger}(\mathbf{x})\right)$$
$$\omega_1(\mathbf{x}) = \exp\left(d_+^{\dagger}(\mathbf{x} + \mathbf{e}_2) u_-^{\dagger}(\mathbf{x})\right) \exp\left(d_-^{\dagger}(\mathbf{x} + \mathbf{e}_2) u_+^{\dagger}(\mathbf{x})\right)$$

Gaussian States

Definition

Fermionic Gaussian states are represented by density operators that are exponentials of a quadratic form in Majorana operators.

$$\rho = K \exp\left(-\frac{i}{4} \mathbf{y}^T \mathbf{G} \mathbf{y}\right)$$

Covariance matrix

Covariance matrix for a state Φ :

$$\Gamma_{ab} = \frac{i}{2} \left\langle [\gamma_a, \gamma_b] \right\rangle = \frac{i}{2} \frac{\langle \Phi | [\gamma_a, \gamma_b] | \Phi \rangle}{\langle \Phi | \Phi \rangle}$$

Sergey Bravyi, 2005, Quantum Inf. and Comp.

Calculating the Norm and the Observables

$$|\psi(\mathcal{G})\rangle = \langle \Omega_{V}| \underbrace{\prod_{\mathbf{x}} \omega(x) \prod_{\mathbf{x}} \mathcal{U}_{\phi(\mathbf{x})}}_{\sim \mathcal{F}_{in}(\mathcal{G})} \underbrace{\prod_{\mathbf{x}} A(\mathbf{x})}_{\sim \mathcal{F}_{M}} |\Omega\rangle$$

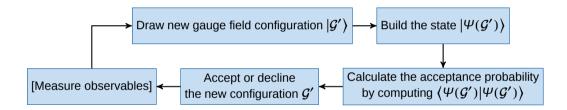
$$\Gamma_{i,j}^{M} = \begin{pmatrix} A & B \\ -B^{T} & D \end{pmatrix}$$

- A Physical-Physical correlations
- **B** Physical-Virtual correlations
- C Virtual-Virtual correlations

Norm

$$\langle \psi(\mathcal{G}) | \psi(\mathcal{G}) \rangle = \sqrt{\det\left(\frac{1 - \Gamma_{in}(\mathcal{G})M_D}{2}\right)}$$

The whole framework



Results for \mathbb{Z}_3

Different phases

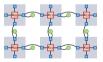
We can model different phases with our variational Ansatz for the state.

Conclusion and Outlook

We need Lattice Gauge Theories

• A Hamiltonian approach shows promising possibilities (time evolution, finite μ)

The GGPEPS Ansatz shows confined and non-confined phases



- Formulation of a variational minimization procedure for the energy
- Optimization of the Monte Carlo procedure for the sampling

Combining Tensor Networks and Monte Carlo for Lattice Gauge Theories

Entanglement in Strongly Correlated Systems, Benasque

21st of February 2020 | Patrick Emonts, E. Zohar, M. C. Banuls, I. Cirac | MPI of Quantum Optics

References I

Sergey Bravyi. "Lagrangian Representation for Fermionic Linear Optics". In: *Quantum Inf. and Comp.* 5.3 (2005), pp. 216–238.

Alexandre Deur, Stanley J. Brodsky, and Guy F. de Téramond. "The QCD Running Coupling". In: *Progress in Particle and Nuclear Physics* 90 (Sept. 2016), pp. 1–74. DOI: 10.1016/j.ppnp.2016.04.003.

Patrick Emonts and Erez Zohar. "Gauss Law, Minimal Coupling and Fermionic PEPS for Lattice Gauge Theories". In: *SciPost Physics Lecture Notes* (Jan. 17, 2020), p. 12. DOI: 10.21468/SciPostPhysLectNotes.12.

Kenneth G. Wilson. "Confinement of Quarks". In: *Physical Review D* 10.8 (Oct. 15, 1974), pp. 2445–2459. DOI: 10.1103/PhysRevD.10.2445.

References II

Erez Zohar and Michele Burrello. "Building Projected Entangled Pair States with a Local Gauge Symmetry". In: *New Journal of Physics* 18.4 (Apr. 8, 2016), p. 043008. DOI: 10.1088/1367-2630/18/4/043008.

Erez Zohar and J. Ignacio Cirac. "Combining Tensor Networks with Monte Carlo Methods for Lattice Gauge Theories". In: *Physical Review D* 97.3 (Feb. 23, 2018). DOI: 10.1103/PhysRevD.97.034510.

Erez Zohar et al. "Fermionic Projected Entangled Pair States and Local U(1) Gauge Theories". In: Annals of Physics 363 (Dec. 2015), pp. 385–439. DOI: 10.1016/j.aop.2015.10.009.

