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Why do we need Lattice Gauge Theories?

QED
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Fig. 4.3. Unified coupling obtained from the analytic matching of nonperturbative and perturbative QCD regimes. The procedure determines the relation

between ΛMS and κ or equivalently hadron masses. The transition scale Q0 between the large and short-distance regimes of QCD is determined as well.

number n which is associated with the number of nodes in its wavefunction. Moreover the slope in L and n are identical

phenomenologically. These universal features in fact follow from the eigenvalues of LFSE with the harmonic oscillator

potential V (ζ 2) = κ4ζ 2 [130]. The lightest eigenvalue, corresponding to the pion, has zero mass in the chiral limitmq → 0.

In the case of heavy quark Q–Q states, the effective nonrelativistic static potential between two heavy quarks (Q–Q ) of

mass mQ ≫ Λ separated by a distance r is well described by:

V (r) = −
4

3

αV (r)

r
+ σ r. (4.15)

The first term is a perturbative, Coulomb-type, one-gluon exchange contribution. The hadronic wavefunctions and the

fine structure of the hadron spectrum are sensitive to this term. When αV (r) is approximated as an averaged coupling ⟨αV ⟩,

Eq. (4.15) is known as the Cornell potential [206]. The mean value of the coupling ⟨αV ⟩ depends on the size of the hadrons

considered. Its value in GeV units spans from 0.19 to 0.4, with an optimal value of 0.22 [206–208]. In the context of an

IR-freezing behavior of αV (Q 2), this implies a freezing value of αV (0) = 0.42 ± 0.03 [206–208].

The second term in Eq. (4.15) is a linear confining potential which can be interpreted as the string tension between the

Q–Q pair, with σ ∼ 0.18 GeV2. This term controls the slopes and intercepts of the Regge trajectories. The QCD string picture

was first postulated by Nambu, Nielsen and Susskind to interpret the Regge trajectories [209]. A common interpretation is

that the string is formed by a chromoelectric flux tube and is responsible for quark confinement. Regge trajectories stem

straightforwardly from the string picture: the faster a hadron spins, the larger the string tension must be to compensate for

the centrifugal force, and hence the larger its mass [210].

In fact, the AdS/QCD holographic QCD framework which yields the harmonic oscillator potential V (ζ 2) = κ4ζ 2 in the

light-front transverse coordinate ζ for light quark pairs, corresponds to a linear potential for heavy quarks in the non-

relativistic instant-form radial coordinate r for large distances [203]. The string tension for heavy quarks can then be

predicted from holographic QCD to be:

σAdS = 2κ2/π ≃ 0.18 GeV2, (4.16)

which is remarkably consistent with fits to the quarkonium data.

A more accurate potential than that provided by Eq. (4.15) includes velocity-dependent and spin-dependent corrections,

see Refs. [211] and [49] for reviews.

The validity of Eq. (4.15) is confirmed for heavy quarks by lattice QCD simulations. However, in (2+1) lattice simulations,

αV (0) ∼ 0.3 [212], somewhat smaller than the value determined from the Cornell potential. Earlier quenched calculations

resulted in an even smaller value of the coupling, αV (0) ∼ 0.22 [212].

In addition to lattice QCD, other nonperturbative approaches also suggest the form of Eq. (4.15). In the Coulomb

gauge, the instantaneous gluon propagator leads to a linear static Q–Q potential [162–165], as was advocated by Gribov

and Zwanziger [161,213]; see Section 4.7. Generally, it is expected that in the IR, the gluon propagator is modified by

nonperturbative effects and displays a 1/


Q 2 + f (Q 2)
2

dipole form that would lead to the linear IR potential [214]. (The

function f (Q 2) is unimportant here. It is typically related to an effective gluon mass or a glueball mass.) This is studied

Image adapted from Alexandre Deur, Stanley J. Brodsky, and Guy F. de Téramond, 2016, Progress in Particle and Nuclear Physics
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Path integral formalism in QFT

pure QED

SQED[Aμ] = −1
4

∫ dxαFμν(xα)Fμν(xα) = ∫ dxα𝜕μAν(xα)𝜕νAμ(xα)

vacuum expectation value

⟨Ω|O[Aμ]|Ω⟩ =
∫DAO[Aμ]eiSQED[Aμ]

∫DAeiSQED[Aμ]

Problems

 Numerator oscillating

 Integration measure ill-defined
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Wick rotation

Shift to imaginary time

t → −iτ

Change of metric from Minkowski to Euclidean

eiSM = e
i∫ dxαML(xαM) ⟶ e

− ∫ dxαEL(xαE) = e−SE

Problems

 Numerator converging

 Integration measure ill-defined
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Discretization: Lattice Gauge Theory

xα a


Aμ → Uμ = e
iaAμ

Find the lattice action S̃E that agrees with SE in the continuum limit of vanishing a

S̃E[U] → SE[A](a → 0)
Kenneth G. Wilson, 1974, Physical Review D
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Vacuum expectation value in the action formalism

Vacuum expectation value

⟨O[U]⟩ = ∫DUO[U]e−SE[U]

∫DUe−SE[U] with DU = ∏xα dUμ(xα)

Problems

 Numerator converging

 Integration with the Haar measure
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Lattice Systems

Hilbert space

H ⊂ Hgauge fields ⊗Hfermions

A general state

|Ψ⟩ = ∫DG |G⟩ ∣ΨF(G)⟩
with DG = ∏

x,k dg(x, k)

Erez Zohar and J. Ignacio Cirac, 2018, Physical Review D

Patrick Emonts and Erez Zohar, 2020, SciPost Physics Lecture Notes
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Gauss law

Gauss law

∑k (Ek(x) − Ek(x − ei)) |phys⟩ = 0 ∀x

Classical analogue in (cont.)

electrodynamics

∇ ⋅ E = 0

E2(x)

E1(x)
E1(x − e1)

E2(x − e2)
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Expectation value of an Observable

Assume that O acts only on the gauge field and is diagonal in the group element basis:

⟨O⟩ = ⟨Ψ|O|Ψ⟩
⟨Ψ|Ψ⟩

=
∫DG ⟨G|O |G⟩ ⟨ΨF(G)∣ΨF(G)⟩

∫DG′ ⟨ΨF(G′)∣ΨF(G′)⟩

= ∫DGFO(G)p(G)

with p(G) = ⟨ΨF(G)∣ΨF(G)⟩
∫DG′⟨ΨF(G′)∣ΨF(G′)⟩ = ⟨ΨF(G)∣ΨF(G)⟩

Z

Slide 9 Combining Tensor Networks and Monte Carlo for Lattice Gauge Theories | 21st of February 2020 | PE, EZ, MCB, IC



The rest of this talk

Expectation value

⟨O⟩ = ∫DGFO(G)p(G)

with p(G) = ⟨ΨF(G)∣ΨF(G)⟩
Z

TODO List

1 How do we construct ∣ΨF(G)⟩?
2 How do we efficiently calculate p(G)?
3 Are those states useful?
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Creation of the fermionic state

Desirable properties

|Ψ⟩ fulfills the Gauss law

∣ΨF(G)⟩ allows efficient calculations of

the norm

expectation values

Definition of Ψ

|Ψ⟩ = ∫DG |G⟩ ∣ΨF(G)⟩

Choice for ∣ΨF(G)⟩
We construct ∣ΨF(G)⟩ with a tensor network.

Patrick Emonts and Erez Zohar, 2020, SciPost Physics Lecture Notes
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Definition of Modes

Gauss law in terms of our modes

G0 = Er − El + Eu − Ed

= r†+r+ − r†−r− − l†+l+ + l†−l− + u†
+u+ − u†

−u− − d†
+d+ + d†

−d−

Ψ

r+

r−

l+

l−

u+u−

d+d−

Definition of positive and negative

modes

a: {l+, r−,u−,d+} (neg. modes)

b: {l−, r+,u+,d−} (pos. modes)

Erez Zohar et al., 2015, Annals of Physics
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Creating a fermionic state

The state

∣ψ0⟩ = ⟨ΩV ∣

∏
x,k

ω(x, k) ∏
x

A(x)

|Ω⟩

A(x) = exp⎛⎜
⎝

∑
ij

Tija
†
i (x)b†

j (x)⎞⎟
⎠

ω(x, k) =ωk(x)Ωk(x)ω†
k(x)

ω0(x) = exp(l†+(x + e1)r†−(x))

exp(l†−(x + e1)r†+(x))
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Creating a fermionic state

The state

∣ψ0⟩ = ⟨ΩV ∣

∏
x,k

ω(x, k)

∏
x

A(x) |Ω⟩

x00 x10 x20

x01 x11 x21
A(x) = exp⎛⎜

⎝
∑
ij

Tija
†
i (x)b†

j (x)⎞⎟
⎠

ω(x, k) =ωk(x)Ωk(x)ω†
k(x)

ω0(x) = exp(l†+(x + e1)r†−(x))

exp(l†−(x + e1)r†+(x))
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Creating a fermionic state

The state

∣ψ0⟩ = ⟨ΩV ∣ ∏
x,k

ω(x, k) ∏
x

A(x) |Ω⟩

x00 x10 x20

x01 x11 x21

ω00,h ω10,h

ω01,h ω11,h

ω00,v ω10,v ω20,v

A(x) = exp⎛⎜
⎝

∑
ij

Tija
†
i (x)b†

j (x)⎞⎟
⎠

ω(x, k) =ωk(x)Ωk(x)ω†
k(x)

ω0(x) = exp(l†+(x + e1)r†−(x))

exp(l†−(x + e1)r†+(x))
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Moving towards local symmetry

Lattice Gauge theory

We demand a local symmetry

∑
x
G(x) |Ψ⟩ = 0 → G(x) |Ψ⟩ = 0

x00 x10 x20

x01 x11 x21

Erez Zohar et al., 2015, Annals of Physics

Erez Zohar and Michele Burrello, 2016, New Journal of Physics
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Local symmetry – The state

Substitution

r†±(x) → e±iθ(x)r†±(x)
u†

±(x) → e±iθ(x)u†
±(x)

x00 x10 x20

x01 x11 x21
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Fermionic state

Fermionic state

∣ψ(G)⟩ = ⟨Ωv ∣ ∏
x

ω(x) ∏
x

UΦ(x) ∏
x

A(x) |Ω⟩

 Gauge invariance of |Ψ⟩ by constructing Ψ(G)
 Obeys all demanded symmetries

? Efficient to calculate with
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Is ∣ΨF(G)⟩ special?

The fermionic state ∣ΨF(G)⟩

∣ΨF(G)⟩ = ⟨Ωv ∣ ∏
x

ω(x) ∏
x

UΦ(x) ∏
x

A(x) |Ω⟩

A(x) = exp⎛⎜
⎝

∑
ij

Tija
†
i
(x)b†

j
(x)⎞⎟

⎠

ω(x) = ω0(x)ω1(x)Ω(x)ω†
1(x)ω†

0(x)

ω0(x) = exp(l†+(x + e1)r†−(x)) exp(l†−(x + e1)r†+(x))

ω1(x) = exp(d†
+(x + e2)u†

−(x)) exp(d†
−(x + e2)u†

+(x))
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Gaussian States

Definition

Fermionic Gaussian states are represented by density operators that are exponentials of a

quadratic form in Majorana operators.

ρ = K exp(− i
4
γTGγ)

Covariance matrix

Covariance matrix for a stateΦ:

Γab = i
2

⟨[γa, γb]⟩ = i
2

⟨Φ|[γa,γb]|Φ⟩
⟨Φ|Φ⟩

Sergey Bravyi, 2005, Quantum Inf. and Comp.
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Calculating the Norm and the Observables

∣ψ(G)⟩ = ⟨Ωv ∣ ∏
x

ω(x) ∏
x

UΦ(x)⏟⏟⏟⏟⏟⏟⏟⏟⏟
;Γin(G)

∏
x

A(x)
⏟⏟⏟⏟⏟

;ΓM

|Ω⟩

ΓM
i,j = ( A B

−BT D
)

A Physical-Physical correlations

B Physical-Virtual correlations

C Virtual-Virtual correlations

Norm

⟨ψ(G)∣ψ(G)⟩ = √det(1 − Γin(G)MD

2
)
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The whole framework

Draw new gauge field configuration ∣G′⟩ Build the state ∣Ψ(G′)⟩

Calculate the acceptance probability

by computing ⟨Ψ(G′)∣Ψ(G′)⟩
Accept or decline

the new configuration G′[Measure observables]
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Results for Z3

Wilson loop Polyakov loop Transfer matrix Calculation
Erez Zohar et al., 2015, Annals of Physics
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Fig. 10. Semilogarithmic plot of the exponential decay of the correlation function of two non-contractible Wilson loops as a

function of their distance l2 [see Eq. (148)]. The data plotted correspond to









WNC(20)WNC(20 + l2)


−


WNC(30)
2






in a system

of size 6 (l2 + 40). The correlation of the two Wilson loops decays exponentially in all the phases. Due to the fast exponential

decay, for larger values of the distance l2 the numerical errors becomes too large to obtain reliable data.

Fig. 11. A schematic plot of the phase diagram for the pure gauge theory (t = 0), with y, z ≥ 0 (straightforwardly generalizable

to any y, z ∈ R as explained in the text). The A, B phases seem to confine static charges, while the C,D phases seem to be

deconfined.

the Wilson loop into Wilson lines acting on the four 1D systems: WC = WbotWleftWtopWright where

these 1D operators have a structure such thatWtop = W
Ď

bot andWleft = W
Ď

right. We obtain



WC(l1,l2)



= |⟨hor|Wbot|hor⟩|
2 |⟨ver|Wleft|ver⟩|

2 . (151)

Such an expectation value vanishes exactly at z = 0, because the finite Wilson lines violate the local

Gauss law in each 1D system. In particular, in the decoupled z = 0 limit, due to the periodic boundary

conditions, each 1D horizontal state is a cat state of the form

|hor⟩ ∝


1 + y2L1


|0, 0, 0, . . .⟩ + yL1 |1, 1, 1, . . .⟩ + yL1 |−1, −1, −1, . . .⟩. (152)

Different phases

We can model different phases with our variational Ansatz for the state.
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Conclusion and Outlook

We need Lattice Gauge Theories

A Hamiltonian approach shows promising possibilities (time evolution, finite μ)

The GGPEPS Ansatz shows confined and non-confined phases

Formulation of a variational minimization procedure for the energy

Optimization of the Monte Carlo procedure for the sampling

34 A. Deur et al. / Progress in Particle and Nuclear Physics 90 (2016) 1–74

Fig. 4.3. Unified coupling obtained from the analytic matching of nonperturbative and perturbative QCD regimes. The procedure determines the relation

between ΛMS and κ or equivalently hadron masses. The transition scale Q0 between the large and short-distance regimes of QCD is determined as well.

number n which is associated with the number of nodes in its wavefunction. Moreover the slope in L and n are identical

phenomenologically. These universal features in fact follow from the eigenvalues of LFSE with the harmonic oscillator

potential V (ζ 2) = κ4ζ 2 [130]. The lightest eigenvalue, corresponding to the pion, has zero mass in the chiral limitmq → 0.

In the case of heavy quark Q–Q states, the effective nonrelativistic static potential between two heavy quarks (Q–Q ) of

massmQ ≫ Λ separated by a distance r is well described by:

V (r) = −
4

3

αV (r)

r
+ σ r. (4.15)

The first term is a perturbative, Coulomb-type, one-gluon exchange contribution. The hadronic wavefunctions and the

fine structure of the hadron spectrum are sensitive to this term. When αV (r) is approximated as an averaged coupling ⟨αV ⟩,

Eq. (4.15) is known as the Cornell potential [206]. The mean value of the coupling ⟨αV ⟩ depends on the size of the hadrons

considered. Its value in GeV units spans from 0.19 to 0.4, with an optimal value of 0.22 [206–208]. In the context of an

IR-freezing behavior of αV (Q 2), this implies a freezing value of αV (0) = 0.42 ± 0.03 [206–208].

The second term in Eq. (4.15) is a linear confining potential which can be interpreted as the string tension between the

Q–Q pair, with σ ∼ 0.18 GeV2. This term controls the slopes and intercepts of the Regge trajectories. The QCD string picture

was first postulated by Nambu, Nielsen and Susskind to interpret the Regge trajectories [209]. A common interpretation is

that the string is formed by a chromoelectric flux tube and is responsible for quark confinement. Regge trajectories stem

straightforwardly from the string picture: the faster a hadron spins, the larger the string tension must be to compensate for

the centrifugal force, and hence the larger its mass [210].

In fact, the AdS/QCD holographic QCD framework which yields the harmonic oscillator potential V (ζ 2) = κ4ζ 2 in the

light-front transverse coordinate ζ for light quark pairs, corresponds to a linear potential for heavy quarks in the non-

relativistic instant-form radial coordinate r for large distances [203]. The string tension for heavy quarks can then be

predicted from holographic QCD to be:

σAdS = 2κ2/π ≃ 0.18 GeV2, (4.16)

which is remarkably consistent with fits to the quarkonium data.

A more accurate potential than that provided by Eq. (4.15) includes velocity-dependent and spin-dependent corrections,

see Refs. [211] and [49] for reviews.

The validity of Eq. (4.15) is confirmed for heavy quarks by lattice QCD simulations. However, in (2+1) lattice simulations,

αV (0) ∼ 0.3 [212], somewhat smaller than the value determined from the Cornell potential. Earlier quenched calculations

resulted in an even smaller value of the coupling, αV (0) ∼ 0.22 [212].

In addition to lattice QCD, other nonperturbative approaches also suggest the form of Eq. (4.15). In the Coulomb

gauge, the instantaneous gluon propagator leads to a linear static Q–Q potential [162–165], as was advocated by Gribov

and Zwanziger [161,213]; see Section 4.7. Generally, it is expected that in the IR, the gluon propagator is modified by

nonperturbative effects and displays a 1/


Q 2 + f (Q 2)
2

dipole form that would lead to the linear IR potential [214]. (The

function f (Q 2) is unimportant here. It is typically related to an effective gluon mass or a glueball mass.) This is studied

x00 x10 x20

x01 x11 x21
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