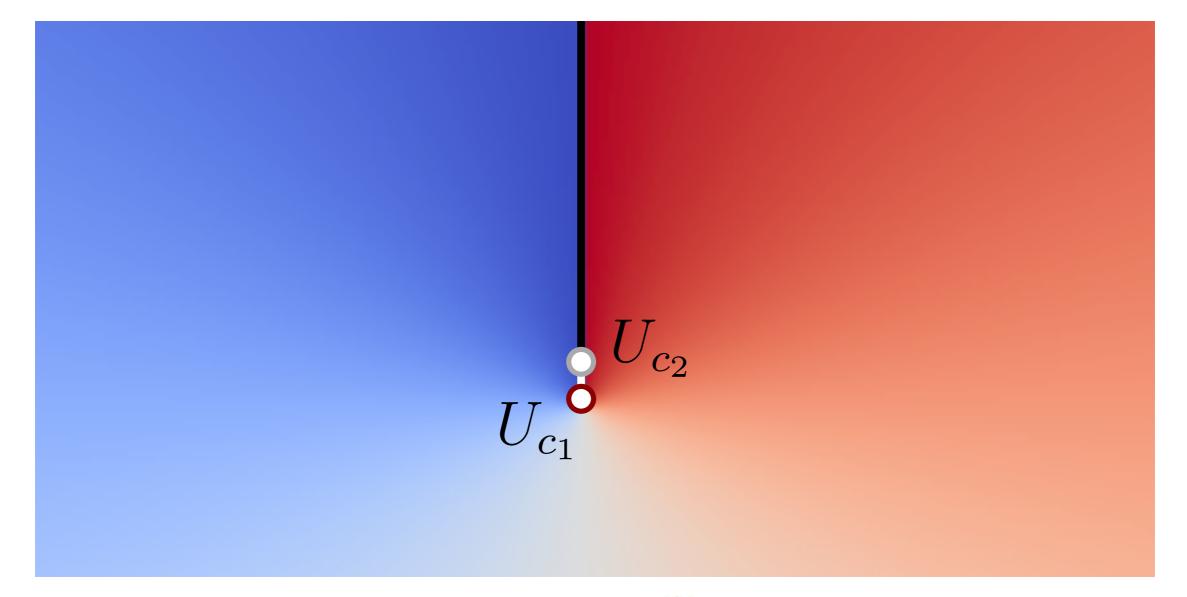
Quotient symmetry protected topological (QSPT) phenomena

Ruben Verresen, Julian Bibo, <u>Frank Pollmann</u> [arXiv:2102.08967]

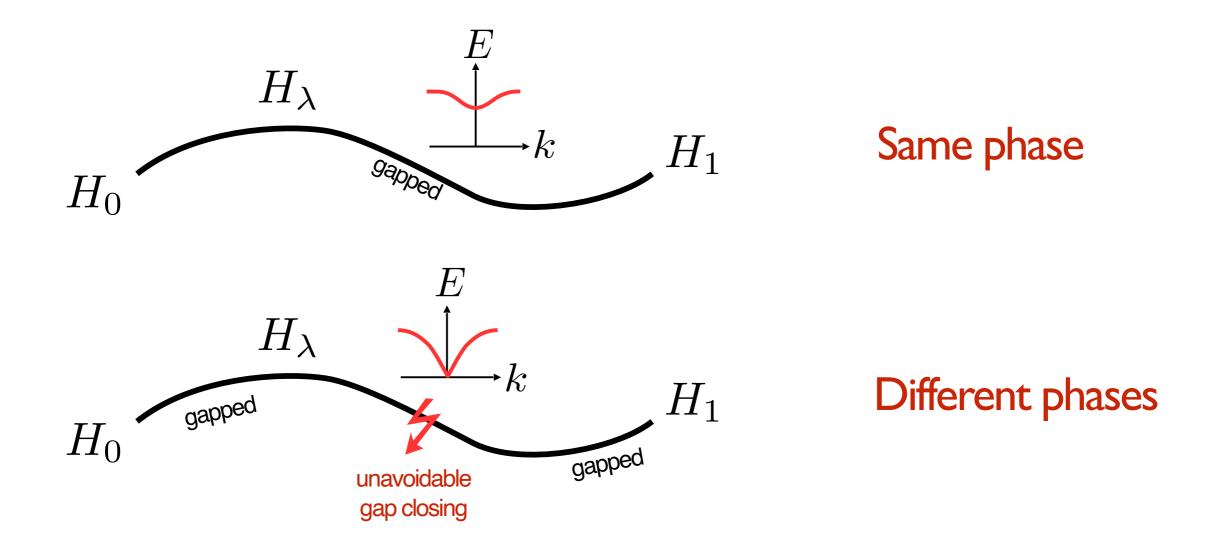


erc

Entanglement in Strongly Correlated Systems Feb. 15, 2021

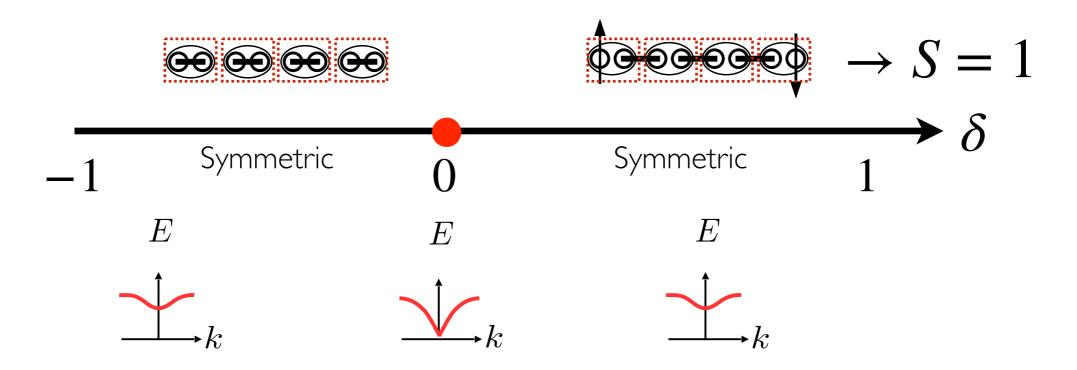
Matter occurs in different phases

Gapped quantum phases (T = 0): Two Hamiltonians are in the same phase if a path of gapped Hamiltonians connects them



Haldane phase in a dimerized S = 1/2 chain: $Z_2 \times Z_2$, TR, ... [Haldane '83]

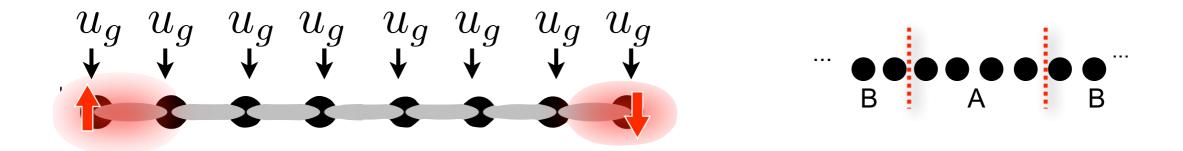
$$H = \sum_{j} (1 + (-1)^{j} \delta) \mathbf{S_{j}} \cdot \mathbf{S_{j+1}}$$



Classified by "Symmetry fractionalization"

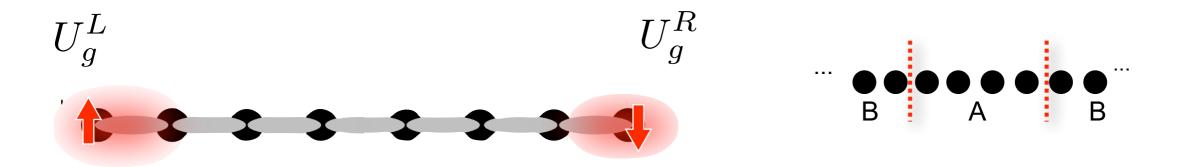
[FP,Turner, Berg, Oshikawa '10, Chen et al. '11; Schuch et al '11]

Local Hamiltonian and gapped ground state $|\psi_0\rangle$: Symmetric under $g,h\in G$



Bulk: Linear representation on unit cell $u_g u_h = u_{gh}$ (e.g., integer spin)

Local Hamiltonian and gapped ground state $|\psi_0\rangle$: Symmetric under $g,h\in G$



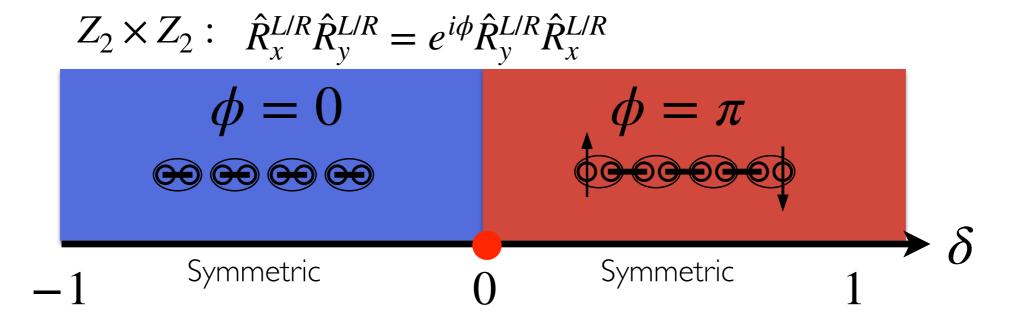
Bulk: Linear representation on unit cell $u_g u_h = u_{gh}$ (e.g., integer spin) **Boundary:** Projective representations $U_g U_h = e^{i\phi(g,h)}U_{gh}$ (e.g., half-integer spin)

Classified by the second cohomology $H^2[G, U(1)]$ [Schur 1911]

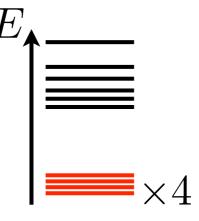
Classification of symmetry protected topological phases [FP,Turner, Berg, Oshikawa '10; Chen et al.'11; Schuch et al '11]

Haldane phase in a dimerized S = 1/2 chain: $Z_2 \times Z_2$, TR, ...

$$H = \sum_{j} (1 + (-1)^{j} \delta) \mathbf{S_{j}} \cdot \mathbf{S_{j+1}}$$



Symmetry protected ground state and entanglement degeneracies due to $\hat{R}_x^{L/R} \hat{R}_y^{L/R} = - \hat{R}_y^{L/R} \hat{R}_x^{L/R}$



How to trivialize the Haldane phase?

(1) **Break the protecting symmetries:** All characteristic properties disappear right away (e.g, edge modes are gapped out and no SPT transition)

(2) Extend its symmetry group! [Anfuso and Rosch '07; Moudgalya and FP '14, Prakash et al '18,...]

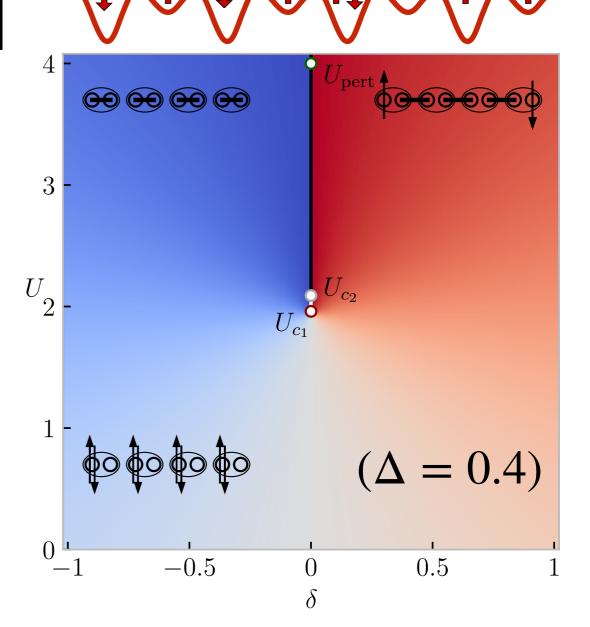
To which extent are topological features parametrically stable?

Trivialization by extending the symmetry

lonic Hubbard model $\hat{H} = \hat{H}_{\delta} + \hat{H}_{\Delta} + \hat{H}_{U}$ at half filling

$$\begin{split} \hat{H}_{\delta} &= -\sum_{j,s} \left[\left(1 + (-1)^{j} \delta \right) \hat{c}_{j+1,s}^{\dagger} \hat{c}_{j,s} + \text{h.c.} \right] \\ \hat{H}_{\Delta} &= \frac{\Delta}{2} \sum_{j,s} (-1)^{j} \hat{n}_{j,s} \\ \hat{H}_{U} &= U \sum_{j} \left(\hat{n}_{j,\uparrow} - \frac{1}{2} \right) \left(\hat{n}_{j,\downarrow} - \frac{1}{2} \right) \end{split}$$

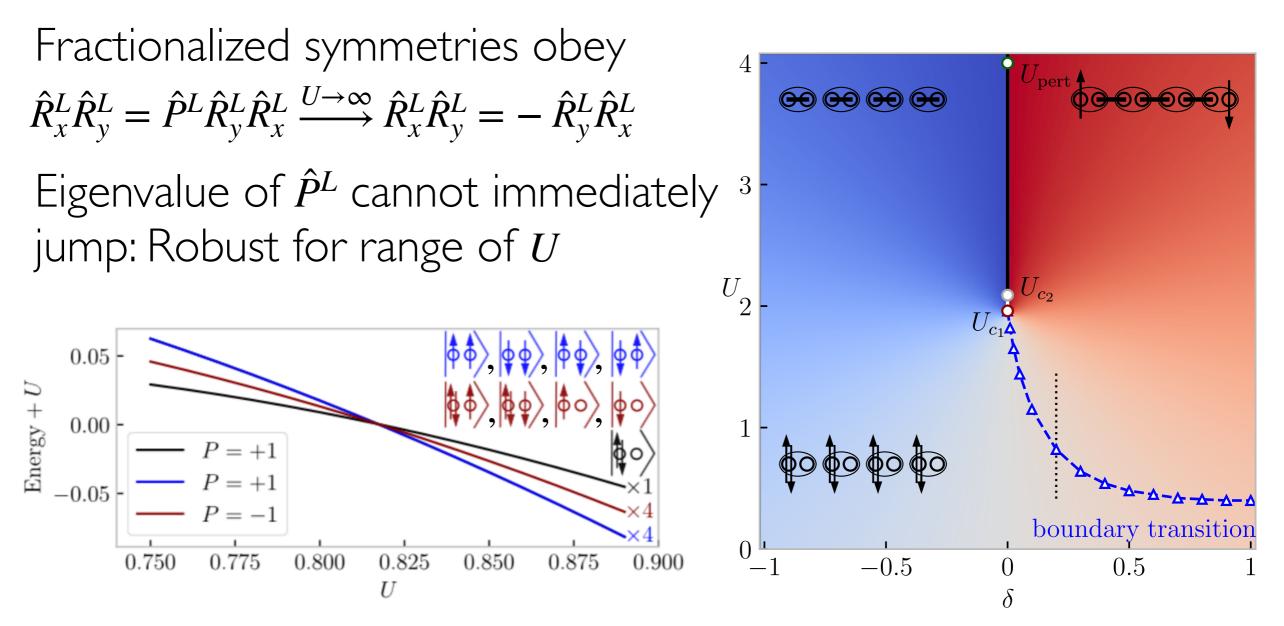
Relevant symmetry $SU(2) \xrightarrow{U \to \infty} SO(3) = SU(2)/Z_2$ $H^2(SU(2), U(1)) = 0$



Trivialized by fluctuating charge degrees of freedom

Stability of the edge modes

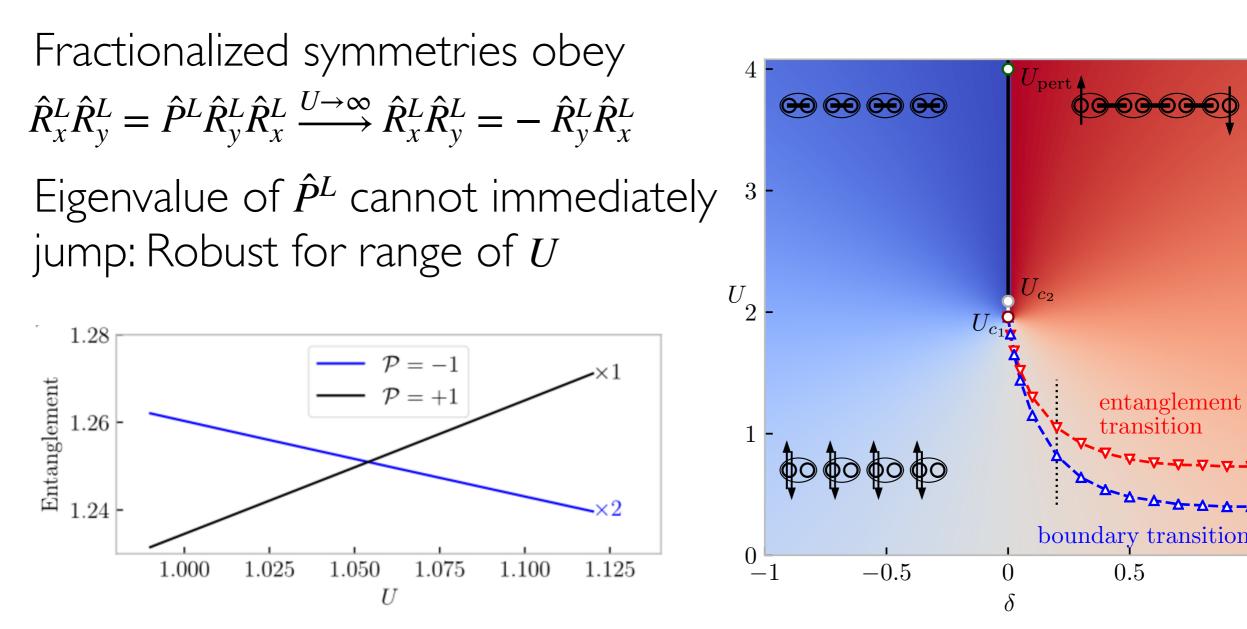
Zero-energy edge modes of the Haldane phase ($\delta > 0$) are stable until the parity gap closes



4-fold degeneracy robust until boundary transition occurs

Stability of the edge modes

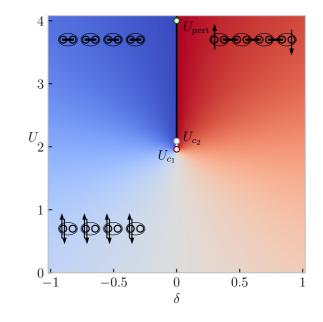
Entanglement degeneracies of the Haldane phase ($\delta>0$) are stable until the parity gap closes



2-fold degeneracy robust until boundary transition occurs

Stability of the SPT phase transition

Phase transition between a trivial and SPT phase does not immediately gap out after extending the symmetry group Duality symmetry $\delta \rightarrow -\delta$ and thus a direct transition has to occur at $\delta = 0$



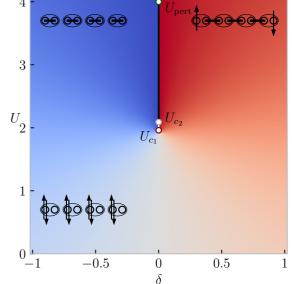
 $U \rightarrow \infty$: Lieb-Schultz-Mattis (LSM) guaranties a phase transitions at $\delta = 0$ as $\hat{R}_x \hat{R}_y \hat{R}_x^{-1} \hat{R}_y^{-1} = -1$

Finite U: Emergent LSM enforces parametric stability of the phase transition

Emergent LSM at $\delta=0$

Fermion parity string generically has long-range as long as fermionic operators are gapped

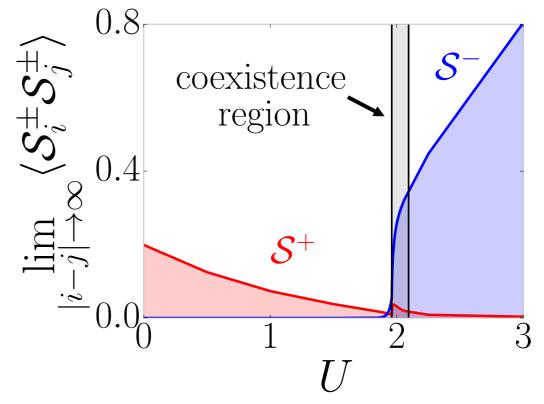
$$\langle \hat{P}_m \hat{P}_{m+1} \cdots \hat{P}_{n-1} \hat{P}_n \rangle \sim C e^{i\theta(n-m)}$$
, with $\theta \in \{0,\pi\}$



 $\theta = \pi$ implies an emergent anomaly that forbids a unique gapped symmetric ground state!

$$\hat{\mathcal{S}}_{j}^{\pm} := \prod_{k < j} \hat{P}_{k} \left(\hat{P}_{j} \pm 1 \right)$$

String order \mathcal{S}^{\pm} is
non-zero iff $e^{i\theta} = \pm 1$
 $\Rightarrow \theta = \pi$ for $U \gtrless 2$



General emergent anomalies

Edge modes of ID SPTs characterized by non-trivial projective representation of a symmetry group \tilde{G}

Extend symmetry group to a larger group G with $\tilde{G} = G/H$

Quantum numbers of the additional symmetry group H label distinct representations and edge modes remain robust as long as excitations charged under H remain gapped!

Same concept can be generalized to higher dimensions!

Example for "unnecessary criticality" [Bi and Senthil '19; Jian and Xu '20]

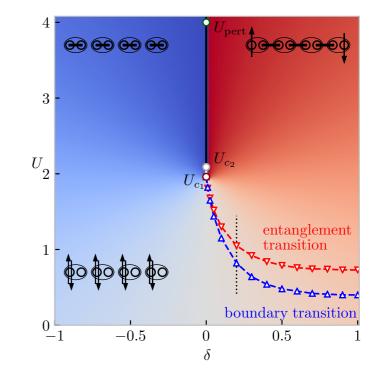


 $Z_2 \rightarrow Z_4$

Summary

Two ways of trivializing an SPT phase: Either break or extend symmetry group

Extending the symmetry group leaves various topological phenomena intact over a finite region of the phase diagram!



Experimental relevance: Phenomena such as zero energy states are robust in the presence of charge fluctuations!

Thank you!

Ruben Verresen, Julian Bibo, Frank Pollmann [arXiv:2102.08967]