

2021, Feb 15 -- Feb 26 Organizers: F. Mila (Ecole Polytechnique Federale de Lausanne) R. Orús (DIPC) D. Poilblanc (CNRS / U. Toulouse) N. Schuch (Max-Planck-Institute of Quantum Optics / MCQST)

QUANTUM MAGNETS ON SMALL-WORLD NETWORKS

arXiv:2102.04919

Nicolas Laflorencie & Maxime Dupont

Laboratoire de Physique Théorique **CNRS** Toulouse

Lawrence Berkeley National Laboratory Berkeley, USA

What is a Small World ?

What is a Small World ?

SMALL WORLD

× 🖸 🔍

What is a Small World ?

SMALL WORLD NETWORK

Q Tous Vidéos ⊘ Shopping Images E Actualités : Plus Paramètr

Small-world network

From Wikipedia, the free encyclopedia

A small-world network is a type of mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other and most nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is:^[1]

An example of a) a small-world network generated using ... researchgate.net

letwork	Lattice, Ordered	Small World	Random, Disordered
Sustering Coefficient	High	High	Low
Aean Path Length	Long	Short	Short

Is the Urban World Small? The Evidence for Small World Struct... link.springer.com

The Small-World Effect

Random graph of *N* nodes, fluctuating connectivity Diameter $\overline{\ell} \sim \ln N \Rightarrow d_{\text{eff}} = \infty$

The Small-World Effect

Random graph of *N* nodes, fluctuating connectivity Diameter $\overline{\ell} \sim \ln N \Rightarrow d_{\text{eff}} = \infty$

Social network analysis

airlines connections

epidemic spreading

Small-World models

The Watts-Strogatz model

NATURE VOL 393 4 JUNE 1998

Collective dynamics of 'small-world' networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

Random regular graphs (Erdős–Rényi)

SCIENCE VOL 286 15 OCTOBER 1999

Emergence of Scaling in Random Networks

Albert-László Barabási* and Réka Albert

Small-World models

The Watts-Strogatz model

NATURE VOL 393 4 JUNE 1998

Collective dynamics of 'small-world' networks

Duncan J. Watts* & Steven H. Strogatz

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

SCIENCE VOL 286 15 OCTOBER 1999

Emergence of Scaling in Random Networks

Albert-László Barabási* and Réka Albert

The undiluted Watts-Strogatz model

R. Monasson EPJ B (1999)
M. E. J. Newman & D. J. Watts, Phys. Lett. A (1999)

(branching probability p)

further motivations

further motivations

Relevant for Anderson localization in random graphs and MBL physics

De Luca, Altshuler, Kravtsov, Scardicchio PRL 2014
Tikhonov, Mirlin PRB 2016
Garcia-Mata et al. PRL 2017
Biroli, Tarzia 2018
Tikhonov, Mirlin PRB 2019

Mace, Alet, NL, PRL 2019

The many-body Hilbert space looks like a random graph

further motivations

Relevant for Anderson localization in random graphs and MBL physics

De Luca, Altshuler, Kravtsov, Scardicchio PRL 2014
Tikhonov, Mirlin PRB 2016
Garcia-Mata et al. PRL 2017

- Biroli, Tarzia 2018
- Tikhonov, Mirlin PRB 2019
- Mace, Alet, NL, PRL 2019

The many-body Hilbert space looks like a random graph

Cold atom setup coupled to an optical cavity

G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi, X. Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman, PRX (2019)
 G. Bentsen, T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J. Daley, S. S. Gubser, and M. Schleier-Smith, PRL (2019)

C. Bentsen, T. Hashizume, A. S. Buyskirn, E. J. Davis, A. J. Daley, S. S. Gubser, and M. Schleier-Smith, PRL (2019)
 E. J. Davis, A. Periwal, E. S. Cooper, G. Bentsen, S. J. Evered, K. Van Kirk, and M. H. Schleier-Smith, PRL (2020)

Optically Programmable Interactions for Quantum Simulation

• Scientific meeting: New perspectives on quantum many-body chaos (8-11 Feb 2021)

Monika Schleier-Smith Stanford University, USA

Programmable Interactions

A. Periwal, E. Cooper, P. Kunke Professor Mo.. E. Davis & MS-S, in preparation.

Knobs:

- Sign of interaction (ferro- vs antiferromagnetic)
- Form of couplings (flip-flop vs Ising)

Spatial structure

Möbius ladder

ROYAL SOCIETY

04/14

Classical magnetism on SW networks

A.Barrat & M. Weigt EPJB (2000)
M. Gitterman J. Phys. A (2000)

Classical magnetism on SW networks

Finite temperature transition

Classical magnetism on SW networks

$$\epsilon_{ij} = \begin{cases} 1 & (p) \\ 0 & (1-p) \end{cases}$$

Finite temperature transition 0.4 **-------**A.Barrat & M. Weigt EPJB (2000) M. Gitterman J. Phys. A (2000) 0.3 $T_c \propto \frac{2J}{\ln\left(\frac{1}{p}\right)}$ Temperature 0.2 0.1 FM $\begin{array}{c} 0 \\ 10^{-8} \\ 10^{-7} \\ 10^{-6} \\ 10^{-5} \\ 10^{-4} \\ 10^{-3} \\ 10^{-2} \\ 10^{-1} \end{array}$ Concentration *p*

Simple mean-field (MF) argument

 $\xi(T) \sim \exp\left(\frac{2J}{T}\right) = 10$ correlation length

 $\zeta_p \sim 1/p\,$ = mean distance between shortcuts

we expect a transition when $\xi(T) \approx \zeta_p \Rightarrow T_c \propto \frac{2J}{\ln\left(\frac{1}{p}\right)}$

 $T_c \rightarrow 0 \,\, {\rm very}$ slowly, only when $p \rightarrow 0$

 $\xi(T) \sim \left| T - T_{\rm c}(0) \right|^{-\nu} = \text{bare correlation length}$ $\zeta_p \sim p^{-1/d} = \text{mean distance between shortcuts}$

 $\xi(T) \approx \zeta_p \implies T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$

 $\xi(T) \sim \left| T - T_{\rm c}(0) \right|^{-\nu} = \text{bare correlation length}$ $\zeta_p \sim p^{-1/d} = \text{mean distance between shortcuts}$

 $\xi(T) \approx \zeta_p \implies T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$

Classical Monte Carlo Ising model

 $\xi(T) \sim \left| T - T_{\rm c}(0) \right|^{-\nu} = \text{bare correlation length}$ $\zeta_p \sim p^{-1/d} = \text{mean distance between shortcuts}$

 $\xi(T) \approx \zeta_p \implies T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$

Classical Monte Carlo Ising model

1

Is $\eta + d - 2 > 0$ always true?

Critical correlations at Tc:

 $\langle S^{z}(0)S^{z}(r)\rangle_{T_{c}} \sim \frac{1}{r^{\eta+d-2}} 0 \checkmark$

Is $\eta + d - 2 > 0$ always true?

Critical correlations at Tc:

 $\langle S^{z}(0)S^{z}(r)\rangle_{T_{c}} \sim \frac{1}{r^{\eta+d-2}} 0 \checkmark$

Quantum criticality (T=0): $\left\langle S^{\alpha}(0)S^{\alpha}(r)\right\rangle_{\rm GS} \sim \frac{1}{r^{\eta+d+z-2}}$ $\bigwedge \eta + d + z - 2 > 0$ $\bigotimes \eta + d - 2 > 0$ Is $\eta + d - 2 > 0$ always true?

Critical correlations at Tc: $\langle S^{z}(0)S^{z}(r)\rangle_{T_{c}} \sim \frac{1}{r^{\eta+d-2}} = 0$

Quantum criticality (T=0): $\left\langle S^{\alpha}(0)S^{\alpha}(r)\right\rangle_{GS} \sim \frac{1}{r^{\eta+d+z-2}}$ $\bigwedge \eta + d + z - 2 > 0$ $\bigotimes \eta + d - 2 > 0$

Tomonaga – Luttinger liquids ! (d = z = 1)

S=1/2 XXZ chains

$$\mathcal{H}_{XXZ} = J \sum_{i} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right)$$
$$\left\langle S^{\alpha}(0) S^{\alpha}(r) \right\rangle_{GS} \sim \frac{1}{r^{\eta_{\alpha}}} \qquad \eta_x \le 1 \; !$$

$\mathcal{H}_{\rm SW} = \mathcal{H}_{\rm 1D}^{\rm XXZ} + \mathcal{H}_{\rm LR}$	$\mathcal{H}_{1\mathrm{D}}^{XXZ} = J \sum_{i=1}^{N} h_{i,i+1}^{\Delta},$	with $h_{i,i+1}^{\Delta} = S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z$
	$\mathscr{H}_{\mathrm{LR}} = \sum_{i,j} J_{ij}^{\mathrm{LR}} h_{i,i+1}^{\Delta},$	if $ i - j > 1$

$$\begin{aligned} & \overbrace{\mathcal{H}_{\mathrm{ID}}^{XXZ}} = J \sum_{i=1}^{N} h_{i,i+1}^{\Delta}, & \text{with } h_{i,i+1}^{\Delta} = S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z} \\ & \overbrace{\mathcal{H}_{\mathrm{LR}}} = \sum_{i,j} J_{ij}^{\mathrm{LR}} h_{i,i+1}^{\Delta}, & \text{if } |i-j| > 1 \end{aligned}$$

(i) Ferromagnetic XY model with $\Delta=0, J<0$ and $J_{ij}^{
m LR}=-\left|J_{ij}^{
m LR}
ight|$

$$\mathcal{H}_{\mathrm{ID}}^{XXZ} = J \sum_{i=1}^{N} h_{i,i+1}^{\Delta}, \quad \text{with } h_{i,i+1}^{\Delta} = S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z}$$
$$\mathcal{H}_{\mathrm{LR}} = \sum_{i,j} J_{ij}^{\mathrm{LR}} h_{i,i+1}^{\Delta}, \quad \text{if } |i-j| > 1$$

(i) Ferromagnetic XY model with $\Delta=0, J<0$ and $J_{ij}^{\mathrm{LR}}=-\left|J_{ij}^{\mathrm{LR}}\right|$

(ii) Staggered Heisenberg antiferromagnet $\Delta = 1, J > 0$ and $J_{ij}^{\text{LR}} = -(-1)^{|i-j|} \left| J_{ij}^{\text{LR}} \right|$

$$\mathcal{H}_{\mathrm{ID}} = J \sum_{i=1}^{N} h_{i,i+1}^{\Delta}, \quad \text{with } h_{i,i+1}^{\Delta} = S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z}$$
$$\mathcal{H}_{\mathrm{LR}} = \sum_{i,j} J_{ij}^{\mathrm{LR}} h_{i,i+1}^{\Delta}, \quad \text{if } |i-j| > 1$$

(i) Ferromagnetic XY model with $\Delta=0, J<0$ and $J_{ij}^{\mathrm{LR}}=-\left|J_{ij}^{\mathrm{LR}}\right|$

(ii) Staggered Heisenberg antiferromagnet $\Delta = 1, J > 0$ and $J_{ij}^{\text{LR}} = -(-1)^{|i-j|} \left| J_{ij}^{\text{LR}} \right|$

both models are unfrustrated \Rightarrow quantum Monte Carlo (QMC) simulations are possible

$$\mathcal{H}_{\mathrm{ID}}^{XXZ} = J \sum_{i=1}^{N} h_{i,i+1}^{\Delta}, \quad \text{with } h_{i,i+1}^{\Delta} = S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z}$$
$$\mathcal{H}_{\mathrm{LR}} = \sum_{i,j} J_{ij}^{\mathrm{LR}} h_{i,i+1}^{\Delta}, \quad \text{if } |i-j| > 1$$

(i) Ferromagnetic XY model with $\Delta = 0, J < 0$ and $J_{ij}^{\rm LR} = - \left| J_{ij}^{\rm LR} \right|$

(ii) Staggered Heisenberg antiferromagnet $\Delta = 1, J > 0$ and $J_{ij}^{\text{LR}} = -(-1)^{|i-j|} \left| J_{ij}^{\text{LR}} \right|$

both models are unfrustrated \Rightarrow quantum Monte Carlo (QMC) simulations are possible

Undiluted SW (branching probability p)

$$\mathscr{H}_{\mathrm{ID}} = J \sum_{i=1}^{N} h_{i,i+1}^{\Delta}, \quad \text{with } h_{i,i+1}^{\Delta} = S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z}$$
$$\mathscr{H}_{\mathrm{LR}} = \sum_{i,j} J_{ij}^{\mathrm{LR}} h_{i,i+1}^{\Delta}, \quad \text{if } |i-j| > 1$$

(i) Ferromagnetic XY model with $\Delta = 0, J < 0$ and $J_{ij}^{\rm LR} = - \left| J_{ij}^{\rm LR} \right|$

(ii) Staggered Heisenberg antiferromagnet $\Delta = 1, J > 0$ and $J_{ij}^{\text{LR}} = -(-1)^{|i-j|} \left| J_{ij}^{\text{LR}} \right|$

both models are unfrustrated \Rightarrow quantum Monte Carlo (QMC) simulations are possible

$$\mathscr{H}_{\mathrm{ID}} = J \sum_{i=1}^{N} h_{i,i+1}^{\Delta}, \quad \text{with } h_{i,i+1}^{\Delta} = S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z}$$
$$\mathscr{H}_{\mathrm{LR}} = \sum_{i,j} J_{ij}^{\mathrm{LR}} h_{i,i+1}^{\Delta}, \quad \text{if } |i-j| > 1$$

(i) Ferromagnetic XY model with $\Delta = 0, J < 0$ and $J_{ij}^{\rm LR} = - \left| J_{ij}^{\rm LR} \right|$

(ii) Staggered Heisenberg antiferromagnet $\Delta = 1, J > 0$ and $J_{ij}^{\text{LR}} = -(-1)^{|i-j|} \left| J_{ij}^{\text{LR}} \right|$

both models are unfrustrated \Rightarrow quantum Monte Carlo (QMC) simulations are possible

<u>1d Small-World $p \ll 1$ </u>

1d Hastings Small-World

1d Small-World $p \ll 1$

We repeat the simple MF argument

 $\xi(T) \sim \frac{uJ}{T} \mbox{ Luttinger liquid correlation length} \\ \zeta_p \sim 1/p \mbox{ = mean distance between shortcuts}$

we expect a transition when

$$\xi(T) \approx \zeta_p \Rightarrow T_c^{\rm MF} \propto uJp$$

agree with

$$T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$$
 with $\nu = d = 1$

1d Hastings Small-World

1d Small-World $p \ll 1$

We repeat the simple MF argument

 $\xi(T) \sim \frac{uJ}{T} \mbox{ Luttinger liquid correlation length} \\ \zeta_p \sim 1/p \mbox{ = mean distance between shortcuts}$

we expect a transition when

$$\xi(T) \approx \zeta_p \Rightarrow T_c^{\rm MF} \propto uJp$$

agree with

$$T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$$
 with $\nu = d = 1$

1d Hastings Small-World

Random Phase approximation

D. J. Scalapino, Y. Imry, and P. Pincus, PRB (1975).
H. J. Schulz, PRL (1996).

$$\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_{i} \cdot S_{i+1} + \sum_{i,j} J_{ij}^{\text{LR}} \langle S_{j}^{z} \rangle S_{i}^{z}$$
$$\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_{i} \cdot S_{i+1} + \langle m \rangle \sum_{i,j} J_{ij}^{\text{LR}} (-1)^{j} S_{i}^{z}$$

treat the LR part in MF

<u>1d Small-World $p \ll 1$ </u>

We repeat the simple MF argument

 $\xi(T) \sim \frac{\mu J}{T}$ Luttinger liquid correlation length $\zeta_p \sim 1/p$ = mean distance between shortcuts

we expect a transition when

$$\xi(T) \approx \zeta_p \Rightarrow T_c^{\rm MF} \propto uJp$$

agree with

$$T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$$
 with $\nu = d = 1$

1d Hastings Small-World

Random Phase D. J. Scalapino, Y. Imry, and P. Pincus, PRB (1975). approximation H. J. Schulz, PRL (1996). treat the $\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_{i} \cdot S_{i+1} + \sum_{i} J_{ij}^{\text{LR}} \langle S_{j}^{z} \rangle S_{i}^{z}$ LR part $\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_i \cdot S_{i+1} + \langle m \rangle \sum_{i} J_{ij}^{\text{LR}} (-1)^j S_i^z$ in MF ordering transition when

order parameter $\langle m \rangle = \chi^{1D} \left(h_{\text{ext}}^{sb} + \overline{J^{\text{LR}}} \langle m \rangle \right) = \frac{\chi^{1D}}{1 - \overline{J^{\text{LR}}} \chi^{1D}} h_{\text{ext}}^{sb} = \chi^{\text{RPA}} h_{\text{ext}}^{sb}$

 $\gamma^{\text{RPA}}(T_c^{\text{RPA}}) \to \infty \qquad T_c^{\text{RPA}}$

$$^{\text{RPA}} = \left[\chi^{1\text{D}}\right]^{-1} \left(\frac{1}{\overline{J^{\text{LR}}}}\right)$$

1d Small-World $p \ll 1$

We repeat the simple MF argument

 $\xi(T) \sim \frac{uJ}{T} \ \mbox{Luttinger liquid correlation length} \\ \zeta_p \sim 1/p \ = \mbox{mean distance between shortcuts}$

we expect a transition when

$$\xi(T) \approx \zeta_p \Rightarrow T_c^{\rm MF} \propto uJp$$

agree with

$$T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$$
 with $\nu = d = 1$

1d Hastings Small-World

Random Phase D. J. Scalapino, Y. Imry, and P. Pincus, PRB (1975). approximation H. J. Schulz, PRL (1996). treat the $\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_i \cdot S_{i+1} + \sum_{i} J_{ij}^{\text{LR}} \langle S_j^z \rangle S_i^z$ LR part $\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_i \cdot S_{i+1} + \langle m \rangle \sum_{i} J_{ij}^{\text{LR}} (-1)^j S_i^z$ in MF order parameter $\langle m \rangle = \chi^{1D} \left(h_{\text{ext}}^{sb} + \overline{J^{\text{LR}}} \langle m \rangle \right) = \frac{\chi^{1D}}{1 - \overline{J^{\text{LR}}} \chi^{1D}} h_{\text{ext}}^{sb} = \chi^{\text{RPA}} h_{\text{ext}}^{sb}$ ordering transition when $\chi^{\text{RPA}}(T_{\text{c}}^{\text{RPA}}) \to \infty \qquad T_{\text{c}}^{\text{RPA}} = \left[\chi^{1\text{D}}\right]^{-1} \left(\frac{1}{\overline{T_{\text{LR}}}}\right)$ Divergence of the 1D susceptibility $J\chi^{1D}(T) \propto (T/J)^{-\gamma}$

$$T_{\rm c}^{\rm RPA} \propto J \left(\frac{\overline{J^{\rm LR}}}{J}\right)^{\frac{1}{\gamma}} \propto J p^{\frac{1}{\gamma}}$$

Hastings result recovered

1d Small-World $p \ll 1$

We repeat the simple MF argument

 $\xi(T) \sim \frac{uJ}{T}$ Luttinger liquid correlation length $\zeta_p \sim 1/p = \text{mean distance between shortcuts}$

we expect a transition when

$$\xi(T) \approx \zeta_p \Rightarrow T_c^{\rm MF} \propto uJp$$

agree with

$$T_c(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$$
 with $\nu = d =$

1d Hastings Small-World

Random Phase D. J. Scalapino, Y. Imry, and P. Pincus, PRB (1975). approximation H. J. Schulz, PRL (1996). treat the $\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_i \cdot S_{i+1} + \sum_{i} J_{ij}^{\text{LR}} \langle S_j^z \rangle S_i^z$ LR part $\mathcal{H}_{\text{eff}}^{\text{XXX}} = J \sum_{i} S_{i} \cdot S_{i+1} + \langle m \rangle \sum_{i=i} J_{ij}^{\text{LR}} (-1)^{j} S_{i}^{z}$ in MF order parameter $\langle m \rangle = \chi^{1D} \left(h_{\text{ext}}^{sb} + \overline{J^{\text{LR}}} \langle m \rangle \right) = \frac{\chi^{1D}}{1 - \overline{J^{\text{LR}}} \chi^{1D}} h_{\text{ext}}^{sb} = \chi^{\text{RPA}} h_{\text{ext}}^{sb}$ ordering transition when $\chi^{\text{RPA}}(T_{\text{c}}^{\text{RPA}}) \to \infty \qquad T_{\text{c}}^{\text{RPA}} = \left[\chi^{1\text{D}}\right]^{-1} \left(\frac{1}{\overline{TLR}}\right)$ Divergence of the 1D susceptibility $J\chi^{1D}(T) \propto (T/J)^{-\gamma}$ $T_{\rm c}^{\rm RPA} \propto J \left(\frac{\overline{J^{\rm LR}}}{J}\right)^{\frac{1}{\gamma}} \propto J p^{\frac{1}{\gamma}}$

Hastings result recovered

1D quantum Hastings: test for the RPA

S=1/2
$$\mathscr{H}_{XXZ} = J \sum_{i=1}^{N} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right)$$

XXZ chain

1D quantum Hastings: test of the former of the second seco

S=1/2
$$\mathscr{H}_{XXZ} = J \sum_{i=1}^{N} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y + \Delta S_i^z S_{i+1}^z \right)$$

XXZ chain

Luttinger liquid theory Transverse 1D susceptibility

10(

$$J\chi_{\perp}^{1\mathrm{D}}(T) = f_{\Delta} \left(\frac{J}{T}\right) \underbrace{\frac{1 + \frac{\arccos \Delta}{\pi}}{\gamma}}_{\gamma}$$

Exact (parameter-free) expression for $\mid \Delta \mid < 1$

1D quantum Hastings: test of the rest of t

S=1/2
$$\mathcal{H}_{XXZ}$$

XXZ chain

$$= J \sum_{i=1}^{N} \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z} \right)$$

Hastings model

$$\int J^{\rm LR} = J \frac{J}{N}$$

Random Phase approximation

$$T_{\rm c}^{\rm RPA} = \left[\chi^{\rm 1D}\right]^{-1} \left(1/p\right)$$

Luttinger liquid theory Transverse 1D susceptibility

10(

$$J\chi_{\perp}^{1\mathrm{D}}(T) = f_{\Delta} \left(\frac{J}{T}\right) \underbrace{\frac{1 + \frac{\arccos \Delta}{\pi}}{\gamma}}_{\gamma}$$

Exact (parameter-free) expression for $\mid \Delta \mid < 1$

1D quantum Hastings: QMC results

1D quantum Hastings: QMC results

- $\blacktriangleright T_{\rm c}$ of the Hastings model perfectly agree with RPA estimates
- Universality class is MF
- \blacktriangleright 1D subtleties (such as log corrections at the SU(2) point) are perfectly well captured by a $d=\infty$ model

Random branching (i) — Heisenberg AF

$$\mathscr{H} = J \sum_{i=1}^{N} \overrightarrow{S}_{i} \cdot \overrightarrow{S}_{i+1} - J \sum_{i,j} (-1)^{|i-j|} \epsilon_{ij} \overrightarrow{S}_{i} \cdot \overrightarrow{S}_{j} \qquad \epsilon_{ij} = \begin{cases} 1 & (p) \\ 0 & (1-p) \\ \text{disorder - average } (N_{\text{samples}} \propto 10^{2-3}) \end{cases}$$

Random branching (ii) — XY FM

$$\mathscr{H} = -J\sum_{i=1}^{N} \left(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y \right) - J\sum_{i,j} \epsilon_{ij} \left(S_i^x S_j^x + S_i^y S_j^y \right) \qquad \epsilon_{ij} = \left\{ \begin{array}{cc} 1 & (p) \\ 0 & (1-p) \end{array} \right.$$

SUMMARY

Two mean-field approaches for the spin ordering transition on small-world networks

(i) Competition between random branching typical length $\zeta_p \sim p^{-1/d}$ and thermal correlation length $\xi(T)$ $T_c^{\rm MF}(p) - T_c(0) \propto J p^{\frac{1}{\nu d}}$

• Classical phase transitions $\gamma < \nu d$ RPA is generically expected

Quantum case

- Luttinger liquids: crossover between two mean-field regimes
- Exact analytical expression for the "critical concentration" $p^{\star}(\Delta)$

(ii) Chain-mean-field theory RPA analysis

$$T_{\rm c}^{\rm RPA}(p) - T_{\rm c}(0) \propto J p^{\frac{1}{\gamma}}$$

Influence of a spin gap

Frustration effect

Disorder effect

Disorder effect

Disorder effect

Disorder effect

Random bonds $\Rightarrow d = \infty$ random-singlet physics

Random fields $\Rightarrow d = \infty$ Bose-glass (T = 0) / MBL ($T = \infty$)

