Detecting Topological Phase Transitions through Symmetric Tensor Networks

Ying-Jer Kao Department of Physics, National Taiwan University

Yu-Hsueh Chen (NTU), Ching-Yu Huang (THU)

arXiv: 2102.10980

Topological Phase Transitions

Toric code in magnetic field

- (I) \mathbb{Z}_2 Topological Orders (TO)
- (II) Flux Condensed (FC) Phase
- (III) Charge Condensed (CC) Phase

Kitaev's honeycomb model

A: \mathbb{Z}_2 Topological Orders (Abelian) B: Ising Anyons (non-Abelian)

Can we understand both transitions out of the $\mathbb{Z}_2\text{-}\mathrm{TO}$ using the same tensor network formalism?

Outline

Topological Order in Tensor Network

- \mathbb{Z}_2 -injective Projected Entangled Pair States
- Using Minimally Entangled States to Detect Topological Transitions
- Warmup: Toric Code with Finite String Tension

Transitions from Abelian to non-Abelian Topological Phase

- Kitaev Model on the Star Lattice
- Loop Gas and String Gas Ansatzs as $\mathbb{Z}_2\text{-injective PEPS}$
- Results

Conclusion

Projected Entangled Pair States (PEPS)

PEPS:

Injective PEPS:

Injective PEPSs give rise to parent Hamiltonians, to which they are unique ground states

N. Schuch, I. Cirac, and D. Pérez-García, Annals of Physics 325, 2153 (2010)

 \mathbb{Z}_2 -Injective PEPS: Natural Framework for \mathbb{Z}_2 Topological Order

 \mathbb{Z}_2 -injective PEPS:

- $A \stackrel{i}{\longrightarrow} = \sum_{g} \stackrel{i}{\longrightarrow} I = \underbrace{\sum_{g} \stackrel{i}{\longrightarrow} I} \stackrel{i}{\longrightarrow} I = \underbrace{I \stackrel{i}{\longrightarrow} I} \stackrel{i}{\longrightarrow} I \stackrel{i}{\longrightarrow} I = \underbrace{I \stackrel{i}{\longrightarrow} I} \stackrel{i}{\longrightarrow} I \stackrel$
- These ground states are locally indistinguishable owing to the pulling through conditions. → topological degeneracy.

• The ground subspace of the parent

spanned by two non-contractible

loops $(u_g^{\otimes L_x}, u_h^{\otimes L_y})$.

Hamiltonian of a \mathbb{Z}_2 -injective PEPS is

Pulling through conditions:

Anyons and Minimally Entangled States

Anyons (\mathbb{Z}_2 TC)

- Flux: Characterized by group action g.
- Charge: Characterized by irreducible representation α .
- Fermion: Combination of charge and flux.

Charge:

_____I

Minimally Entangled States (MES)

- A special basis that spans the ground state with the minimum entanglement entropy.
- Reflects the anyonic excitations of topological phases:

 $\begin{aligned} |\psi(I,e)\rangle &= |I\rangle \text{ (vacuum)} \\ |\psi(I,o)\rangle &= |e\rangle \text{ (charge)} \\ |\psi(Z,e)\rangle &= |m\rangle \text{ (flux)} \\ |\psi(Z,o)\rangle &= |e\rangle \text{ (fermion)} \end{aligned}$

$$|\psi(g,\alpha)\rangle = \sum_{h \in \mathbb{Z}_2} \chi_{\alpha}(h)$$

N. Schuch, I. Cirac, and D. Pérez-García, Annals of Physics 325, 2153 (2010) Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, Phys Rev B 85, 235151 (2012)

Using MES to Detect Anyon Condensation

A $\mathbb{Z}_2\text{-injective PEPS}$ does not guarantee topological order

Flux is identical to GS \rightarrow Flux condensation

To detect anyon condensation, we compute the overlap of MESs, which is encoded in the dominant eigenvalue (λ) of the transfer matrix (TM).

	II	IZ	ZI	ZZ
ee	$\langle I I \rangle$	$\langle I m \rangle$	$\langle m I \rangle$	$\langle m m \rangle$
eo	$\langle I e \rangle$	$\langle I \epsilon \rangle$	$\langle m e \rangle$	$\langle m \epsilon \rangle$
0e	$\langle e I \rangle$	$\langle e m \rangle$	$\langle \epsilon I \rangle$	$\langle \epsilon m \rangle$
00	$\langle e e \rangle$	$\langle e \epsilon \rangle$	$\langle \epsilon e \rangle$	$\langle \epsilon \epsilon \rangle$

Different projector correspond to different MES overlap.

- Red: Regular TM.
- Blue: TM measuring charge difference.
- Yellow: TM measuring flux difference.
- Green: TM measuring flux and charge (fermion) difference.

N. Schuch, D. Poilblanc, J. I. Cirac, and D. Pérez-García, Phys Rev Lett 111, 090501 (2013). J. Haegeman, V. Zauner, N. Schuch, and F. Verstraete, Nat Commun 6, 8284 (2015).

Method: Gauge-Symmetry Preserved HOTRG

Goal: Calculate TM on a long (infinite) cylinder with appropriate boundary conditions

- (a) Start from a one-site double tensor.
- (b) Merge two double tensors to form a new rank-6 tensor.
- (c) Apply appropriate isometries U which truncates the bond dimension.

Preserve symmetries at each step

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980

Warmup: Toric Code with String Tension

$$|\Psi(\beta_x, \beta_z)\rangle = \prod_e Q_e(\beta_x, \beta_z) \times |\Omega_{TC}\rangle$$

with $Q_e(\beta_x, \beta_z) = \exp\left(\frac{\beta_x \sigma_e^x + \beta_z \sigma_e^z}{4}\right)$

Along $\beta_x = 0$ axis, varying β_z Only regular and the charge difference TMs are nonzero.

- $\beta_z < \beta_z^c$ (\mathbb{Z}_2 TO phase):
- $\lambda_{\langle I|I\rangle} = \lambda_{\langle m|m\rangle} = 1$: $|I\rangle$ and $|m\rangle$ are normalizable ground states.
- $\lambda_{\langle I|e\rangle} = \lambda_{\langle m|e\rangle} < 1$: Four MESs are orthogonal.

	II	IZ	ZI	ZZ
ee	$\langle I I \rangle$	$\langle I m \rangle$	$\langle m I \rangle$	$\langle m m \rangle$
eo	$\langle I e \rangle$	$\langle I \epsilon \rangle$	$\langle m e \rangle$	$\langle m \epsilon \rangle$
oe	$\langle e I \rangle$	$\langle e m \rangle$	$\langle \epsilon I \rangle$	$\langle \epsilon m \rangle$
00	$\langle e e \rangle$	$\langle e \epsilon \rangle$	$\langle \epsilon e \rangle$	$\langle \epsilon \epsilon \rangle$

dashed: L = 1, dotted: L = 16, solid: L = 256

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980

Warmup: Toric Code with String Tension

$$|\Psi(\beta_x, \beta_z)\rangle = \prod_e Q_e(\beta_x, \beta_z) \times |\Omega_{TC}\rangle$$

with $Q_e(\beta_x, \beta_z) = \exp\left(\frac{\beta_x \sigma_e^x + \beta_z \sigma_e^z}{4}\right)$

Along $\beta_x = 0$ axis, varying β_z Only regular and the charge difference TMs are nonzero.

- $\beta_z > \beta_z^c$ (CC phase):
- $\lambda_{\langle I|I\rangle} = \lambda_{\langle I|e\rangle} = 1$: $|I\rangle$ and $|e\rangle$ are not orthogonal, indicating the charge anyon **condense** to vacuum.
- λ_(m|ε) = λ_(m|m) < 1: |m⟩ and |ε⟩ are not normalizable states, indicating both flux anyon and fermion are confined.

	Π	IZ	ZI	ZZ
ee	$\langle I I \rangle$	$\langle I m \rangle$	$\langle m I \rangle$	$\langle m m \rangle$
eo	$\langle I e \rangle$	$\langle I \epsilon \rangle$	$\langle m e \rangle$	$\langle m \epsilon \rangle$
0e	$\langle e I \rangle$	$\langle e m \rangle$	$\langle \epsilon I \rangle$	$\langle \epsilon m \rangle$
00	$\langle e e \rangle$	$\langle e \epsilon \rangle$	$\langle \epsilon e \rangle$	$\langle \epsilon \epsilon \rangle$

dashed: L = 1, dotted: L = 16, solid: L = 256Along $\beta_z = 0$ axis, varying β_x Only regular and the flux difference TMs are nonzero.

No Other MES can become $|\epsilon\rangle$

	II	IZ	ZI	ZZ
ee	$\langle I I \rangle$	$\langle I m \rangle$	$\langle m I \rangle$	$\langle m m \rangle$
ео	$\langle I e \rangle$	$\langle I \epsilon \rangle$	$\langle m e \rangle$	$\langle m \epsilon \rangle$
0 <i>e</i>	$\langle e I \rangle$	$\langle e m \rangle$	$\langle \epsilon I \rangle$	$\langle \epsilon m \rangle$
00	$\langle e e \rangle$	$\langle e \epsilon \rangle$	$\langle \epsilon e \rangle$	$\langle \epsilon \epsilon \rangle$

- CC phase: $|e\rangle$ becomes $|I\rangle$ while $|m\rangle$ and $|e\rangle$ are confined.
- FC phase: $|m\rangle$ becomes $|I\rangle$ while $|e\rangle$ and $|e\rangle$ are confined.
- Other possibilities? Can |e⟩ or |m⟩ become
 |e⟩? Can |e⟩ become |I⟩? Can |e⟩ become
 |m⟩?
- Based on the TM structure, one can show that no other MES can become | € >→ fermion cannot condense.

We are left with the only possibility that $|e\rangle$ becomes $|m\rangle$

Kitaev Model on the Star Lattice

$$H = -J\sum_{\langle i,j \rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma} - J'\sum_{\langle ij \rangle \in \gamma'} S_{i}^{\gamma'} S_{j}^{\gamma'}$$

 $\gamma = x, y, z$: Intrabond $\gamma' = x', y', z'$: Interbond

Perturbative Study:

Isolated-dimer limit: Toric code ground state $\rightarrow \mathbb{Z}_2$ topological order: $|I\rangle$, $|e\rangle$, $|m\rangle$, $|e\rangle$.

Isolated-triangle limit: Kitaev's honeycomb model \rightarrow Ising anyon: $|I\rangle$, $|\sigma\rangle$, $|\epsilon\rangle$.

H. Yao and S. A. Kivelson, Phys Rev Lett 99, 247203 (2007). S. Dusuel, K. P. Schmidt, J. Vidal, and R. L. Zaffino, Phys Rev B 78, 125102 (2008).

Kitaev Model on the Star Lattice

$$H = -J\sum_{\langle i,j \rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma} - J'\sum_{\langle ij \rangle \in \gamma'} S_{i}^{\gamma'} S_{j}^{\gamma'}$$

 $\gamma = x, y, z$: Intrabond $\gamma' = x', y', z'$: Interbond

Exact Results

- $J'/J > \sqrt{3}$: \mathbb{Z}_2 topological order, 4-flold degeneracy on the torus.
- $J'/J < \sqrt{3}$: Ising Anyon, 3-flold degeneracy on the torus.
- Two types of flux operators: $\hat{W}_p = \hat{S}_1^x \hat{S}_2^z \hat{S}_3^y \dots \hat{S}_{12}^y, \ \hat{V}_p = \hat{S}_1^z \hat{S}_2^x \hat{S}_3^y$
- Both ground states live in vortex-free sector: $\{W_p = + \ 1, V_p = + \ 1\}$

Loop Gas Projector Gives $\mathbb{Z}_2\text{-injective}$ Ansatz

Originally defined on the honeycomb lattice

D lattice $\hat{Q}_{LG} = \text{tTr} \prod_{\alpha} Q_{i_{\alpha}j_{\alpha}k_{\alpha}}^{ss'} |s\rangle \langle s'|$ $Q_{000} = I, \ Q_{011} = -iU^x, \ Q_{101} = -iU^y, \ Q_{110} = -iU^z$ Applying \hat{Q}_{LG} on any injective PEPS gives \mathbb{Z}_2 -injective PEPS

- Loop gas (LG) states (parameter θ):

$$|\psi_{LG}(\theta)\rangle = \hat{Q}_{LG}|\psi(\theta)\rangle, \ |\psi(\theta)\rangle = \bigotimes_{\alpha}|\theta,\gamma_{\alpha}\rangle$$

• String gas (SG) states (parameter α, β):

$$|\psi_{SG}(\alpha,\beta)\rangle = \hat{Q}_{LG}\hat{R}_{DG}(\alpha,\beta) |\psi(\theta = \tan^{-1}\sqrt{2})\rangle$$

Any LG Ansatz satisfies vortex-free conditions

Flux in \mathbb{Z}_2 -injective PEPS corresponds to physical vortex

H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Phys. Rev. Lett. 123, 087203 (2019).

Loop Gas Projector Gives $\mathbb{Z}_2\text{-injective}$ Ansatz

$$H = -J \sum_{\langle i, j \rangle_{\gamma}} S_i^{\gamma} S_j^{\gamma} - J' \sum_{\langle ij \rangle \in \gamma'} S_i^{\gamma'} S_j^{\gamma'}$$

$$J = \cos \phi, J' = \sin \phi$$

$$\phi > \tan^{-1} \sqrt{3} : \mathbb{Z}_2 \text{ topological order}$$

$$\phi < \tan^{-1} \sqrt{3} : \text{Ising Anyon.}$$

LG states $|\psi_{LG}(\theta)\rangle$:

$$\begin{split} |\Psi\rangle &= \bigotimes_{\alpha} |\psi_{\alpha}\rangle, |\psi_{\alpha}(\theta)\rangle = |\theta, x_{\alpha}\rangle |\theta, y_{\alpha}\rangle |\theta, z_{\alpha}\rangle \\ \langle\theta, \gamma | \sigma^{\gamma'} | \theta, \gamma\rangle &= \delta_{\gamma'\gamma} \cos \theta + (1 - \delta_{\gamma'\gamma}) \frac{\sin \theta}{\sqrt{2}} \end{split}$$

- Yield exact energy in both isolated-dimer ($\phi = \pi/2$) and isolated-triangle ($\phi = 0$) limit.
- Large energy deviation for $0 < \phi < \pi/2$. \rightarrow Label them using variational parameter θ .
- In the isolated-dimer limit ($\theta = 0, \phi = \pi/2$), LG and SG states are \mathbb{Z}_2 -isomteric, i.e., they corresponds to toric code ground states.

H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Phys Rev B 101, 035140 (2020). Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980

 \mathbb{Z}_2 -Isometry: $\theta = 0$

$$\begin{split} |\Psi\rangle &= \bigotimes_{\alpha} |\psi_{\alpha}\rangle, |\psi_{\alpha}(\theta)\rangle = |\theta, x_{\alpha}\rangle |\theta, y_{\alpha}\rangle |\theta, z_{\alpha}\rangle \\ \sigma^{\gamma} |\gamma, \pm \rangle &= \pm |\gamma, \pm \rangle \end{split}$$

$$\langle \theta, \gamma | \sigma^{\gamma'} | \theta, \gamma \rangle = \delta_{\gamma'\gamma} \cos \theta + (1 - \delta_{\gamma'\gamma}) \frac{\sin \theta}{\sqrt{2}}$$
$$|\gamma, + \rangle = |\theta = 0, \gamma \rangle$$

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980

Loop Gas Projector Gives \mathbb{Z}_2 -injective Ansatz

• Yield accurate energy for all different ϕ . \rightarrow Label them using Hamiltonian's parameter ϕ : $|\psi_{SG}\rangle = |\psi_{SG}(\theta)\rangle$

 $|\theta, z_1|$

 $|\theta, y_1|$

 $|\theta, x_1\rangle$

 $|\theta, x_2\rangle$

- Topological entanglement entropy shows that flux anyon ($\gamma = \ln(2)$) transmutes into σ anyon ($\gamma = \ln(\sqrt{2})$).
- Ground state subspace
 - Abelian: 4-fold degeneracy
 - Non-Abelian: 3-fold degeneracy (incompatible with \mathbb{Z}_2 -injective classification !)

H.-Y. Lee, R. Kaneko, T. Okubo, and N. Kawashima, Phys Rev B 101, 035140 (2020). Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980

Results: LG States

Only **regular** and **fermion difference** TMs are nonzero.

 $\theta \neq \theta_c$:

• $\lambda_{\langle m|e\rangle} = \lambda_{\langle I|e\rangle} < 1$, $\lambda_{\langle I|I\rangle} = \lambda_{\langle m|m\rangle} = 1$: Four MES are orthogonal and normalizable, indicating \mathbb{Z}_2 TO phase.

$$\theta = \theta_c$$
:

- $\lambda_{\langle m|e\rangle} = \lambda_{\langle m|m\rangle} > \lambda_{\langle I|e\rangle}$ for all L.
- As *L* increases, $\lambda_{\langle m|e\rangle}$, $\lambda_{\langle m|m\rangle}$, $\lambda_{\langle I|e\rangle} \to 1 \Rightarrow$ Power-law decay correlation.
- One-parameter family of LG states $|\psi_{LG}(\theta)\rangle$ are all in \mathbb{Z}_2 TO phase except for $\theta = \theta_c$.

	II	IZ	ZI	ZZ
ee	$\langle I I \rangle$	$\langle I m \rangle$	$\langle m I \rangle$	$\langle m m \rangle$
eo	$\langle I e \rangle$	$\langle I \epsilon \rangle$	$\langle m e \rangle$	$\langle m \epsilon \rangle$
oe	$\langle e I \rangle$	$\langle e m \rangle$	$\langle \epsilon I \rangle$	$\langle \epsilon m \rangle$
00	$\langle e e \rangle$	$\langle e \epsilon \rangle$	$\langle \epsilon e \rangle$	$\langle \epsilon \epsilon \rangle$

dashed: *L* = 1, dotted: *L* = 16, solid: *L* = 256

Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980

Results: SG States

 $\phi > 0.24\pi$:

• $\lambda_{\langle m|e\rangle} = \lambda_{\langle I|e\rangle} < 1$, $\lambda_{\langle I|I\rangle} = \lambda_{\langle m|m\rangle} = 1 \rightarrow \mathbb{Z}_2$ TO phase (Similar to LG states for $\theta \neq \theta_c$).

 $\phi < 0.24\pi$:

- $\lambda_{\langle m|e\rangle} = \lambda_{\langle m|m\rangle} > \lambda_{\langle I|e\rangle}$ for all *L*.
- As *L* increases, $\lambda_{\langle m|e\rangle}$, $\lambda_{\langle m|m\rangle}$, $\lambda_{\langle I|e\rangle} \rightarrow 1 \Rightarrow$ Power law decaying correlation (Similar to LG states for $\theta \neq \theta_c$).
- Since no other MES can become $|\epsilon\rangle$, $|I\rangle$ and $|\epsilon\rangle$ should be regarded as different states.

Note that the crossing point coincides the point that the entanglement entropy of $|m\rangle$ change from $\log 2$ to $\log \sqrt{2}$.

Can we identify $|e\rangle$ and $|m\rangle$ as the same states?

H.-Y. Lee, et al., Phys Rev B 101, 035140 (2020). Y.-H. Chen, C.-Y. Huang, YJK arXiv: 2102.10980

Results: TM Spectrum

TM spectrum of LG at $\theta = \theta_c$ with L = 6 shows that $\langle e | e \rangle$, $\langle e | m \rangle$ and $\langle m | m \rangle$ have exactly the same spectrum: $|e\rangle$ and $|m\rangle$ are the same states \Rightarrow **The ground state is 3-fold degenerate in non-Abelian phase.**

Physical Interpretation

Conclusion

- Within the framework of \mathbb{Z}_2 -injective PEPS, we can understand the transition from Abelian to non-Abelian topological order phase as charge and flux anyons transmuting into σ anyon.
- Since no other MES can become $|e\rangle$, we conclude that \mathbb{Z}_2 -injective PEPS can only describe three kinds of anyonic transitions: $|e\rangle = |I\rangle$, $|m\rangle = |I\rangle$, and $|e\rangle = |m\rangle$.
- Our study shows that \mathbb{Z}_2 -injective PEPS can unify the transition from \mathbb{Z}_2 -TO phase to both trivial phases (product states) and nontrivial phases (non-Abelian phase).
- Generalization to other symmetry groups? MPO-injective PEPS?