Tensor Networks for Statistical Mechanics

Tomotoshi. Nishino (Kobe Universty)

Part II. 17:00 PM (Kobe), 24 Feb. 2021
Fractal lattice (just glance at)
Crystal Surface (Disordered Flat phase, Steps, etc.)

Polygon and Polytope Models
Hyperbolic lattices (optional)

Random-bond Ising model (optional)

Ads from Okunishi: Coming Workshop in March
http://www2.yukawa.kyoto-u.ac.jp/~qith2021/index.php

Fractals

This fractal lattice fits TRG.
Ising Model shows phase Transition effective space dim. < 2

another Fractal: Sierpinski Carpet

arXiv:1904.10645
Genzor et al

Effective dimension of the system is less than 2.

HOTRG can be applied

(MPS studies of) Crystal Surface

Preroughening transitions in Surfaces,
K. Rommelse and M. den Nijs, Phys. Rev. Lett. 59, 2578 (1987)

Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains, M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989)
related web page http://faculty.washington.edu/london/research/prerough.html

Equilibrium Crystal Shape

> Arxiv: (Series of studies by Noriko Akutsu) 1903.099291711 .050151510 .00899 1204.55741104 .3393 cond-mat/0107021 cond-mat/0104559 cond-mat/0012162 cond-mat/001 1210 cond-mat/9903448

RSOS Model

On the solid surface, atoms are stacking on top of each other. (Solid on Solid)

Surface state is specified by the height h , where the nearest neighbor sites can differ at most one. (Restriction) ex. h1 and h2, etc.

(Step Energy)

When the height differs by one between nearest neighbor sites, energy increases by E . (A large E favors the completely flatness.)

(Step Repulsion)

When the height differs by two between next nearest neighbor sites (in the diagonal direction), energy increases by Q. ex. h1 and h3, h2 and h4, etc.
(IRF Model)
... thus local energy is determined 4 heights surrounding a surface, dented as a crossing point of lines in the figure.

Disordered Flat (DOF) Phase

\author{

Preroughening Transitions in Surfaces

 Koos Rommelse and Marcel den Nijs
 Department of Physics, University of Washington, Seattle, Washington 98195
 (Received 28 September 1987)}

Abstract

We introduce a new type of phase of crystal surface and interfaces. This disordered flat phase appears intermediate between the familiar flat and rough phases in the presence of short-range interactions of a type common in experiments. The surface remains flat on average although it contains a disordered array of steps. The preroughening transition into the disordered flat phase belongs to a new universality class. Finite-size-scaling calculations for the restricted solid-on-solid model confirm the existence of the disordered flat phase and the preroughening transition.

Quantum-Classical correspondence: d-dimensional quantum system and (d+1)dimensional classical system share the same property. How about the Haldane State? Here is their reply!!!

The RSOS model is related to the one-dimensional spin-1 quantum chain. We can show ${ }^{5}$ that the DOFtype order is related to the so-called Haldane gap, ${ }^{8}$ and that the preroughening transition is analogous to one of the transitions ${ }^{9}$ in that model.

DOF

(a)

(b)
disorder

(c)

$$
H_{\mathrm{RSOS}}=-K \sum_{\left(\mathbf{r}, \mathbf{r}^{\prime}\right)} \delta\left(\left|h(\mathbf{r})-h\left(\mathbf{r}^{\prime}\right)\right|-1\right)-L \sum_{\left(\mathbf{r}, \mathbf{r}^{\prime \prime}\right)} \delta\left(\left|h(\mathbf{r})-h\left(\mathbf{r}^{\prime \prime}\right)\right|-2\right) .
$$

$\left\langle\mathbf{r}, \mathbf{r}^{\prime}\right\rangle$ denotes nn bonds on a square lattice: ($\mathbf{r}, \mathrm{r}^{\prime \prime}$) denotes next-nearest-neighbr and vanishes otherwise. Energies are measured in units of $-1 / k_{\mathrm{B}} T$. $L>0$ far neighbors.

When the step repulsion $\mathrm{L}(\mathrm{kT})$ is large, a flat phase with disorder is realized. This is the DOF state.

$\mathrm{D}_{\text {is }} \mathrm{O}_{\text {rdered }} \mathrm{F}_{\text {lat }}$ Phase and Haldane Phase

Transfer matrix to the diagonal direction has a good correspondence with the quantum spin chain.

FIG. 15. Typical (side view) configuration in the DOF phase r the RSOS model, as seen from, respectively, the crystal surce, spin-1, and VBS perspective.

Step height of the DOF phase can be regarded as Sz of each spin located between faces.

See details (Rommelse and den Nijis, 1989)

1 SEPTEMBER 1989

Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains

Marcel den Nijs
Department of Physics, FM-15, University of Washington, Seattle, Washington 98195
Koos Rommelse
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Received 10 April 1989)

Noriko Akutsu, J. Phys. Condens. Matter 23, 485004 (2011) (arXiv:1104.3393)
"Non-universal equilibrium crystal shape results from sticky steps"

(a)

(b)

Figures from arXiv:1104.3393 and 1903.09929 by N.Akutsu

Numerical analyses by MPS
(Series of studies by Noriko Akutsu)
Arxiv:
1903.099291711 .050151510 .00899 1204.55741104 .3393 cond-mat/0107021 cond-mat/0104559 cond-mat/0012162 cond-mat/0011210 cond-mat/9903448

Tensor Networks for Statistical Mechanics

Tomotoshi. Nishino (Kobe Universty)

Part II. 17:00 PM (Kobe), 24 Feb. 2021
Fractal lattice (just glance at)
Crystal Surface (Disordered Flat phase, Steps, etc.)

Polygon and Polytope Models
Hyperbolic lattices (optional)

Random-bond Ising model (optional)

Ads from Okunishi: Coming Workshop in March
http://www2.yukawa.kyoto-u.ac.jp/~qith2021/index.php

Polyhedral Models

*** not much is known for classical Heisenberg model on 2D Lattice *** ... numerical calculation tend to "observe" phase transition (!!!)
>>> how about the discrete Analogues?

- application of CTMRG to Statistical Mechanical Models -

Tetrahedron

Cube

Octahedron

Phys. Rev. E 94, 022134 (2016); arXiv:1512.09059
Phys. Rev. E 96, 062112 (2017); arXiv:1709.01275 arXiv:1612.07611

Icosahedron

Dodecahedron

Tomotoshi Nishino (Kobe Univ.), Hiroshi Ueda (RIKEN), Seiji Yunoki (RIKEN) Koichi Okunishi (Niigata Univ.), Roman Krcmar (SAS), Andrej Gendiar (SAS)

Regular Polyhedron Models:
 Each site vector can point one of the
 Tetrahedron

 Cube

 Octahedron

 vertices the regular polyhedron.$\mathbf{q}=4$: Tetrahedron Model, corresponds to $\mathrm{q}=4$ Potts Model $\mathbf{q}=\mathbf{6}$: Octahedron Model (weak first order)
q=8: Cube Model, equivalent to 3-set of Ising Model
$\mathbf{q = 1 2 : ~ I c o s a h e d r o n ~ M o d e l ~ (2 n d ~ o r d e r) ~}$

$\mathbf{q}=20:$ Dodecahedron Model (2nd order)

$$
\mathbf{H}=-\mathbf{J} \Sigma_{\mathrm{ij}} \mathbf{V}_{\mathbf{i}} \cdot \mathbf{V}_{\mathbf{j}}
$$

* Do these models show KT transition? (...no, when there is no anisotropy)
* Is there any model that shows multiple phase transitions? (... no, in reality)

Variants:

If one considers semi-regular polyhedrons, or truncated polyhedrons, one can further define discrete Heisenberg models. Also those cases where each site vector can point centers of faces or edges can be considered. By such generalizations, $\mathbf{q}=\mathbf{1 8 , 2 4 , 3 6 , 4 8 , 6 0 , 7 2 , 9 0 , 1 2 0 , 1 5 0 , 1 8 0}$ can be considered.

[^0]

Tetrahedron

is there any high precision numerical study by TN?
... a vanguard for TN study

Octahedron
MC 2nd Order
[Surungan\&Okabe, 2012]

Icosahedron
2nd Order
[Patrascioiu, et al., 2001] MC arXiv:hep-lat/0008024
[Surungan\&kabe, 2012] MC arXiv:1709.03720

Cube: Ising x 3 (Exactly Solved)

Dodecahedron

KT?
[Patrascioiu, et al., 1991]

Cube

Octahedron

Octahedron Model (q=6)

CTMRG — Krcmar, Gendiar, Nishino, arXiv:1512.09059

This model is characteristic in the point that interaction energy is either 1,0 , or -1 .

No singularity exists in $f(T)$, two lines cross at $\boldsymbol{T}=\mathbf{0 . 9 0 8 4 1 3}$.

Latent Heat: $\boldsymbol{Q}=\mathbf{0 . 0 7 3}$

Free energy per site $f(T)$ is calculated by CTMRG under fixed or free boundary conditions at the border of the system.

Dodecahedron

Discussion: What kind of perturbation makes the model critical?

Tetrahedron

is there any high precision numerical study by TN?
... a vanguard for TN study

Octahedron
MC 2nd Order
[Surungan\&Okabe, 2012]
\downarrow
1st Order
[Roman,et al., 2016]
CTMRG

Icosahedron
2nd Order
[Patrascioiu, et al., 2001] MC arXiv:hep-lat/0008024
[Surungan\&kabe, 2012] MC arXiv:1709.03720

Cube: Ising x 3
(Exactly Solved)

Dodecahedron

KT?
[Patrascioiu, et al., 1991]

Icosahedron Model:

\checkmark Symmetry axis
Centers of edges (two-fold)
Centers of faces (three-fold)
Two opposite vertices (five-fold)

What kind of symmetry breaking happens at Tc ?
Is there multiple phase transitions?
Any possibility of KT transition?
Numerical Analysis by CTMRG under $\mathbf{m}=\mathbf{5 0 0}$
calculations were done on K-computer by Ueda. dimension of CTM: 6000
arXiv:1709.01275
... there would be some trick to reduce the site degrees of freedom in advance ...

prob. of directions under fixed B.C.

5-fold rotational symmetry is preserved in low temperature
arXiv:1709.01275

Spontaneous Magnetization

$$
M=\frac{1}{Z} \sum_{s=1}^{12}\left(\boldsymbol{v}^{(1)} \cdot \boldsymbol{v}^{(s)} \operatorname{Tr}^{\prime}\left[C^{4}\right]\right)
$$

strong m-dependence exists

Finite- m scaling

\checkmark Finite size scaling [Fisher and Barber, 1972, 1983]

+ Finite- m scaling at criticality
Nishino, Okunishi and Kikuchi, PLA (1996)
Tagliacozzo, Oliveira, Iblisdir, and Latorre, PRB (2008)
Pollmann, Mukerjee, Turner, and Moore, PRL (2009)
Pirvu, Vidal, Verstraete, and Tagliacozzo, PRB (2012)

$$
\langle A\rangle(b, t)=b^{x_{A} / \nu} f_{A}\left(b^{1 / \nu} t\right)
$$

b: Intrinsic length scale of the system

$$
\begin{gathered}
t=T / T_{c}-1 \\
f_{A}(y) \sim y^{-x_{A}} \text { for } y \gg 1 \\
f_{A}(y) \sim \text { const for } y \rightarrow 0
\end{gathered}
$$

\checkmark Correlation length

$$
\xi(m, t)=\left[\ln \left(\zeta_{1} / \zeta_{2}\right)\right]^{-1} \quad \zeta_{1} \text { and } \zeta_{2}: 1 \text { st and } 2 \text { nd eigenvalues of } \mathrm{TM}
$$

\checkmark Scaling hypothesis

$$
\xi(m, t) \sim m^{\kappa} g\left(m^{\kappa / \nu} t\right)
$$

$$
\begin{gathered}
m^{\kappa} \gg t^{-\nu}: \xi(m, t) \sim t^{-\nu} \text { for a finite } t \\
m^{\kappa} \ll t^{-\nu}: \xi(m, t) \sim m^{\kappa} \text { for a finite } m
\end{gathered}
$$

$\checkmark b \sim \xi(m, t)$

$$
\langle A\rangle(m, t)=m^{x_{A} \kappa / \nu} \chi_{A}\left(m^{\kappa / \nu} t\right)
$$

For a finite t with $m^{\kappa / \nu} t \gg 1: A(m, t) \sim|t|^{-x_{A}}$
For a finite m with $m^{\kappa / \nu} t \ll 1: A(m, t) \sim m^{-x_{A} / \nu}$

Finite- m scaling for ξ

- Bayesian scaling
[Harada, PRE, 2011]

Finite- m scaling

$$
\checkmark \beta=0.129
$$

Entanglement Entropy

$$
S_{\mathrm{E}}=-\operatorname{Tr}\left(\mathbf{C}^{4} / Z\right) \ln \left(\mathbf{C}^{4} / Z\right)
$$

Vidal, Latorre, Rico, and Kitaev, PRL, 2003
Calabrese and Cardy, J. Stat. Mech., 2004

$$
S_{\mathrm{E}}(m, t) \sim \frac{c}{6} \log \xi(m, t)+\text { const } .
$$

a : non-universal constant c : central charge

$$
\begin{aligned}
e^{S_{\mathrm{E}}} & \sim a[\xi(m, t)]^{c / 6} \\
& =a\left[m^{\kappa} g\left(m^{\kappa / \nu} t\right)\right]^{c / 6} \\
& =m^{c \kappa / 6} g^{\prime \prime}\left(m^{\kappa / \nu} t\right), g^{\prime \prime}=a g^{c / 6}
\end{aligned}
$$

Entanglement Entropy

One parameter
$c=1.894$
Empirical relation

$$
\kappa=\frac{6}{c(\sqrt{12 / c}+1)}
$$

[Pollmann, Mukerjee, Turner, and Moore, PRL, 2009]
This work:
$\frac{6}{c(\sqrt{12 / c}+1)}-\kappa=0.003$

Icosahedron model

\checkmark there is a phase transition of 2nd order

\checkmark Ordered phase has five-fold rotational symmetry

Phys. Rev. E 96, 062112 (2017)
arXiv:1709.01275

Tc	¥nu	¥kappa	¥beta	c
$0.5550(1)$	$1.62(2)$	$0.89(2)$	$0.12(1)$	$1.90(2)$

Tetrahedron

is there any high precision numerical study by TN?
... a vanguard for TN study

Octahedron
MC 2nd Order
[Surungan\&Okabe, 2012]
\downarrow
1st Order
[Roman,et al., 2016]
CTMRG

Icosahedron
2nd Order
[Patrascioiu, et al., 2001] MC arXiv:hep-lat/0008024
[Surungan\&kabe, 2012] MC arXiv:1709.03720

Cube: Ising x 3
(Exactly Solved)

Next Target 20 site degrees of freedom

Dodecahedron

KT ?
[Patrascioiu, et al., 1991]

2nd Order MC
[Surungan\&Okabe, 2012]
arXiv:1709.03720

Tetrahedron

is there any high precision numerical study by TN?
... a vanguard for TN study

Octahedron
MC 2nd Order
[Surungan\&Okabe, 2012]
\downarrow
1st Order
[Roman,et al., 2016]
CTMRG

Icosahedron
2nd Order
[Patrascioiu, et al., 2001] MC arXiv:hep-lat/0008024
[Surungan\&kabe, 2012] MC arXiv:1709.03720
... preliminary (but extensive) calculation suggests that there is only a phase transition

Dodecahedron

KT ?
[Patrascioiu, et al., 1991]

2nd Order MC
[Surungan\&Okabe, 2012]
arXiv:1709.03720

arXiv:2004.08669

Finite m scaling (probably) supports the absence of
massless area

Tetrahedron

is there any high precision numerical study by TN?
... a vanguard for TN study

Octahedron
MC 2nd Order
[Surungan\&Okabe, 2012]
\downarrow
1st Order
[Roman,et al., 2016]
CTMRG

Icosahedron
2nd Order
[Patrascioiu, et al., 2001] MC arXiv:hep-lat/0008024
[Surungan\&kabe, 2012] MC arXiv:1709.03720
an extensive calculation suggests that there is only a phase transition

Dodecahedron KT? MC
[Patrascioiu, et al., 1991]
\downarrow
2nd Order MC
[Surungan\&Okabe, 2012]
arXiv:1709.03720
CTMRG
arXiv:2004.08669

Current Target

30 state
24 state

Dodecahedron

These models might show multiple phase transitions, since there are inequivalent directions.

a Generalization to

Truncated Tetrahedron Model ($q=12$)

each site vector points to one of the vertices.

* This model shows multiple phase transitions.
* This kind of generalization can be considered for other polyhedron modles.

Characteristic 4-polytopes

Octahedron

>>> 16-cell, 32, 64, ...
n-set of Ising Model

24-cell
(possible to fill 4D space only by this polytope.)

120-cell

numerical challenges

Cube

>>> Hyper Cube

Akiyama et al, arXiv:1911.12978 Weak First Order? in 4D??

Further Generalizations:

It is possible to treat the case that each site vector can point arbitrary lattice point in N -dimensional space. ($=2 \mathrm{D}$ lattice embedded to N -dim. space.)

What is the effect of perturbation/deformation with polyhedral symmetry to the continuous $\mathrm{O}(3)$ model?

How can one apply tensor network method to spherical model? (it is not straight forward to apply TN for exactly solved models.)

What is the role of TN in higher dimensional lattice? (>>> day 3 in TNSAA7)

Tensor Networks for Statistical Mechanics

Tomotoshi. Nishino (Kobe Universty)

Part II. 17:00 PM (Kobe), 24 Feb. 2021
Fractal lattice (just glance at)
Crystal Surface (Disordered Flat phase, Steps, etc.)

Polygon and Polytope Models
Hyperbolic lattices (optional)

Random-bond Ising model (optional)

Ads from Okunishi: Coming Workshop in March
http://www2.yukawa.kyoto-u.ac.jp/~qith2021/index.php

[^0]: * We conjecture that some of these variants show multiple phase transitions.

