Probing mixed-state, symmetry-resolved, entanglement with randomized measurements

B. Vermersch (LPMMC Grenoble, & IQOQI Innsbruck)

Motivation: quantum technologies

Quantum simulators

Fermi-Hubbard simulation (MPQ)

Quantum computers

Google Sycamore chip

Understand quantum matter (superconductivity, topology, High energy physics,..)

Quantum algorithms Optimization problems (Annealing)

Key challenge: probe quantum properties of these many-body systems

Entanglement

Reduced density matrix

$$\rho_A = \operatorname{Tr}_B(\rho)$$

Entanglement condition (Horodecki 1996)

$$\mathrm{Tr}\left[\rho_{A}^{2}\right],\mathrm{Tr}\left[\rho_{B}^{2}\right]<\mathrm{Tr}\left[\rho^{2}\right]$$

Quantifying entanglement for pure states → **Entanglement entropies**

$$S_A = -\text{Tr}_A \left[\rho_A \log \rho_A \right]$$
 von-Neumann

$$\begin{split} S_A^{(n)} &= \frac{1}{1-n} \log \operatorname{Tr}_A\left[\rho_A^n\right] &\leq S_A & \text{Nth Rényi} \\ & & \\ \mathbf{purity} \\ S_A^{(2)} &= -\log(\operatorname{Tr}_A(\rho_A^2)) & \mathbf{2}^{\operatorname{nd}} \operatorname{Rényi} \end{split}$$

Measuring Entanglement entropies is fundamental for **Quantum Simulation**

Many-body ground states | Quantum Phase transitions | Topological order

Amico et al., Rev.Mod.Phys, 80, 517 (2008) Eisert et al., Rev. Mod. Phys. 82, 277 (2010)

Area law:

$$S_A^{(2)} \propto L_A^{D-1}$$

$$S_A^{(2)} \approx (c/4) \log(L_A)$$

central charge

Kitaev, Preskill, PRL 2006 Levin, Wen, PRL 2006 Jian et al, NP 2012

$$S_A^{(n)} \approx \alpha_n L_A - \gamma$$

Topological entanglement Entropy

Quantum Thermalization

P. Calabrese and J. Cardy, PRL 2006 Badarson et al, PRL 2012

Measuring the entanglement "power" of quantum computers

"Checks"

Purity checks Entanglement checks

Universal behaviors

Google Sycamore chip

Nahum et al, Phys. Rev. X 7, 031016 (2017)

How to measure entanglement in such many-body quantum systems?

A new tool: randomized measurements

Limited to `observables', correlation functions, etc

Not applicable to Entanglement-related quantities, nonlinear functions w.r.t the density matrix

Example: $tr(\rho^2)$

Randomized measurement

Part I: Mixed-State Entanglement from Local Randomized Measurements

Phys. Rev. Lett. 125, 200501 (2020)

A. Elben (Innsbruck) R. Kueng (Caltech → Linz), R. Huang (Caltech), R. van Bijnen (Innsbruck) C. Kokail (Innsbruck), M. Dalmonte (Trieste), P. Calabrese (Trieste), B. Kraus, (Innsbruck) John Preskill (Caltech), Peter Zoller (Innsbruck), and BV **Part II:** Symmetry-resolved dynamical purification in synthetic quantum matter

ArXiv:2101.07814 + arXiv:21xx.xxxx

V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, B. Vermersch, M. Dalmonte

Mixed-State Entanglement

 $\rho \neq \sum_{j} p_{j} \rho_{j}^{(A)} \otimes \rho_{j}^{(B)}$

What kind of entanglement detection?

Purity test:

$$\operatorname{Tr}\left[\rho_{A}^{2}\right], \operatorname{Tr}\left[\rho_{B}^{2}\right] < \operatorname{Tr}\left[\rho^{2}\right]$$

Entanglement witness:

$$\operatorname{Tr}(O\rho_{AB}) < 0$$

PPT condition

Not very powerful for highly mixed states (Brydges 2019)

The relevant operator is state-dependent (ex: CHSH inequalities..)

Not a quantifier of mixed-state entanglement

Powerful (ex: sufficient for two qubits) Basis-independent Entanglement monotone: negativity Relevant in quantum field theories

Positive-Partial-Transpose (PPT) Condition for mixed state entanglement

How to detect entanglement via the PPT condition in multi qubit systems??

PT moments $p_n = \text{Tr}[(\rho_{AB}^{T_A})^n]$ for n = 1, 2, 3, ...

 \rightarrow Quantify mixed-entanglement in quantum-field theories:

Works by P. Calabrese, etc

\rightarrow A measurable powerful entanglement condition Elben et al, PRL 2020

 ${\bf p_3}\,{\rm PPT}\,{\rm condition}$ $p_3 < p_2^2~$ implies PPT violation (implies entanglement)

Hint for the proof: large negative eigenvalues make $\rm p_{_3}$ small, and $\rm p_{_2}$ large

Measuring PT moments via local randomized measurements

See also, Zhou PRL 2020 with global unitaries

Randomized measurements are tomographically complete

Elben, et al PRA 2019, Huang et al, Nature Physics 2020 (see also Ohligher NJP 2013 for Hubbard models)

$$\hat{\rho}_{AB}^{(r)} = \bigotimes_{i \in AB} \left[3(u_i^{(r)})^{\dagger} | k_i^{(r)} \rangle \langle k_i^{(r)} | u_i^{(r)} - \mathbb{I}_2 \right] \qquad \qquad \begin{array}{c} \text{Ensemble} \\ \text{average} \\ \mathbb{E}[\hat{\rho}_{AB}^{(r)}] = \rho_{AB} \\ \mathbb{E}[\hat{\rho}_{AB}^{(r)}] = \rho_{AB} \end{array}$$

Polynomials of the density matrix can be estimated via U-statistics

See also Huang et al, Nature Physics 2020 for the purity

$$p_{3} = \mathbb{E}\left[\operatorname{Tr}\left((\rho_{AB}^{(r_{1})})^{T_{A}}(\rho_{AB}^{(r_{2})})^{T_{A}}(\rho_{AB}^{(r_{3})})^{T_{A}}\right)\right]$$

- → Multi-linear post-processing of the data (no tomography)
- \rightarrow Measurement budget ~2^{N[AB]}

First experimental measurements of PT moments

State: Quench of a Neel state with long range XY model

Data: Brydges , Science 2019 (reanalyzed)

Entanglement detection

Elben et al, Phys. Rev. Lett. 125, 200501 (2020)

Entanglement spreading

Quantum-field theory predictions: P. Calabrese et al

Part I: Mixed-State Entanglement from Local Randomized Measurements

Phys. Rev. Lett. 125, 200501 (2020)

A. Elben (Innsbruck) R. Kueng (Caltech → Linz), R. Huang (Caltech), R. van Bijnen (Innsbruck) C. Kokail (Innsbruck), M. Dalmonte (Trieste), P. Calabrese (Trieste), B. Kraus, (Innsbruck) John Preskill (Caltech), Peter Zoller (Innsbruck), and BV

Part II: Symmetry-resolved dynamical purification in synthetic quantum matter

ArXiv:2101.07814 + arXiv:21xx.xxxx

V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, B. Vermersch, M. Dalmonte

Motivation:

quantum simulators and noisy-intermediate scale quantum devices

The total number of excitations (atoms, spin up states) is conserved [U(1) symmetry]

Local interactions

Independent sources of dissipation [Spontaneous emission, particle loss, etc]

Dynamics from a product state (ex Neel State 01010101)

Can we observe universal short-time entanglement signatures of the competition between unitary versus decoherence dynamics?

Our model:

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [H, \rho] + \sum_{k} [L_k \rho L_k^{\dagger} - \frac{1}{2} \{L_k^{\dagger} L_k, \rho\}]$$

Hard-core bosons dynamics

$$H = J \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + \text{h.c.})$$

Single particle loss

$$L_j = \sqrt{\gamma} b_j$$

Consequence of U(1) Symmetry: Reduced density matrices are block-diagonal

Description in terms of *m symmetry-resolved* reduced (and normalized) density matrices

See early works in gauge theories + more recent by Calabrese, Goldstein, Laflorencie, Sela.

Consequence of U(1) Symmetry: Reduced density matrices are block-diagonal

(~ inverse of the number of dominant eigenstates in each block)

And SR-PPT entanglement conditions...

Symmetry-resolved dynamical purification at short times

Tool: Second-Order Perturbation Theory at short times (w.r.t Lindblad rates)

In the q=-1 sector (I lost one particle)

Loss terms always win at very short times!

Coherent terms will progressively beat the loss terms

Universal symmetry-resolved dynamical purification at short times

Dynamical purification reveals the locality of interactions `on top' of a dissipative environment

How to measure SR entropies in an experiment via randomized measurements?

Experimental observation of dynamical purification

State: Quench of a 10 qubit Neel state via a long range XY model **Data:** Brydges , Science 2019 (reanalyzed)

SR purity increases! Then decreases

The total purity decays

1) What about entanglement???

2) Symmetry-resolved Partial transpose

Cornfeld, Goldstein and Sela, PRA 2018

$$\rho^{T_A}(\tilde{q}) \equiv \frac{\Pi_{\tilde{q}} \rho^{T_A} \Pi_{\tilde{q}}}{\mathrm{Tr} \rho^{T_A} \Pi_{\tilde{q}}}$$

3) Symmetry-resolved p3 PPT condition

- $\rightarrow\,$ In one sector, the partition A purifies
- \rightarrow However, A is entangled with B
- \rightarrow Proof: SR PPT condition

Perturbation theory: SR p3 ppt detects entanglement at arbitrary short times

Neven, Carrasco et al, in preparation

Observation of symmetry-resolved entanglement

Neven, Carrasco et al, in preparation

State: Quench of a 10 qubit Neel state via a long range XY model

Data: Brydges, Science 2019 (reanalyzed)

Randomized measurements: a versatile toolbox to probe many-body physics in quantum experiments

Current efforts

Optimized protocols

A.Rath, A. Elben, R. van Bijnen, P. Zoller

Random Time-of-flight Microscopy

P. Naldesi, A. Elben, P. Zoller, A. Minguzzi

Measuring Spectral Form Factors L. Joshi, A. Elben, P. Zoller

Thank you!

Funding available for PhD

→ contact **benoit.vermersch@lpmmc.cnrs.fr**

