

100 million years

(you are here)

Space is Homogeneous and sotropic

General Relativity

An Expanding Universe

 $\frac{\lambda_{obs}}{\lambda_{em}} = \frac{a_0}{a_1} = 1 + z$

Edwin P. Hubble

Mount Wilson

Edwin P. Hubble

Mount Wilson

Mount Palomar

Redshifts to galaxies

Hubble law

 $H_0 d = zc \approx v$
for z < <1

HST Key Project

 $H_0 = 500 \text{ km/s/Mpc}$ Dominated by systematic errors! $H_0 =$

 $H_0 = 70 \pm 7 \text{ km/s/Mpc}$ $z \le 0.1$ The Accelerating Universe

Supernovae la Lightcurves & Stretch-factor

> SNIa as Standard Candles

Riess et al. (2004) 129+16 SNIa

Flat Universe $\Omega_M = 0.29 \pm 0.05$ $\Omega_\Lambda = 0.71 \pm 0.05$

Something is pushing the galaxies apart

DARK ENERGY

Normal Matter

$$d(\rho V) + pdV = TdS = 0$$

Vacuum Energy

The Physics of Nothing

How can nothing be most of evenything in the universe?

"empty space" is a sea of virtual particles winking The answer (maybe) is quantum uncertainty: in and out of existence:

Scale of the Universe Relative to Today's Scale

Expansion History of the Universe

The Aging Universe

If the universe is expanding, necessarily it must have been denser and hotter in the past

Tracing the past history of the universe, we reach the realm of high energy physics and particle accelerators

Large scale structure

Inflationary Paradigm

- Why is the Universe spatially flat?
- Why is the Universe homogeneous on large scales?
- What is the origin of all matter and radiation?

 What is the origin of the fluctuations that gave rise to galaxies and other large structures?

Inflation

The universe itself could be a product of quantum uncertainty.

Alan Guth

Quantum Fluctuations within the horizon

Metric perturbations

Cosmic Microwave Background

Discovery of CMB

Arno Penzias Robert Wilson (1965)

Blackbody Spectrum T=3K very isotropic

COBE (1989-1996)

Temperature Anisotropies

COBE 4-year Measurements (1992-1996)

First Measurements Temperature Anisotropies (1992)

 $\frac{\Delta T}{T_0} \approx 10^{-5}$

gravity

Photon-Baryon Plasma in equilibrium: Thomson Scattering

velocity

Metric Perturbation

density

All CMB Exp. (2002)

Wilkinson Microwave Anisotropy Probe

Wilkinson Microwave Anisotropy Probe (2003)

Cosmological Parameters: WMAP et al. $H_0 = 71 \pm 3 \,\mathrm{km/s/Mpc}$ Rate of expansion $t_0 = 13.7 \pm 0.2$ Gyr Age of the Universe $\Omega_{\kappa} < 0.02 \quad (95\% \ c.l.)$ **Spatial Curvature** $\Omega_{\Lambda} = 0.73 \pm 0.04$ **Cosmological Constant** $\Omega_{M} = 0.23 \pm 0.04$ **Dark Matter** $\Omega_{R} = 0.044 \pm 0.004$ **Baryon Density** $\Omega_{\rm o} < 0.0076 \ (95\% \ c.l.)$ **Neutrino Density** $A_{\rm c} = 0.833 \pm 0.085$ **Spectral Amplitude** Spectral tilt $n_{\rm s} = 0.93 \pm 0.03$ r < 0.71 (95% c.l.) Tensor-scalar ratio

Structure Formation

Density Contrast Thresholds

$z \approx 1100$ CMB Anisotropies

 $z \approx 100$ Dark ages

 $z \approx 20$ First stars

 $z \approx 10$ Galaxies & Quasars

 $z \approx 1$ Clusters & Superclusters

Large Scale Structure

Numerical Simulations

(beyond pert. Theory)

z=20.0 СR

Large Scale Structure Simulations (1996)

The VIRGO Collaboration 1996

Dark Matter

What is the dark matter?

- Planets?
- Failed stars, aka "brown dwarfs"?
- Black holes?
- Relic particles from the Big Bang? neutrinos axions neutralinos

Lots of good ideas, but nobody knows for sure.

Rotation curves of galaxies

 $\Omega_{dark} \approx 10 \,\Omega_{stars}$

 t_0H_0

Universe: A Strange Recipe Matter and Energy in the

Cosmic coincidence?

From Concordance to Standard Model

THE CONCORDANCE MODEL (2001)

STANDARD COSMOLOGICAL **MODEL** (2003) $\Omega_{M} = 0.27 \pm 0.04$ $\Omega_{\Lambda} = 0.73 \pm 0.04$ $\Omega_0 = 1.02 \pm 0.02$ $\Omega_{R} = 0.044 \pm 0.004$ $H_0 = 71 \pm 3$ km/s/Mpc $t_0 = 13.6 \pm 0.2$ Gyr

> Precision Cosmology! Errors < few%

THE FUTURE MODEL (2010)

The Global structure of the universe

Conclusions

- Cosmology is becoming "Cosmonomy", the science of measuring the Cosmos
- The stuff we are made of amounts to just a few percent of all the matter/energy
- Dark matter is here to stay.
 It could open the door to a new type of particle species (e.g. susy)
- Some kind of dark energy or "smooth tension" is responsible for the acceleration of the Universe. We have no idea of what it is
- We may measure our Local Universe but we ignore its Global Structure

•The inflationary paradigm provides a general framework in which one can describe all cosmological observations

 The microwave background anisotropies contain a huge amount of information on the cosmological parameters, with very small systematic errors

•The Standard Cosmological Model, with errors of 1%, has two unsolved fundamental problems: the nature of dark matter and the dark energy

Addendum

Friedmann equations

Equation of state of matter

 $p(t) = w\rho(t)$

Spatial curvature

Friedmann equation $(\Lambda = 0)$

E = T + V

K = 0 escape velocity
K > 0 recollapse
K < 0 expand forever

Friedmann equation $(\Lambda \neq 0)$

Matter attraction Cosmic repulsion

Who wins? and when?

Friedmann equation ($\Lambda \neq 0$)

Cosmological Parameters Rate of Expansion (Hubble) $H_0^{-1} = 9.773 h^{-1} \text{ Gyr}$ time $cH_0^{-1} = 3000h^{-1}$ Mpc distance

Critical density (K=0)

 $\rho_c(t_0) = \frac{3H_0^2}{8\pi G}$ $=1.88 h^2 10^{-29} \text{ g/cm}^3$ $= 2.77 h^{-1} 10^{11} M_{\odot} / (h^{-1} Mpc)^{3}$ $= 11.26 h^2 \text{ protons/m}^3$

Density parameter $\Omega_{0} = \frac{8\pi G}{3H^{2}} \rho(t_{0}) = \frac{\rho}{\rho_{c}}(t_{0})$ $\Omega_{0} = \Omega_{R} + \Omega_{M} + \Omega_{\Lambda}$ F

Cosmological Parameters

- H_0 Rate of expansion
- t_0 Age of the Universe
- q_0 Acceleration Parameter
- Ω_{K} Spatial Curvature
- $\Omega_{_M}$ Dark Matter
- Ω_{Λ} Cosmological Constant
- Ω_{B} Baryon Density
- $\Omega_{\rm v}$ Neutrino Density