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Redshifts 
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HST Key Project
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The Accelerating
Universe
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Normal Matter

Vacuum Energy
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The Aging
Universe



If the universe is expanding, 
necessarily it must have been 
denser and hotter in the past

Tracing the past history of the 
universe, we reach the realm
of high energy physics and
particle accelerators
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CMB
Anisotropies

Quantum 
Fluctuations 

Structure
Formation 



Inflationary Paradigm  
• Why is the Universe spatially flat?

• Why is the Universe homogeneous on 
  large scales?

• What is the origin of all matter and 
radiation?

• What is the origin of the fluctuations that 
gave
  rise to galaxies and other large structures?
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Quantum Fluctuations 
within the horizon

Metric 
perturbations
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Discovery of CMB

Arno Penzias
Robert Wilson

(1965)

Blackbody Spectrum
T=3K  

very isotropic
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Temperature 
Anisotropies



COBE 4-year
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Cosmological Parameters: WMAP et al.
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Density Contrast Thresholds
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CMB Anisotropies
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Numerical
Simulations

(beyond pert. Theory)
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Rotation curves 
of galaxies
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Cosmic coincidence?
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The Global 
structure of 
the universe









Conclusions



• Dark matter is here to stay.
  It could open the door to a new type 
  of particle species (e.g. susy)

• Cosmology is becoming “Cosmonomy”,
  the science of measuring the Cosmos

• Some kind of dark energy or “smooth tension”
  is responsible for the acceleration of the 
  Universe. We have no idea of what it is

• We may measure our Local Universe but
   we ignore its Global Structure

• The stuff we are made of amounts to 
   just a few percent of all the matter/energy



•The microwave background anisotropies
 contain a huge amount of information 
 on the cosmological parameters, 
 with very small systematic errors

•The inflationary paradigm provides
 a general framework in which one can
 describe all cosmological observations

•The Standard Cosmological Model,
 with errors of 1%, has two unsolved
 fundamental problems: the nature of
 dark matter and the dark energy
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Cosmological Parameters

Rate of Expansion (Hubble)

km/s/Mpcht
a

a
H10000 ==)(

Gyr11
0 7739 −− = hH .

Mpc11
0 3000 −− = hcH

mlypc 1610086326231 ×== ..

time

distance



Critical density (K=0)

G

H
tc π

ρ
8

3 2
0

0 =)(

3292 10881 g/cm−= h.

31111 10772 )/(. MpcM −
Θ

−= hh

322611 protons/mh.=



Density parameter
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Cosmological Parameters

0H Rate of expansion

KΩ Spatial Curvature

0q Acceleration Parameter

ΛΩ Cosmological Constant

νΩ Neutrino Density

MΩ Dark Matter

BΩ Baryon Density

0t Age of the Universe


