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Abstract. Let Ω be a bounded Lipschitz regular open subset of R
d and let µ, ν

be two probablity measures on Ω. It is well known that if µ = f dx is absolutely
continuous, then there exists, for every p > 1, a unique transport map Tp pushing
forward µ on ν and which realizes the Monge-Kantorovich distance Wp(µ, ν). In this
paper, we establish an L∞ bound for the displacement map Tpx − x which depends
only on p, on the shape of Ω and on the essential infimum of the density f .
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1. Introduction and main results

The theory of mass transportation goes back to the original works by Monge in
1781 [11] and later by Kantorovich [10]. Recently a renewed interest for this theory
arose in different areas of applied mathematics like economic sciences, fluid mechanics,
shape optimization, signal theory, image and data compression as well as in geometric
functional analysis and large deviation theory.

In this paper, we will consider the most usual case for which the transport cost
function is convex of the form c(x, y) = |x − y|p where p ≥ 1 and | · | denotes the
Euclidian norm in R

d. Given two probabilities measures µ, ν on R
d, the associated

Monge -Kantorovich mass transport problem can be written as follows

Tp(µ, ν) := inf

{
∫

Rd×Rd

|x− y|p γ(dxdy) : γ ∈ Γ(µ, ν)

}

, (1.1)

where the infimum is taken over the class Γ(µ, ν) of probability measures on R
d × R

d

whose marginals are respectively µ and ν. It turns out that the infimum above is finite
and achieved provided µ, ν have finite pth-order moments. The p-Wasserstein distance
between such elements µ, ν is then defined by

Wp(µ, ν) := (Tp(µ, ν))
1
p ,

and the minimizing measure γ is called optimal planning.
It is well known that if one of the measures say µ is absolutely continuous with

respect to the Lebesgue measure, then the following equality holds

Tp(µ, ν) = inf

{
∫

|x− Tx|p µ(dx) : T ♯(µ) = ν

}

, (1.2)

where the infimum is searched among all transports maps T : X 7→ Y pushing forward
µ on ν (i.e. such that µ(T−1(B)) = ν(B) for all Borel subset B ⊂ Y ). In fact this new
problem is equivalent to restricting the infimum in (1.1) to the subclass {γT } ⊂ Γ(µ, ν)
where 〈γT , φ(x, y)〉 :=

∫

X
φ(x, Tx)µ(dx) . The formulation (1.2) is the original setting
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of the transport problem proposed by Monge in the case p = 1, for which the existence
of an optimal transport map T is a difficult question solved recently (see [4], [6], [8],
[12] ). Assuming that µ is an absolutely continuous measure, it is now well known that
such an optimal map exists whatever is p ≥ 1. Futhermore it is unique if p > 1 and in
this case we will denote it by Tp(µ, ν). Notice that the associated transport plan γTp

will be the unique solution for (1.1) as well (see for instance [9]).

In this paper, we address the problem of stability of the optimal transport map
Tp(µ, ν). Let µ be given as before. If {ν(h)} is a sequence of probability measures on

R
d such that Wp(µ, ν

(h)) → 0 (this implies that νh ⇀ µ tightly), then it is easy to see

that the optimal T (h) := Tp(µ, νh) does converge in measure (with respect to µ) to the
identity map, i.e.

∀ε > 0 , µ
(

{x : |T (h)(x) − x| > ε}
)

→ 0 as h→ ∞ .

We will prove that in fact the convergence of T (h) to the identity is uniform on any
compact regular subset of R

d where the density of µ has a positive lowerbound. More
precisely, we will establish the following estimate:

Proposition 1.1. Let p > 1 and µ = fdx be an absolutely continuous probability
measure on R

d such that
∫

|x|p µ(dx) < +∞. Let a > 0 and let Ω be a bounded convex

open subset of R
d such that f ≥ a a.e. on Ω. Then, for every Borel probability measure

ν on Ω, the optimal transport map Tν := Tp(µ, ν) satisfies the inequality

‖Id − Tν‖
p+d
L∞(Ω) ≤ cp,d(Ω)

W p
p (µ, ν)

a
, (1.3)

where cp,d(Ω) is a positive constant depending only on p, d and Ω.

The result of Proposition 1.1 can be stated in a more intrinsic (but weaker) form
by minorizing the left hand side of (1.3) in terms of the W∞ distance of µ to ν. This
distance is defined as follows

W∞(µ, ν) := inf {t > 0 : ∃γ ∈ Γ(µ, ν) , |x− y| ≤ t γ a.e.} . (1.4)

The main result of this paper is the following:

Theorem 1.2. Let Ω be a bounded connected open subset of R
d with C0,1 boundary and

denote by P(Ω) (resp Pac(Ω)) the set of Borel (resp. absolutely continuous) probability
measures on Ω. Then, for every p > 1, and every pair (µ, ν) ∈ Pac(Ω) × P(Ω) there
holds

(W∞(µ, ν))p+d ≤ Cp,d(Ω) ‖f−1‖L∞(Ω) W
p
p (µ, ν) , (1.5)

where f =
dµ

dx
and Cp,d(Ω) is a positive constant depending only on p, d and Ω.

Remark 1.3. We remark that in Theorem 1.2, the convexity assumption of Proposition
1.1 has been dropped. We believe that the constant Cp,d(Ω) found in the proof is not
sharp. The optimal constant can be seen as the following shape function:

C̃p,d(Ω) := sup

{

(W∞(µ, ν))p+d

W p
p (µ, ν) ‖(dµ

dx
)−1‖L∞(Ω)

: (µ, ν) ∈ Pac(Ω) × P(Ω)

}

. (1.6)
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Notice that this function is translation and dilation invariant. To check that, for λ > 0,
we have C̃p,d(λΩ) = C̃p,d(Ω), it is enough to consider the push forward of µ, ν through
the map Sλ : x→ λx and to notice that

Wp(S
♯
λµ, S

♯
λν) = λWp(µ, ν), p ∈ [1,+∞] , S♯

λµ =
1

λd
f(
x

λ
) dx .

Remark 1.4. By Hölder inequality, Wp(µ, ν) as a function of p is monotone nonde-
creasing. Recalling the definition (1.4), it is then easy to check that

W∞(µ, ν) = lim
p→∞

Wp(µ, ν) = sup
p≥1

Wp(µ, ν) .

Then the estimate (1.5) implies that

Cp,d(Ω) ≥
W d

∞(µ, ν)

‖f−1‖L∞(Ω)
∀(µ, ν) ∈ Pac(Ω) × P(Ω) .

The supremum of the right hand side of previous inequality is obtained by taking f
to be constant and ν a Dirac mass. If D denotes the diameter and |Ω| the Lebesgue
measure of Ω, we derive that

Cp,d(Ω) ≥
Dd

|Ω|
,

showing that Cp,d(Ω) blows up when Ω becomes thinner and thinner. Let us finally

notice that the inequality W p
p (µ, ν) ≥ Dp−qW q

q (µ, ν) valid for q ≥ p (due to |x− y|p ≤
Dq−p|x− y|q for all (x, y) ∈ Ω2) is not useful for our purpose since, passing to the limit
as q → ∞, we merely obtain the trivial inequality W∞(µ, ν) ≤ D.

Remark 1.5. It turns out that the constant cp,d(Ω) we find in the proof of Proposition
1.1 (see (2.19) and Remark 2.6 below) blows up as p → 1. It is well known that in
the case p = 1, the optimal transport map still exists but is not unique. In fact it is
easy to check (see the Example 2.7) that the inequality (1.5) cannot be valid for p = 1
if we choose particular optimal transport maps. However, the inequality still holds
in the one dimensional case if we select the unique monotone tranport T1(µ, ν). We
strongly believe that the same conclusion holds true in higher dimension if we use the
extended concept of monotone transport map introduced by V.N. Sudakov and later
by L. Ambrosio (see [12] and [4]) (which agrees with the limit of Tp(µ, ν) as p → 1).
Accordingly, we conjecture that Theorem 1.2 holds true for p = 1 which amounts to
saying that the shape function defined in (1.6) does not blow up as p→ 1.

Remark 1.6. Many of regularity results for the optimal transport map are known
in the case where p = 2 and µ, ν both belong to Pac(Ω). Indeed in this case the
optimal T is the gradient of a convex potential ϕ solving the Monge Ampere equation

detD2ϕ = f
g(∇ϕ) on Ω where f, g are the respective densities of µ and ν. Then by

Caffarelli’s regularity result ([1, 2]), which holds under lower bounds assumptions on f, g
and a convexity assumption on their support Ω, the potential ϕ inherits the regularity
of f and g: if f, g are C0,α Hölder continuous then ϕ is C2,α and T = ∇ϕ ∈ C1,α.
We expect that such kind of results could lead to similar estimates as in Proposition
1.1 when the data µ and ν are smooth densities. However nothing essential seems to
be known if p 6= 2 or if ν is a singular measure. In particular in optimal location
problems (see for instance [5]), purely atomic measures of the kind ν =

∑

ciδxi
arise
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naturally and the associated optimal transport map T induces a partition of Ω by the
sets Ai = T−1({xi}). Our L∞ estimate in Proposition 1.1 provides a very useful upper
bound for the diameter of the Ai’s.

2. Proofs and examples

The basic argument to prove Proposition 1.1 will be the p-monotonicity property
of the optimal transport. First we shall prove some preliminary results in the form of
lemmas. The scalar product and the Euclidean norm in R

d are denoted repectively by
the symbols (·|·) and | · |.

Lemma 2.1. Let p > 1, µ, ν as in Proposition 1.1 and let T := Tp(µ, ν) be the optimal

map related to Wp(µ, ν). Then, there exits a µ- negligible subset N ⊂ R
d such that, for

every (x, y) ∈(Rd\N)2, there holds the inequality

|x− T (x)|p + |y − T (y)|p ≤ |x− T (y)|p + |y − T (y)|p . (2.1)

Proof. It is a consequence of the p-cyclic monotonicity of the support of the optimal
transport plan γTp(µ,ν) [3, 9] and of the fact that any γ-negligible set has a µ-negligible
first projection.

�

In view of (2.1), it looks natural to introduce the function

ψp(x, y, z) := inf
w∈Rd

{|w − z|p : |w − z|p + |x− y|p ≤ |z − y|p + |x− w|p}. (2.2)

It is easy to check that ψp enjoys the following properties for every x, y, z ∈ R
d:

(i) ψp(x, y, z) = ψp(x+ a, y + a, z + a), for every a ∈ R
d

(ii) ψp(x, y, z) = ψp(Qx,Qy,Qz), for every isometry Q ∈ SO(d)
(iii) ψp(λx, λy, λz) = |λ|pψp(x, y, z) for every λ ∈ R,
(iv) ψp(x, x, z) = 0.

(2.3)

Thanks to (i) and (iii), for all x, y ∈ R
d with x 6= y, we derive that,

ψp(x, y, z) = |y − x|p ψp

(

y−x
|y−x| ,

z−x
|y−x|

)

where ψp(u, z) := ψp(0, u, z) . (2.4)

This normalized function ψp(u, z) defined on Sd−1 × R
d can be rewriten as

ψp(u, z) = inf{|w − z|p : w ∈ Γp(u, z)}
where

Γp(u, z) :=
{

w ∈ R
d : |w − z|p + 1 ≤ |z − u|p + |w|p

}

.
(2.5)

Lemma 2.2. The function ψp is lower semi-continuous on Sd−1 × R
d. It is strictly

positive if and only if z belongs to the open p-ellipsoid

Qp(u) :=
{

z ∈ R
d : |z|p + |z − u|p < 1

}

.

One can readily check that the p-ellipsoid Qp(u) defined above shrinks as p goes
down to 1 and that Qp(u) is nonempty if and only if p > 1. It turns out that the

4



function ψp is not continuous. For instance, in the case p = 2, Q2(u) is the ball of
radius 1/2 centered at u/2 and the following explicit expression holds:

ψ2(u, z) =











(

|z| −
(z|u)

|z|

)2

if 0 < (z|u) < |z|2

0 otherwise.

(2.6)

Proof. Clearly the minimum in (2.5) is achieved as the distance of z to the closed subset
Γp(u, z) (which is nonempty since it contains {u}). It follows that a vanishing minimum
forces z /∈ Qp(u). It remains to check the lower semicontinuity: let (un, zn) → (u, z) and

assume without loss of generality that ψp(un, zn) → α < +∞. Choose wn ∈ Γ(un, zn)

so that ψp(un, zn) = |wn − zn|
p. Then, since 0 ∈ Γp(un, zn), we have |wn − zn| ≤ |zn|

p

yielding that {wn} is bounded. Let w be a cluster point; then obviously w ∈ Γp(u, z)

and α = |w − z|p ≥ ψp(u, z). �

Eventually, let us consider, for every unit vector u ∈ Sd−1 and every L > 0, the
convex cone

ΛL(u) :=
{

y ∈ R
d : (y|u) ≥ L

√

|y|2 − (y|u)2
}

.

Lemma 2.3. Let Ω be a bounded open subset in R
d with C0,1 boundary. Then we can

find a constant L > 0 such that, for every x ∈ ∂Ω, there exists ux ∈ Sd−1 satisfying the
following property

liminf
δ

θδ ≥ θL,x whenever xδ ∈ Ω and xδ → x as δ → 0 (2.7)

being θδ and θL,x the characteristic functions of the sets
Ω − xδ

δ
and ΛL(ux).

Notice that, if x ∈ Ω, we obviously obtain:

xδ ∈ Ω , xδ → x =⇒ liminf
δ

θδ(z) ≥ 1 , ∀z ∈ R
d . (2.8)

Proof. Let x ∈ ∂Ω and let xδ ∈ Ω such that xδ → x. As the boundary of Ω is compact
and Lipschitz, there exists a constant L > 0 (independent of x), a pair (ux, rx) ∈
Sd−1 × (0,+∞) and a L-Lipschitz map γx : R

d−1 → R such that, upon a translation
and a rotation of the coordinate axes, we have ux = (0, . . . , 1), γx(0) = 0 and

Ω ∩B(x, rx) = {y ∈ R
d : |y| < rx , γx(y1, . . . , yd−1) < yd} . (2.9)

(here B(x, rx) denotes the ball centered at x of radius rx).
Assuming that z ∈ ΛL(ux), we are reduced to prove that xδ + δz belongs to Ω for

δ sufficiently small. In the new coordinates, we write z as (z′, zd) (z′ ∈ R
d−1) with

zd ≥ L |z′|. As xδ ∈ Ω, by (2.9), we have (xδ)d > γx(x′δ) and since γx is L-Lipschitz:

γx(x′δ + δz′) ≤ γx(x′δ) + Lδ|z′| < (xδ)d + zd .

The conclusion follows from (2.9) by noticing that xδ ∈ B(x, rx) for small δ.
�

We introduce the function

ρ(x, y) :=

∫

Ω ψp(x, y, z) dz

|x− y|p+d
(2.10)
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and, for every t > 0, we set:

ω(t) := inf
{

ρ(x, y) : (x, y) ∈ Ω × Ω , |x− y| = t
}

. (2.11)

By Lemma 2.2 and (2.4), ρ is lower semi-continuous on Ω×Ω \∆ where ∆ := {(x, x) :
x ∈ Ω}. By the compactness of Ω, it follows that the function ω(t) is lower semicon-
tinuous on the interval (0,D] where D denotes the diameter of Ω.

A consequence of Lemma 2.3 is the following:

Lemma 2.4. Let Ω be a bounded open subset in R
d with C0,1 boundary. Then:

ωp,d(Ω) := liminf
t→0+

ω(t) > 0 .

Proof. Let us proceed by contradiction assuming that ωp,d(Ω) = 0. Then there exists

{(xn, yn)} a sequence in Ω
2
\ ∆ such that |xn − yn| := 1

n
→ 0 and ρ(xn, yn) → 0.

Possibly passing to a subsequence we may assume that xn and yn both converge to

the same limit x ∈ Ω and that un :=
yn − xn

|yn − xn|
converges to an element u0 ∈ Sd−1.

Then exploiting (2.4) and recalling (2.10), we can rewrite after the change of variables
w = n(z − x):

ρ(xn, yn) =

∫

n(Ω−xn)
ψn(un, w) dw .

Assume first that x ∈ ∂Ω and let ux be the associated unit vector given in Lemma
2.3. Then by the lower semicontinuity of ψp and by (2.7), we deduce from Fatou’s
lemma that

0 = liminf
δ→0

ρ(xn, yn) ≥

∫

ΛL(ux)
ψp(u0, w) dw . (2.12)

In fact, we do not know if the direction of the unit vector u0 is correlated with that
of the outwards normal ux and the right hand side integral in (2.12) might vanish. To
prevent this, it is enough to consider the alternative change of variables w = n(z − yn)
in (2.10) so that, exploiting properties i) and iii) in (2.3), we have

ρ(xn, yn) =

∫

n(Ω−yn)
ψp(un, un + w) dw .

Then passing to the limit in δ, we obtain also

0 =

∫

ΛL(ux)
ψp(u0, u0 + w) dw . (2.13)

By Lemma 2.2, the function ψp(u0, ·) is strictly positive on Qp(u0) and the function

ψp(u0, u0 + ·) is strictly positive on Qp(u0) − u0 = −Qp(u0). It can be seen that any
cone ΛL(ux) intersects at least one of the domains Qp(u0) and −Qp(u0) in a set of
positive measure. This contradicts either (2.12) or (2.13).

Eventually, the same contradiction occurs if x belongs to Ω since, by (2.8), we would
obtain that

∫

Rd ψp(u0, w) dw =
∫

Rd ψp(u0, u0 +w) dw = 0 . The proof of the Lemma 2.4
is achieved. �

Lemma 2.5. Let Ω be a bounded connected open subset in R
d with C0,1 boundary. Let

ρ0, ρ1 be two elements of P(Ω). Then there exist a parametrized curve t ∈ [0, 1] 7→ ρt ∈
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P(Ω) connecting ρ0 to ρ1 and a constant k = k(Ω) > 0 (depending only on Ω) such
that, for all s, t ∈ [0, 1], there holds:

W∞(ρs, ρt) ≤ kD |s− t| , Wp(ρ0, ρt) ≤ k tWp(ρ0, ρ1) . (2.14)

Proof. Denote by d the geodesic distance in Ω, that is:

d(x, y) := inf

{
∫ 1

0
|γ̇(s)|ds : γ ∈ Lip([0, 1],Ω) , γ(0) = x , γ(1) = y}

}

.

Since Ω is connected and C0,1, there exists a constant k ≥ 1 such that

|x− y| ≤ d(x, y) ≤ k |x− y| . (2.15)

For every pair (x, y) ∈ Ω×Ω, we select a geodesic curve Sxy between x and y (not unique
in general) and we denote by [x, y]t the unique point z ∈ Sxy such that d(x, z) = t d(x, y)
(notice that [x, y|t = (1 − t)x + ty if Ω is convex). This selection process can be done
so that the map (t, x, y) ∈ [0, 1] × Ω × Ω 7→ [x, y]t ∈ Ω is Borel regular and satisfies,
for every 0 ≤ s < t ≤ 1, the properties:

[x, y]t = [[x, y]s, y]t−s , d([x, y]s, [x, y]t) = |t− s| d(x, y) . (2.16)

In particular, from (2.15) and (2.16), we deduce that, for every (s, t, x, y) ∈ [0, 1]2 ×Ω
2
,

|[x, y]s − [x, y]t| ≤ d([x, y]s, [x, y]t) = |s− t| d(x, y) ≤ k |s− t| |x− y| . (2.17)

Let γ be an optimal transport plan for Wp(ρ0, ρ1) and set for every s, t ∈ [0, 1] :

γs,t = Π♯
s,t(γ) where Πs,t(x, y) := ([x, y]s, [x, y]t) .

Then we define ρt to be the second marginal of γ0,t. Clearly such a definition agrees
with ρ0 and ρ1 for t = 0 and t = 1 respectively and moreover we have that, for every
s, t, the marginals of γs,t coincide with ρs and ρt, that is γs,t ∈ Γ(ρs, ρt).

Therefore, by (2.17), we have

W p
p (ρs, ρt) ≤

∫

Ω×Ω
|x− y|pγs,t(dxdy) =

∫

Ω×Ω
|[x, y]s − [x, y]t|

pγ(dxdy)

≤ kp |s− t|p
∫

Ω×Ω
|x− y|pγ(dxdy) = kp |s− t|pW p

p (ρ0, ρ1) ,

yielding in particular (2.14) if we take s = 0. On the other hand, recalling (1.4) and
(2.17), we obtain

W∞(ρs, ρt) ≤ sup
(x,y)∈Ω×Ω

|[x, y]s − [x, y]t| ≤ k D |t− s| .

�

Proof of Proposition 1.1

Let x ∈ Ω \ N where N is the µ negligible subset defined in Lemma 2.1. Setting
y = Tp(µ, ν)(x)(= Tν(x)), we deduce from (2.1), (2.2) and the lowerbound f ≥ a on Ω
that

|z − Tν(z)|
p f(z) ≥ aψp(x, y, z) for µ-a.e. z ∈ Ω .
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Thus, after integrating with respect to z ∈ Ω and by the definitions (2.10) and (2.11),
we obtain for all x ∈ Ω \N :

W p
p (µ, ν) ≥ a |x− Tν(x)|p+d ω(|x− Tν(x)|)

≥ a |x− Tν(x)|
p+d inf {ω(t) : 0 < t ≤ D} .

Thus, taking the essential supremum in x, we are led to

W p
p (µ, ν)

‖Id − Tν‖
p+d
∞,Ω

≥ a inf{ω(t), 0 < t ≤ D} , (2.18)

that is (1.3) if we set

(cp,d(Ω))−1 = inf{ω(t) : 0 < t ≤ D} . (2.19)

So to complete the proof of the proposition, it is enough to show that the right hand
side in (2.19) is strictly positive. Since the function ω(t) is lower semicontinuous on
(0,D] and, by Lemma 2.4, satisfies liminf

t→0+
ω(t) = ωp,d(Ω) > 0, we are reduced to to

checking that ω(t) > 0 for 0 < t ≤ D. For such a t, by the lower semicontinuity of ρ, we
have ω(t) = ρ(x, y) for suitable x, y ∈ Ω with |x−y| = t. By the convexity assumption,

Ω intersects the convex open set x+Qp

(

y−x
|y−x|

)

where the function ψp(x, y, ·) is strictly

positive. As this set has a positive Lebesgue measure, it follows that ω(t) = ρ(x, y) >
0. �

Proof of Theorem 1.2 Let us define for every δ > 0 (δ not larger than the diameter
D of Ω):

α(δ) := inf

{

1

a
W p

p (µ, ν) : (µ, ν) ∈ Pac(Ω) × P(Ω) ,
dµ

dx
≥ a , W∞(µ, ν) = δ

}

,

β(δ) := inf

{

1

a
W p

p (µ, ν) : (µ, ν) ∈ Pac(Ω) × P(Ω) ,
dµ

dx
≥ a , W∞(µ, ν) ≥ δ

}

.

Proving (1.5) is equivalent to show the following inequality:

inf

{

α(δ)

δp+d
: 0 < δ ≤ D

}

(:= (Cp,d(Ω))−1) > 0 . (2.20)

We observe that, by the definition (1.4), (2.18) implies that

W p
p (µ, ν) ≥ a W p+d

∞ (µ, ν) inf{ω(t), 0 < t ≤ D} .

Therefore, by the definition of α(δ) and Lemma 2.4, we infer that

liminf
δ→0

α(δ)

δp+d
≥ lim

δ→0
(inf{ω(t), 0 < t ≤ δ}) = ωp,d(Ω) > 0 .

Fixing t0 ∈ (0, 1), we deduce that there exists a suitable δ0 > 0 such that

α(δ)

δp+d
≥ t0 ωp,d(Ω) for all δ ≤ δ0 . (2.21)

Now we claim that there exists a constant C ≥ 1 such that:

β(δ) ≤ α(δ) ≤ C β(δ) for every δ ≤ D . (2.22)
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As β is non decreasing, we infer from (2.22) that Cα(δ) ≥ α(δ0) for δ ≥ δ0. This
together with (2.21) allows us to conclude (2.20) since we have

inf

{

α(δ)

δp+d
: 0 < δ ≤ D

}

≥ min

{

t0 ωp,d(Ω) ,
α(δ0)

C Dp+d

}

.

In order to finish the proof of Theorem 1.2, let us show now that the claim (2.22)
holds true with C = kp where k is the constant appearing in Lemma 2.5. Assume that
kp β(δ) < α(δ) for some δ ∈ [0,D]. Then, by the definition of β(δ), there exists an
admissible pair (µ, ν) where µ = f dx, a > 0 with f ≥ a a.e. such that:

W p
p (µ, ν)

a
< β(δ) <

α(δ)

kp
and W∞(µ, ν) > δ . (2.23)

Owing to Lemma 2.5, we consider a Lipschitz curve t ∈ [0, 1] 7→ ρt ∈ P(Ω), where
P(Ω) is equipped with the W∞ distance, such that ρ0 = µ and ρ1 = ν. Then the
functions h(t) := W∞(µ, ρt) is continuous on [0, 1], vanishes at 0 and by (2.23) satisfies
h(1) > δ. Thus there exists a suitable t ∈ (0, 1) such that h(t) = δ and recalling the
definition of α(δ), we find that W p

p (µ, ρt) ≥ aα(δ) whereas, by (2.14) and (2.23),
W p

p (µ, ρt) ≤ kpW p
p (µ, ν) < aα(δ) . This contradicts the definition of α(δ) and thus

(2.22) is proved.
�

Remark 2.6. The constants cp,d(Ω) and Cp,d(Ω) found in the proofs above turn out
to be directly correlated with the inverse of the constant ωp,d(Ω) introduced in Lemma

2.4. This positive real coincides with the minimum over u ∈ Sd−1 of the function

Ip(u) := max

{

∫

Qp(e1)
ψp(u,w) dw ,

∫

Qp(e1)
ψp(u, u+ w) dw

}

,

being e1 the first element of the canonical basis. Unfortunately Ip(u) converges to zero
as p→ 1+ making our constants cp,d(Ω) and Cp,d(Ω) blow-up.

As we already claimed in remark 1.5, (1.3) does not remain true for p = 1 in general.
This fact is corroborated by the following example.

Example 2.7. Take p = d = 1, Ω =]0, 1[ and consider, the following measures

µ := L|[0,1]
, νε = (1 + ε)L|

[0, 1
1+ε

]
.

Then, for every ε > 0, the map T o
ε : x 7→

x

1 + ε
is the unique non decreasing map

pushing forward µ on νε and it is optimal, i.e.:

W1(µ, νε) =

∫ 1

0
|x− T 0

ε x| dx =
1

2

(

ε

1 + ε

)

.

It is easy to check that another optimal transport map relative to W1(µ, νε) is given
by:

Tε(x) = x if x ∈

[

0,
1

1 + ε

]

, Tε(x) =
1

ε
x−

1

ε(1 + ε)
if x ∈

[

1

1 + ε
, 1

]

.

9



The maximal transport distance is
1

1 + ε
and so

W1(µ, νε) =
ε(1 + ε)

2
‖Id − Tε‖

2
L∞(Ω) ,

which, as ε → 0, confirms that the estimate in proposition 1.1 does not hold true
for p = 1. However, no contradiction occcurs if we substitute Tε with the monotone
transport T 0

ε since we have

W1(µ, νε) =
1 + ε

2ε
‖Id − T 0

ε ‖
2
L∞(Ω) .

In fact, in the one dimensional case, the estimate (1.3) holds true for p = 1 if we choose
Tν to be the unique non decreasing transport map.

Proposition 2.8. Let d = 1 and let Ω be a bounded interval of R on which f ≥ a (a >
0). Then, for every ν supported in Ω, the unique monotone map Tν transporting fdx
on ν satisfies for every p ≥ 1

‖Id − Tν‖
p+1
L∞(Ω)

≤
p+ 1

a
W p

p (µ, ν) . (2.24)

A consequence of Proposition 2.8 is that, if Ω is a bounded interval of R, then the
inequality (1.5) of Theorem 1.2 holds true for p ≥ 1 with Cp,1(Ω) = p+ 1.

Proof. The monotonocity of the map Tν implies that it is optimal with respect to all
distances Wp with p ≥ 1 (see for instance [3]). In particular, we obtain that if x ∈ Ω
and y = Tνx, then a.e. every z in the interval (x, y) (resp. (y, x)) satisfies the inequality
|z − Tνz|

p ≥ |z − y|p. Thus, after integrating in z, we obtain that for a.e. x ∈ Ω:

W p
p (f, ν) ≥

a

p+ 1
|x− Tνx|

p+1 .

We deduce (2.24) by taking the essential supremum in the right hand side.
�
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