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Introduction 2

Introduction I

Given €2, an open bounded subset of RV and nonnegative
functions f and g (more precise assumptions on the data €2, f

and ¢ will be given later on), consider

pi= ué%fvo R(u) (1)

where

BVy :={u € BV(RY), v =0on R\ Q}, (2)
and for u € BVj such that [, fu # 0,

| 9@ aipu)
/ F(@)u(z)] dz
)

R(u) :=
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Introduction 3

When g = f =1, it is well-known that the infimum in (1)
coincides with the infimum of R over characteristic functions of
sets of finite perimeter. In this case, (1) appears as a natural
relaxation of:

AQ) =

ACQ, xa€BV
where |A| and ||Dx4||(RY) denote respectively the Lebesgue
measure of A and the total variation of Dy 4. Problem (4) is
known as Cheeger’s problem, its value \({2) is called the
Cheeger constant of €2 and its minimizers are called Cheeger
sets of 2. Note also that A(Q2) is the first eigenvalue of the
1-Laplacian on .
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Introduction 4

Throughout the paper, we will assume that

e () is a nonempty open bounded subset of RY with a
Lipschitz boundary,

o fcL>®), f> fofor a positive constant fy,
e g c(C%0), g> go for a positive constant gq.
In what follows, every u € BV (£2) will be extended by 0 outside

2, and thus will also be considered as an element of BV (RY),

still denoted u. Set, for every u in BVj:

G(w) = [ gla)d 1Du(a)]. )

Since 0f) is Lipschitz, note that, for v € BV (Q):

/ g(x) d [Du(x)| + / 9(x) [u(z)] d HN 1 (z)
)

of
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Taking advantage of the homogeneity of (1), it is convenient to

reformulate (1) as the convex minimization problem

o= uei%fvf G(u) (6)

where
BV; = {uEBV(RN), w>0, u=0on RN\Q,/ fu = 1}.
Q
(7)

In analogy with the case g = f = 1, it is natural to consider the
generalized Cheeger problem:
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£—{ACT with / f@)dz>0 and y4€ BV(RY))
A
(9)

Again (1) can be interpreted as a relaxed formulation of (8) and

one aim of the talk is to investigate the precise connections
between (1) and (8). Solutions of (8) : Generalized Cheeger sets.
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Some recent results:

e convergence of the first eigenvalue of the p-laplacian to the

Cheeger constant as p tends to 1, convexity results (Kawohl
and Fridman, 2003)

Uniqueness of the Cheeger set when (2 is convex (Alter and
Caselles, 2007 and Caselles, Chambolle, Novaga, 2006 in the

smooth uniformly convex case),

e Full characterization of the Cheeger set of a convex subset
of the plane (Lachand-Robert and Kawohl, 2006),

extension to the case of a Finsler metric (Kawohl and
Novaga, 2006).
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Rich and hot topic: constrained isoperimetric problem, shape
optimization, Faber-Krahn type inequality, first eigenvalue and

eigenfunction of the 1-laplacian, motion by mean curvature.

Recently related to landslide modelling (Ionescu and

Lachand-Robert), motivation for general weights f and g that
respectively represent the body forces and the (inhomogoneous)
yield limit distribution of the geomaterial.
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Existence

uEBVf

4= inf Q(u):/RNg(a:)d]Du(a;)\.

where

BV; = {ueBV(RN), w>0, u=0on RN\Q,/ fu = 1}.
Q

and Cheeger’s problem:

/ (x) d|Dxa(x)]
A= inf = inf R(xa)

/f - Aeg
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The direct method of the calculus of variations yields:

Proposition 1 The infimum of (6) is achieved in BV and the

infimum of (8) is achieved in .
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Outline 11

Outline I

@ Invariance

@ Generalized Cheeger sets

@ Qualitative properties of solutions
@ Maximal Cheeger sets

® Selection of Maximal Cheeger sets
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Invariance I

Proposition 2 Let H €¢ WH°(R,R) N C®(R,R) be such that
H(0)=0 and H >0 on R. If u is a solution of (6) then so is
Ty (u) defined by

Hou

(10)

TH(’LL) = )
/Q F(x) H(u(x)) da

Idea of the proof: Consider X;(.) the flow of the ordinary
differential equation

v =—H(v).
and set us(x) := X¢(u(x)).
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Let us also define

/RN g(z) d[Duy(z)] —M/Qf(ﬂﬂ')ut(a:)dx.

so that:
(11)

Using the chain rule for BV functions and letting t — 071, we

get:

0> [ 9@ dIDUT ow)(a)| ~ | fa)H(u@) da

which proves that H o v minimizes R, or equivalently, that
Ty (u) solves (6).
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Corollary 1 Let u be a solution of (6) and H € WH>°(R,R) be
a nondecreasing function such that H(0) = 0. If H ou # 0 then
Ty (u) defined by (10) also solves (6).

Remark Note that corollary 1 applies in particular to

H(v) = (v—tp)y and H(v) = min(v, tg).

Remark Taking H bounded shows the existence of bounded
solutions to (6). We shall see in Theorem 3 that in fact every
solution (6) is in fact L°°.
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Generalized Cheeger sets'

Theorem 1 Let u be a solution of (6) and for every t > 0,

define By := {x € RN : u(x) > t}. For every t > 0 such that E;
1

Je,
X{u>0} Solves (6).

has positive Lebesgue measure XE, solves (6). In

1
f{u>0} f

particular,

Proof:
Ey :={u > 0}. Define for every n € N* and v € R:

(

0 if v <0
if v e [0, L]

if v > L.
mn
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Corollary 1 implies that Ty, (u) solves (6). Since Tx, (u)
1

f{u>0} f
FEo = {u > 0} is a Cheeger set.

converges in L'(RY) to

X{u>0}, we conclude that

Let t > 0 be such that E; has positive Lebesgue measure. From
(u—1t)+
J flu—1t)+

1 1
X{v>0} = 75 XE;-
f{fu>0} f fEt f

corollary 1, v := solves (6), hence so does
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Converse:

Proposition 3 Let u € BVy, uw > 0. If for every t > 0 such
that By := {x € RY : u(x) >t} has positive Lebesque measure,

XE, solves (1) then u solves (1).
Straightforward application: relaxation

Corollary 2 The values of problems (6) and (8) coincide:

ML R = A= R )
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Remark One can obtain the relaxation result of corollary 2 as
a direct consequence of the coarea and Cavalieri’s formulae.
Obviously has u < A and if u € BV, u > 0, setting

E; := {u > t}, the coarea and Cavalieri’s formulae yield:

/ gd|Du(x)| — A fu
RN

RN

:/ (/ gdHN T =X f(x)dx)dtZO
0 8*Et Et

which proves that © > A. From the previous argument, in fact,

we see that the converse also holds: u solves (6) if and only if
E; := {u >t} (which has finite perimeter for a.e. t) solves (8)
for a.e. t > 0. Note that in Theorem 1, we have proved that E;
solves (8) for all t (and we have not used the coarea formula).
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Of course, theorem 1 and its proof contain much more
information than corollary 2. A more precise consequence of
theorem 1 is the following

Corollary 3 A € £ solves (8) if and only if there exists u
solving (6) such that A = {u > 0}.

A straightforward application:

Theorem 2 Let (A,), be a sequence of solutions of (8) then
U,, An is also a solution of (8).
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‘Qualitative properties of solutions'

Theorem 3 Let u be a solution of (6). Then u belongs to

L (Q).

Idea of the proof: Use the invariance with powers of

min(u, M) and a bootstrap argument.
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Combining the L°° estimate with the invariance property also
yields:

Theorem 4 Let u be a solution of (6), then the set

{u =||ul|eo} has positive Lebesgue measure.
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‘Maximal Cheeger sets'

In general (with weights and or in a nonconvex €2) the Cheeger
set is not unique, there are even known examples where there
are infinitely many (even a continuum)! However,

nonuniqueness is rather rare in the sense of Baire:

Proposition 4 Let g € C°(Q) with g > go for a positive

constant go. Then there exists a Gs dense subset X of
C°(Q,RT) such that for every f € X, (6) admits a unique

solution (equivalently C is a singleton).
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When uniqueness fails: maximal Cheeger set.

Let us denote by C the set of Cheeger sets. We have seen that a
(countable) union of Cheeger sets still is a Cheeger set, one then
easily deduces the following:

Proposition 5 There exists a unique maximal Cheeger set, i.e.

a unique Cy € C such that for every C' € C, C 1is included in Cjy
up to a Lebesgue negligible set.
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‘Selection of maximal Cheeger sets'

Natural questions:

e Do natural approximation schemes (e.g. p-laplacian) select

the maximal Cheeger set at the limit?

e Do solutions of approximated problems converge to (a
multiple of ) the characteristic function of the maximal
Cheeger set?

e Does at least their support identify the maximal Cheeger
set at the limit?
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Two approximation schemes:

1) p-laplacian approximation:

Ly 1= sup{/gfud:c : /Qg]Du\pdxg 1, ue Wol’p(ﬂ)}. (12)

The unique (nonnegative) maximizer u, of (12) is of course the
solution of the PDE

1
—div (9|DulP~2Du) = A, f, u € WP (Q), with \, :== —. (13)
Hp

2) Concave penalization:

sup{/ﬁf(u—ecb(u)) dr : /Rdgd|Du| <1, ue BVO(Q)} (14)

with ® strictly convex and ®(0) =0
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p-laplacian approximation'

Limit problem

ulzsup{/ fudx : ue BVy(Q), / g d|Du 31}, (15)
Q R

(inverse of the Cheeger constant).

Convergence: (see also Kawohl and Fridman)

lim p, = p1

p—1T

and (up to some subsequence) u, converges in L' to u a
solution of (15).
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e Is u (a multiple of) the characteristic function of the
maximal Cheeger set (of course it is when there is

uniqueness)?

e Is {u > 0} the maximal Cheeger set?

Answer is NO to both questions (1d counter-examples).
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Concave penalization I

sup{/gf(u—ecb(u)) dr : /Rdgd|Du| <1, ue€ BVO(Q)} (16)

where € > 0 is a perturbation parameter and ® is a strictly

convex nonnegative function that satisfies:

0<P(t) < +oo VteRT. (17)
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Theorem 5 Let u. be the solution of (16); then the following
holds:

o (u.). converges in L*(Q), as € — 07, to the solution u of

mf{/fCI) : uEQ}, (18)

* U= axc, for some a >0 and Cy C 1,

o Cy is the maximal Cheeger set, i.e. Cy € C and Cy contains
every other Cheeger set (up to a Lebesque negligible set).
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