On a weighted total variation minimization problem

Guillaume Carlier ^a.

Benasque, Partial differential equations, optimal design and numerics, September 2007.

Joint work with Giuseppe Buttazzo (Dipartimento di Matematica, Università di Pisa) and Myriam Comte (Laboratoire J.-L. Lions, Université Paris 6).

^aCEREMADE, Université Paris Dauphine

Introduction

Given Ω , an open bounded subset of \mathbb{R}^N and nonnegative functions f and g (more precise assumptions on the data Ω , f and g will be given later on), consider

$$\mu := \inf_{u \in BV_0} \mathcal{R}(u) \tag{1}$$

where

$$BV_0 := \{ u \in BV(\mathbb{R}^N), \ u \equiv 0 \text{ on } \mathbb{R}^N \setminus \overline{\Omega} \},$$
 (2)

and for $u \in BV_0$ such that $\int_{\Omega} fu \neq 0$,

$$\mathcal{R}(u) := \frac{\int_{\mathbb{R}^N} g(x) \, \mathrm{d}|Du(x)|}{\int_{\Omega} f(x)|u(x)| \, \mathrm{d}x}.$$
 (3)

When g = f = 1, it is well-known that the infimum in (1) coincides with the infimum of \mathcal{R} over characteristic functions of sets of finite perimeter. In this case, (1) appears as a natural relaxation of:

$$\lambda(\Omega) := \inf_{A \subset \overline{\Omega}, \ \chi_A \in BV} \frac{\|D\chi_A\|(\mathbb{R}^N)}{|A|} \tag{4}$$

where |A| and $||D\chi_A||(\mathbb{R}^N)$ denote respectively the Lebesgue measure of A and the total variation of $D\chi_A$. Problem (4) is known as Cheeger's problem, its value $\lambda(\Omega)$ is called the Cheeger constant of Ω and its minimizers are called Cheeger sets of Ω . Note also that $\lambda(\Omega)$ is the first eigenvalue of the 1-Laplacian on Ω . Throughout the paper, we will assume that

- Ω is a nonempty open bounded subset of \mathbb{R}^N with a Lipschitz boundary,
- $f \in L^{\infty}(\Omega)$, $f \geq f_0$ for a positive constant f_0 ,
- $g \in C^0(\overline{\Omega}), g \geq g_0$ for a positive constant g_0 .

In what follows, every $u \in BV(\Omega)$ will be extended by 0 outside $\overline{\Omega}$, and thus will also be considered as an element of $BV(\mathbb{R}^N)$, still denoted u. Set, for every u in BV_0 :

$$\mathcal{G}(u) := \int_{\mathbb{R}^N} g(x) \, \mathrm{d} |Du(x)|. \tag{5}$$

Since $\partial\Omega$ is Lipschitz, note that, for $u\in BV(\Omega)$:

$$\mathcal{G}(u) = \int_{\Omega} g(x) d |Du(x)| + \int_{\partial \Omega} g(x) |u(x)| d \mathcal{H}^{N-1}(x)$$

Taking advantage of the homogeneity of (1), it is convenient to reformulate (1) as the convex minimization problem

$$\mu = \inf_{u \in BV_f} \mathcal{G}(u) \tag{6}$$

where

$$BV_f := \left\{ u \in BV(\mathbb{R}^N), \ u \ge 0, \ u \equiv 0 \text{ on } \mathbb{R}^N \setminus \overline{\Omega}, \int_{\Omega} fu = 1 \right\}. \tag{7}$$

In analogy with the case g = f = 1, it is natural to consider the generalized Cheeger problem:

$$\lambda := \inf_{A \in \mathcal{E}} \frac{\int_{\mathbb{R}^N} g(x) \, \mathrm{d}|D\chi_A(x)|}{\int_A f(x) \, \mathrm{d}x} = \inf_{A \in \mathcal{E}} \mathcal{R}(\chi_A) \tag{8}$$

where

$$\mathcal{E} := \{ A \subset \overline{\Omega} \quad \text{with} \quad \int_A f(x) \, \mathrm{d}x > 0 \quad \text{and} \quad \chi_A \in BV(\mathbb{R}^N) \}.$$
(9)

Again (1) can be interpreted as a relaxed formulation of (8) and one aim of the talk is to investigate the precise connections between (1) and (8). Solutions of (8): Generalized Cheeger sets.

Introduction

Some recent results:

• convergence of the first eigenvalue of the p-laplacian to the Cheeger constant as p tends to 1, convexity results (Kawohl and Fridman, 2003)

- Uniqueness of the Cheeger set when Ω is convex (Alter and Caselles, 2007 and Caselles, Chambolle, Novaga, 2006 in the smooth uniformly convex case),
- Full characterization of the Cheeger set of a convex subset of the plane (Lachand-Robert and Kawohl, 2006),
- extension to the case of a Finsler metric (Kawohl and Novaga, 2006).

Introduction 8

Rich and hot topic: constrained isoperimetric problem, shape optimization, Faber-Krahn type inequality, first eigenvalue and eigenfunction of the 1-laplacian, motion by mean curvature.

Recently related to landslide modelling (Ionescu and Lachand-Robert), motivation for general weights f and g that respectively represent the body forces and the (inhomogeneous) yield limit distribution of the geometrial.

Existence

$$\mu := \inf_{u \in BV_f} \mathcal{G}(u) = \int_{\mathbb{R}^N} g(x) \, \mathrm{d} |Du(x)|.$$

where

$$BV_f := \left\{ u \in BV(\mathbb{R}^N), \ u \ge 0, \ u \equiv 0 \text{ on } \mathbb{R}^N \setminus \overline{\Omega}, \int_{\Omega} fu = 1 \right\}.$$

and Cheeger's problem:

$$\lambda := \inf_{A \in \mathcal{E}} \frac{\int_{\mathbb{R}^N} g(x) \, \mathrm{d}|D\chi_A(x)|}{\int_A f(x) \, \mathrm{d}x} = \inf_{A \in \mathcal{E}} \mathcal{R}(\chi_A)$$

Introduction 10

The direct method of the calculus of variations yields:

Proposition 1 The infimum of (6) is achieved in BV_f and the infimum of (8) is achieved in \mathcal{E} .

Outline 11

Outline

- ① Invariance
- ② Generalized Cheeger sets
- 3 Qualitative properties of solutions
- 4 Maximal Cheeger sets
- ⑤ Selection of Maximal Cheeger sets

Invariance

Proposition 2 Let $H \in W^{1,\infty}(\mathbb{R}, \mathbb{R}) \cap C^{\infty}(\mathbb{R}, \mathbb{R})$ be such that H(0) = 0 and H' > 0 on \mathbb{R} . If u is a solution of (6) then so is $T_H(u)$ defined by

$$T_H(u) := \frac{H \circ u}{\int_{\Omega} f(x) H(u(x)) \, \mathrm{d}x}.$$
 (10)

Idea of the proof: Consider $X_t(.)$ the flow of the ordinary differential equation

$$\dot{v} = -H(v).$$

and set $u_t(x) := X_t(u(x))$.

Let us also define

$$h(t) := \int_{\mathbb{R}^N} g(x) \, \mathrm{d}|Du_t(x)| - \mu \int_{\Omega} f(x)u_t(x) dx.$$

so that:

$$\frac{h(t) - h(0)}{t} \ge 0. \tag{11}$$

Using the chain rule for BV functions and letting $t \to 0^+$, we get:

$$0 \ge \int_{\mathbb{R}^N} g(x) \, \mathrm{d}|D(H \circ u)(x)| - \mu \int_{\Omega} f(x)H(u(x)) \, \mathrm{d}x$$

which proves that $H \circ u$ minimizes \mathcal{R} , or equivalently, that $T_H(u)$ solves (6).

Corollary 1 Let u be a solution of (6) and $H \in W^{1,\infty}(\mathbb{R},\mathbb{R})$ be a nondecreasing function such that H(0) = 0. If $H \circ u \neq 0$ then $T_H(u)$ defined by (10) also solves (6).

Remark Note that corollary 1 applies in particular to $H(v) = (v - t_0)_+$ and $H(v) = \min(v, t_0)$.

Remark Taking H bounded shows the existence of bounded solutions to (6). We shall see in Theorem 3 that in fact every solution (6) is in fact L^{∞} .

Generalized Cheeger sets

Theorem 1 Let u be a solution of (6) and for every $t \ge 0$, define $E_t := \{x \in \mathbb{R}^N : u(x) > t\}$. For every $t \ge 0$ such that E_t has positive Lebesgue measure $\frac{1}{\int_{E_t} f} \chi_{E_t}$ solves (6). In particular, $\frac{1}{\int_{\{u>0\}} f} \chi_{\{u>0\}}$ solves (6).

Proof:

 $E_0 := \{u > 0\}$. Define for every $n \in \mathbb{N}^*$ and $v \in \mathbb{R}$:

$$H_n(v) := \begin{cases} 0 & \text{if } v \le 0\\ nv & \text{if } v \in [0, \frac{1}{n}]\\ 1 & \text{if } v \ge \frac{1}{n}. \end{cases}$$

Corollary 1 implies that $T_{H_n}(u)$ solves (6). Since $T_{H_n}(u)$ converges in $L^1(\mathbb{R}^N)$ to $\frac{1}{\int_{\{u>0\}} f} \chi_{\{u>0\}}$, we conclude that $E_0 = \{u>0\}$ is a Cheeger set.

Let $t \ge 0$ be such that E_t has positive Lebesgue measure. From corollary 1, $v := \frac{(u-t)_+}{\int f(u-t)_+}$ solves (6), hence so does

$$\frac{1}{\int_{\{v>0\}} f} \chi_{\{v>0\}} = \frac{1}{\int_{E_t} f} \chi_{E_t}.$$

Converse:

Proposition 3 Let $u \in BV_0$, $u \ge 0$. If for every $t \ge 0$ such that $E_t := \{x \in \mathbb{R}^N : u(x) > t\}$ has positive Lebesgue measure, χ_{E_t} solves (1) then u solves (1).

Straightforward application: relaxation

Corollary 2 The values of problems (6) and (8) coincide:

$$\mu = \inf_{u \in BV_0} \mathcal{R}(u) = \lambda = \inf_{A \in \mathcal{E}} \mathcal{R}(\chi_A).$$

Remark One can obtain the relaxation result of corollary 2 as a direct consequence of the coarea and Cavalieri's formulae. Obviously has $\mu \leq \lambda$ and if $u \in BV_0$, $u \geq 0$, setting $E_t := \{u > t\}$, the coarea and Cavalieri's formulae yield:

$$\int_{\mathbb{R}^{N}} g \, \mathrm{d}|Du(x)| - \lambda \int_{\mathbb{R}^{N}} fu$$

$$= \int_{0}^{\infty} \left(\int_{\partial^{*}E_{t}} g \, \mathrm{d}\mathcal{H}^{N-1} - \lambda \int_{E_{t}} f(x) \, \mathrm{d}x \right) dt \ge 0$$

which proves that $\mu \geq \lambda$. From the previous argument, in fact, we see that the converse also holds: u solves (6) if and only if $E_t := \{u > t\}$ (which has finite perimeter for a.e. t) solves (8) for a.e. $t \geq 0$. Note that in Theorem 1, we have proved that E_t solves (8) for all t (and we have not used the coarea formula).

Of course, theorem 1 and its proof contain much more information than corollary 2. A more precise consequence of theorem 1 is the following

Corollary 3 $A \in \mathcal{E}$ solves (8) if and only if there exists u solving (6) such that $A = \{u > 0\}$.

A straightforward application:

Theorem 2 Let $(A_n)_n$ be a sequence of solutions of (8) then $\bigcup_n A_n$ is also a solution of (8).

Qualitative properties of solutions

Theorem 3 Let u be a solution of (6). Then u belongs to $L^{\infty}(\Omega)$.

Idea of the proof: Use the invariance with powers of min(u, M) and a bootstrap argument.

Combining the L^{∞} estimate with the invariance property also yields:

Theorem 4 Let u be a solution of (6), then the set $\{u = ||u||_{\infty}\}$ has positive Lebesgue measure.

Maximal Cheeger sets

In general (with weights and or in a nonconvex Ω) the Cheeger set is not unique, there are even known examples where there are infinitely many (even a continuum)! However, nonuniqueness is rather rare in the sense of Baire:

Proposition 4 Let $g \in C^0(\overline{\Omega})$ with $g \geq g_0$ for a positive constant g_0 . Then there exists a G_δ dense subset X of $C^0(\overline{\Omega}, \mathbb{R}^+)$ such that for every $f \in X$, (6) admits a unique solution (equivalently C is a singleton).

When uniqueness fails: maximal Cheeger set.

Let us denote by \mathcal{C} the set of Cheeger sets. We have seen that a (countable) union of Cheeger sets still is a Cheeger set, one then easily deduces the following:

Proposition 5 There exists a unique maximal Cheeger set, i.e. a unique $C_0 \in \mathcal{C}$ such that for every $C \in \mathcal{C}$, C is included in C_0 up to a Lebesgue negligible set.

Selection of maximal Cheeger sets

Natural questions:

- Do natural approximation schemes (e.g. *p*-laplacian) select the maximal Cheeger set at the limit?
- Do solutions of approximated problems converge to (a multiple of) the characteristic function of the maximal Cheeger set?
- Does at least their support identify the maximal Cheeger set at the limit?

Two approximation schemes:

1) p-laplacian approximation:

$$\mu_p := \sup \left\{ \int_{\Omega} fu \, dx : \int_{\Omega} g |Du|^p \, dx \le 1, \ u \in W_0^{1,p}(\Omega) \right\}.$$
 (12)

The unique (nonnegative) maximizer u_p of (12) is of course the solution of the PDE

$$-\operatorname{div}\left(g|Du|^{p-2}Du\right) = \lambda_p f, \ u \in W_0^{1,p}(\Omega), \text{ with } \lambda_p := \frac{1}{\mu_p}.$$
 (13)

2) Concave penalization:

$$\sup \left\{ \int_{\Omega} f(u - \varepsilon \Phi(u)) dx : \int_{\mathbb{R}^d} g d|Du| \le 1, \ u \in BV_0(\Omega) \right\} (14)$$

with Φ strictly convex and $\Phi(0) = 0$

p-laplacian approximation

Limit problem

$$\mu_1 = \sup \left\{ \int_{\Omega} fu \, dx : u \in BV_0(\Omega), \int_{\mathbb{R}^d} g \, d|Du| \le 1 \right\}, \quad (15)$$

(inverse of the Cheeger constant).

Convergence: (see also Kawohl and Fridman)

$$\lim_{p \to 1^+} \mu_p = \mu_1$$

and (up to some subsequence) u_p converges in L^1 to u a solution of (15).

- Is u (a multiple of) the characteristic function of the maximal Cheeger set (of course it is when there is uniqueness)?
- Is $\{u > 0\}$ the maximal Cheeger set?

Answer is NO to both questions (1d counter-examples).

Concave penalization

$$\sup \left\{ \int_{\Omega} f(u - \varepsilon \Phi(u)) dx : \int_{\mathbb{R}^d} g d|Du| \le 1, \ u \in BV_0(\Omega) \right\}$$
 (16)

where $\varepsilon > 0$ is a perturbation parameter and Φ is a strictly convex nonnegative function that satisfies:

$$\Phi(0) = 0, \qquad 0 \le \Phi(t) < +\infty \quad \forall t \in \mathbb{R}^+. \tag{17}$$

Theorem 5 Let u_{ε} be the solution of (16); then the following holds:

• $(u_{\varepsilon})_{\varepsilon}$ converges in $L^{1}(\Omega)$, as $\varepsilon \to 0^{+}$, to the solution \overline{u} of

$$\inf \left\{ \int_{\Omega} f\Phi(u) \, dx : u \in Q \right\}, \tag{18}$$

- $\overline{u} = \alpha \chi_{C_0}$ for some $\alpha > 0$ and $C_0 \subset \overline{\Omega}$,
- C_0 is the maximal Cheeger set, i.e. $C_0 \in \mathcal{C}$ and C_0 contains every other Cheeger set (up to a Lebesgue negligible set).