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The Problem

Hamiltonian ~ — AP where 2 = twisted and bent tube

mathematical model for quantum waveguides due to [Exner, Seba 1989]

( unbounded geometry

Characteristics of the (present) model: < local deformation

\ uniform cross-section
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The Geometry
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The Geometry

'R — R’ unit-speed curve with curvature k and torsion 7
- possessing an appropriate smooth Frenet frame {eq1, es, €3}
/
el 0 K 0 el
= Serret-Frenet formulae: [es | = | -k 0 7| es
€3 O —T O €3
w € R? open connected bounded set, a := sup ||
tcw
0 _ _ _ 0 cos —sinb
R” : R — SO(2) family of rotation matrices: RY =
_ sinf  cosf@
- smooth function § : R — R
Q:=L(R xw) tube of cross-section w

3 3
L(s,t) :=T(s) + Z ty, eZ(s) ez = Z RZV ey
p=2 v=2

Assumptions: ||k1||cca <1 and £ does not overlap itself
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The motion of the general moving frame

/

el 0 kcos  ksin@\ [ef
eS| = | —rcosb 0 e
el —ksinf —(7—46") 0 e

bending :<—= Kk # 0



The motion of the general moving frame
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Equivalent definitions of twisting

a tube of non-circular cross-section is not twisted

= {ef,ef, e} is the Tang frame ie. 0 =7

<= parallel transport of the surface normal along generators

of the ruled surface generated by €

<—> zero curvature of the ruled surface

<= no Coriolis acceleration of the (non-inertial) traveller €4

|\ 1
A



The Hamiltonian

QB : W () — L*(Q) : {ur— || Vul}



The Hamiltonian

SA% S QB W(Q) — L) s {u— |[Vul?)

Strategy: L :R x w — ) is a diffecomorphism — Q ~ (R X W, G)

h2 4+ h2+h2 he hs h(s,t) :=1— [tacosB(s) + t3sinfO(s)] Kk(s)
hs 10| halst):=—tsr(s) = 0°(s)]

ha 0 1 hs(s,t) :=ty [7(s) — 0'(s)]
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The Hamiltonian

SA% S QB W(Q) — L) s {u— |[Vul?)

Strategy: L :R x w — ) is a diffecomorphism — Q ~ (R X W, G)

h2 4+ h2+h2 he hs h(s,t) :=1— [tacosB(s) + t3sinf(s)]| k(s)
= h 1 0| halst)=—tafr(s) = 0'(s)
hs 0 1)  ha(s,t):=t2[r(s) = 0'(s)

—A% ~ H:=-|G7Y20;|G|V2G70; on L?*(R x w,dvol)

|G| :=det(G) = h? (GY):=G™ !, dvol:=h(s,t)dsdt
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Classical Weyl's criterion requires to impose additional conditions on derivatives !
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Remark. Straight tube (k=0=7—-20"):

U(_A]%Xw) = UeSS(_A%XW) = [E1,00)

0 E,

Theorem. lm (|s(s)|+|7(s) = 0'(s)]) =0 = 0ess(—AP) = [E1, )

8| =00

Proof. Weyl-type criterion adapted to quadratic forms. g.e.d.

Classical Weyl's criterion requires to impose additional conditions on derivatives !

History:
(Goldstone, Jaffe 1992] ... k of compact support & w =disc
Duclos, Exner 1995] ... additional vanishing of " and " & w =disc
Dermenjian, Durand, Iftimie 1998| ... 0es of multistratified cylinders
(Chenaud, Duclos, Freitas, D.K. 2005] ... 8’ =7 (w arbitrary)
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Proof. Trial function based on J; (« E1).
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The effect of bending

Theorem. | k#0 & 0 =7 = info(-AY)<E;

Proof. Trial function based on J; (« E1).

Corollary. | ogisc(—AY) # @ if in addition lim k(s) =0
D

8] =00

@D e
O bound states !El

bending acts as an attractive interacion

History:
(Goldstone, Jaffe 1992] ... k of compact support & w =disc
Duclos, Exner 1995] ... additional conditions on " and k" & w =disc
[Chenaud, Duclos, Freitas, D.K. 2005] ... w arbitrary

g.e.d.



The effect of twisting

Theorem ([Ekholm, Kovafik, D.K. 2005]).
Let kK =0 . Let 6 be such that 6" #0, ¢’ € Cyp(R) and 0" € L>(R).

Assume that w is not circular . Then

1+|D(-) — I'(so)|?

~A} —-E, > Hardy inequality !

where sg € R is such that #'(sg) #0 and ¢ = c¢(sg,0,w) > 0.

twisting acts as a repulsive interaction



The effect of twisting

Theorem ([Ekholm, Kovafik, D.K. 2005]).

Let kK =0. Let 0 be such that ¢’ £ 0, 8’ € Cx(R) and 0”7 € L>(R).
Assume that w is not circular . Then

C

AL B >
P = 14 0() — T(s0) 2

Hardy inequality !

where sg € R is such that #'(sg) #0 and ¢ = c¢(sg,0,w) > 0.

twisting acts as a repulsive interaction

Proof. Writing (s, t) = J1(t) ¢(s,t), ¥ € C§(R x w), Oy 1= t3 0o — t5 O3,

(v, [H — E7)y) = ||T1019|1? + | J1020| + || T1836?
+ 10" (J105¢ + ¢ 05 T1)||*+ mixed terms . q.e.d.



Twisting vs bending

Theorem ([Ekholm, Kovafik, D.K. 2005]).

Let 0 be such that 7 — 60" £0, 0’ € Cy(R) and 0" € L>°(R).
Assume that w is not circular . Assume also that x € C}(R).
Then there exists € > 0 such that

|lloo + |6 ]|co < € — O<_A%> = [E1, 00)

where ¢ = ¢(7,6",w).
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Twisting vs bending

Theorem ([Ekholm, Kovafik, D.K. 2005]).

Let 6 be such that 7 — 60" #0, 8’ € Cyp(R) and 6” € L>*(R).
Assume that w is not circular . Assume also that x € C}(R).

Then there exists € > 0 such that

ltlls + 1K lc <6 = o(—AL) = [E1,0)

where ¢ = ¢(7,6",w).

Ey

Remark. Mildly curved tubes also studied by [Grushin 2005].

Theorem ([Bouchitté, Mascarenhas, Trabucho 2006]).

Let Q. = L(I X ew), I bounded. Then

K

—A%E — 6_2E1 (Ld)

2

Y —_ I PR —
e—0 AD 4 +C

(W)(T =)+ Ofe)

where C'(w) >0 iff w is not circular.

«—— graph model






Twisted strips

Theorem ([D.K. 2006]).

Then

Assume that xKcos@ =0 and 0 < |7 — 0 ||eca < V2.

1+ |D(-) — I'(s0)|?

Nl

—A¥ — B,

= ¢(sg, 7 —0',a) > 0.

where so € R is such that (7 — #')(sg) #20 and ¢



Theorem ([D.K. 2006]).

Then

Assume that xKcos@ =0 and 0 < |7 — 0 ||eca < V2.

1+ |D(-) — I'(s0)|?

Nl

—A¥ — B,

= ¢(sg, 7 —0',a) > 0.

where so € R is such that (7 — #')(sg) #20 and ¢

negative curvature of the ambient space acts as a repulsive interaction
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Twist via boundary conditions

Theorem ([Kovatik, D.K. 2006]).

c
1+ 22

—Apny — E; >

where

c=c(a) > 0.
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Conclusions

Moral :

— bending acts as an attractive interaction 0

— twisting acts as a repulsive interaction

— Hardy inequalities in twisted tubes — A,

Open problems:
; higher-dimensional generalisations 7
; effect of twisting on the essential spectrum 7

;. other physical motivations 7



Mourre’s theory for twisted tubes ?

Theorem ([D.K., Tiedra de Aldecoa 2004]).
Assume that 6" = 7 (plus some fast decay of x, 7 at infinity).
Then A := —%(s9; 4 05 s) is strictly conjugate to H on R\ {E,,}52,,

ie. PHi[H, A|P? > cP?  with some ¢>0.

Corollary. Eigenvalues of H are countable and can accumulate at F,, only.
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Mourre’s theory for twisted tubes ?

Theorem ([D.K., Tiedra de Aldecoa 2004]).
Assume that 6" = 7 (plus some fast decay of x, 7 at infinity).
Then A := —%(s9; 4 05 s) is strictly conjugate to H on R\ {E,,}52,,

ie. PHi[H, A|P? > cP?  with some ¢>0.

Corollary. Eigenvalues of H are countable and can accumulate at F,, only.

Commutator for the straight tube: i[Hy, A] = 2(—0?)

— Y, :=1® J, represent the ‘bad’ functions.

However, (v, i[H, Al ¢y,) = ||0'0,T,||* > 0 for a straight but twisted tube !

Conjecture. The result of Mourre theory can be improved for twisted tubes.



