Twisting versus bending

in quantum waveguides

David KREJČIŘíK

Nuclear Physics Institute, Academy of Sciences, Řež, Czech Republic
http://gemma.ujf.cas.cz/~david/

Based on:

[Chenaud, Duclos, Freitas, D.K.]
[Ekholm, Kovařík, D.K.]

Differential Geom. Appl. 23 (2005)
Arch. Ration. Mech. Anal., to appear

The Problem

Hamiltonian $\approx-\frac{\hbar^{2}}{2 m^{*}} \Delta_{D}^{\Omega} \quad$ where $\quad \Omega=$ twisted and bent tube

mathematical model for quantum waveguides due to [Exner, Šeba 1989]

Characteristics of the (present) model: $\left\{\begin{array}{l}\text { unbounded geometry } \\ \text { local deformation } \\ \text { uniform cross-section }\end{array}\right.$

Outline

1. Geometry of a twisted and bent tube
2. Strategy
3. Stability of the essential spectrum
4. Effect of bending
5. Effect of twisting
6. Conclusions

The Geometry

$\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$
unit-speed curve with curvature κ and torsion τ

- possessing an appropriate smooth Frenet frame $\left\{e_{1}, e_{2}, e_{3}\right\}$
\Rightarrow Serret-Frenet formulae : $\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)^{\prime}=\left(\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right)\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)$

The Geometry

$\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$
unit-speed curve with curvature κ and torsion τ

- possessing an appropriate smooth Frenet frame $\left\{e_{1}, e_{2}, e_{3}\right\}$
\Rightarrow Serret-Frenet formulae : $\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)^{\prime}=\left(\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right)\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)$
$\omega \in \mathbb{R}^{2}$
open connected bounded set, $a:=\sup _{t \in \omega}|t|$

The Geometry

$\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$
unit-speed curve with curvature κ and torsion τ

- possessing an appropriate smooth Frenet frame $\left\{e_{1}, e_{2}, e_{3}\right\}$
\Rightarrow Serret-Frenet formulae : $\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)^{\prime}=\left(\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right)\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)$
$\omega \in \mathbb{R}^{2} \quad$ open connected bounded set, $a:=\sup _{t \in \omega}|t|$

$$
\mathcal{R}^{\theta}: \mathbb{R} \rightarrow \mathrm{SO}(2)
$$

family of rotation matrices: $\mathcal{R}^{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \text { - smooth function } \theta: \mathbb{R} \rightarrow \mathbb{R}\end{array}\right)$

The Geometry

$\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3} \quad$ unit-speed curve with curvature κ and torsion τ

- possessing an appropriate smooth Frenet frame $\left\{e_{1}, e_{2}, e_{3}\right\}$
\Rightarrow Serret-Frenet formulae : $\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)^{\prime}=\left(\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right)\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)$
$\omega \in \mathbb{R}^{2} \quad$ open connected bounded set, $a:=\sup _{t \in \omega}|t|$
$\mathcal{R}^{\theta}: \mathbb{R} \rightarrow \mathrm{SO}(2)$
$\Omega:=\mathcal{L}(\mathbb{R} \times \omega)$
tube of cross-section ω

$$
\mathcal{L}(s, t):=\Gamma(s)+\sum_{\mu=2}^{3} t_{\mu} e_{\mu}^{\theta}(s)
$$

$$
e_{\mu}^{\theta}:=\sum_{\nu=2}^{3} \mathcal{R}_{\mu \nu}^{\theta} e_{\nu}
$$

The Geometry

$\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{3} \quad$ unit-speed curve with curvature κ and torsion τ

- possessing an appropriate smooth Frenet frame $\left\{e_{1}, e_{2}, e_{3}\right\}$
\Rightarrow Serret-Frenet formulae : $\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)^{\prime}=\left(\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0\end{array}\right)\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3}\end{array}\right)$
$\omega \in \mathbb{R}^{2} \quad$ open connected bounded set, $a:=\sup _{t \in \omega}|t|$
$\mathcal{R}^{\theta}: \mathbb{R} \rightarrow \mathrm{SO}(2)$
$\left.\begin{array}{l}\text { family of rotation matrices: } \mathcal{R}^{\theta}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \text { - smooth function } \theta: \mathbb{R} \rightarrow \mathbb{R}\end{array}\right) \\ \sin \theta \\ \cos \theta\end{array}\right)$
$\Omega:=\mathcal{L}(\mathbb{R} \times \omega)$
tube of cross-section ω

$$
\mathcal{L}(s, t):=\Gamma(s)+\sum_{\mu=2}^{3} t_{\mu} e_{\mu}^{\theta}(s)
$$

$$
e_{\mu}^{\theta}:=\sum_{\nu=2}^{3} \mathcal{R}_{\mu \nu}^{\theta} e_{\nu}
$$

Assumptions: $\left\|\kappa_{1}\right\|_{\infty} a<1$ and Ω does not overlap itself

The motion of the general moving frame

$$
\left(\begin{array}{c}
e_{1}^{\theta} \\
e_{2}^{\theta} \\
e_{3}^{\theta}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
0 & \kappa \cos \theta & \kappa \sin \theta \\
-\kappa \cos \theta & 0 & \tau-\theta^{\prime} \\
-\kappa \sin \theta & -\left(\tau-\theta^{\prime}\right) & 0
\end{array}\right)\left(\begin{array}{c}
e_{1}^{\theta} \\
e_{2}^{\theta} \\
e_{3}^{\theta}
\end{array}\right)
$$

The motion of the general moving frame

$$
\left(\begin{array}{l}
e_{1}^{\theta} \\
e_{2}^{\theta} \\
e_{3}^{\theta}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
0 & \kappa \cos \theta & \kappa \sin \theta \\
-\kappa \cos \theta & 0 & \tau-\theta^{\prime} \\
-\kappa \sin \theta & -\left(\tau-\theta^{\prime}\right) & 0
\end{array}\right)\left(\begin{array}{l}
e_{1}^{\theta} \\
e_{2}^{\theta} \\
e_{3}^{\theta}
\end{array}\right)
$$

bending $: \Longleftrightarrow \kappa \neq 0$

The motion of the general moving frame

$$
\left(\begin{array}{l}
e_{1}^{\theta} \\
e_{2}^{\theta} \\
e_{3}^{\theta}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
0 & \kappa \cos \theta & \kappa \sin \theta \\
-\kappa \cos \theta & 0 & \tau-\theta^{\prime} \\
-\kappa \sin \theta & -\left(\tau-\theta^{\prime}\right) & 0
\end{array}\right)\left(\begin{array}{l}
e_{1}^{\theta} \\
e_{2}^{\theta} \\
e_{3}^{\theta}
\end{array}\right)
$$

$$
\text { bending }: \Longleftrightarrow \kappa \neq 0
$$

$$
\text { twisting }: \Longleftrightarrow\left\{\begin{array}{l}
\tau-\theta^{\prime} \neq 0 \\
\omega \text { is not circular }
\end{array}\right.
$$

Equivalent definitions of twisting

a tube of non-circular cross-section is not twisted
$: \Longleftrightarrow\left\{e_{1}^{\theta}, e_{2}^{\theta}, e_{3}^{\theta}\right\}$ is the Tang frame i.e. $\theta^{\prime}=\tau$

Equivalent definitions of twisting

a tube of non-circular cross-section is not twisted
$: \Longleftrightarrow\left\{e_{1}^{\theta}, e_{2}^{\theta}, e_{3}^{\theta}\right\}$ is the Tang frame i.e. $\theta^{\prime}=\tau$
\Longleftrightarrow parallel transport of the surface normal along generators of the ruled surface generated by e_{2}^{θ}

Equivalent definitions of twisting

a tube of non-circular cross-section is not twisted
$: \Longleftrightarrow\left\{e_{1}^{\theta}, e_{2}^{\theta}, e_{3}^{\theta}\right\}$ is the Tang frame i.e. $\theta^{\prime}=\tau$
\Longleftrightarrow parallel transport of the surface normal along generators of the ruled surface generated by e_{2}^{θ}
\Longleftrightarrow zero curvature of the ruled surface

Equivalent definitions of twisting

a tube of non-circular cross-section is not twisted
$: \Longleftrightarrow\left\{e_{1}^{\theta}, e_{2}^{\theta}, e_{3}^{\theta}\right\}$ is the Tang frame i.e. $\theta^{\prime}=\tau$
\Longleftrightarrow parallel transport of the surface normal along generators of the ruled surface generated by e_{2}^{θ}
\Longleftrightarrow zero curvature of the ruled surface
\Longleftrightarrow no Coriolis acceleration of the (non-inertial) traveller e_{2}^{θ}

The Hamiltonian

$$
-\Delta_{D}^{\Omega} \quad \leftrightarrows \quad Q_{D}^{\Omega}: W_{0}^{1,2}(\Omega) \longrightarrow L^{2}(\Omega):\left\{u \longmapsto\|\nabla u\|^{2}\right\}
$$

The Hamiltonian

$-\Delta_{D}^{\Omega} \quad \leftrightarrows \quad Q_{D}^{\Omega}: W_{0}^{1,2}(\Omega) \longrightarrow L^{2}(\Omega):\left\{u \longmapsto\|\nabla u\|^{2}\right\}$

Strategy: $\mathcal{L}: \mathbb{R} \times \omega \rightarrow \Omega$ is a diffeomorphism $\Longrightarrow \quad \Omega \simeq(\mathbb{R} \times \omega, G)$
$G=\left(\begin{array}{ccc}h^{2}+h_{2}^{2}+h_{3}^{2} & h_{2} & h_{3} \\ h_{2} & 1 & 0 \\ h_{3} & 0 & 1\end{array}\right) \quad \begin{aligned} & h(s, t):=1-\left[t_{2} \cos \theta(s)+t_{3} \sin \theta(s)\right] \kappa(s) \\ & h_{2}(s, t):=-t_{3}\left[\tau(s)-\theta^{\prime}(s)\right] \\ & h_{3}(s, t):=t_{2}\left[\tau(s)-\theta^{\prime}(s)\right]\end{aligned}$

The Hamiltonian

$$
-\Delta_{D}^{\Omega} \quad \leftrightarrows \quad Q_{D}^{\Omega}: W_{0}^{1,2}(\Omega) \longrightarrow L^{2}(\Omega):\left\{u \longmapsto\|\nabla u\|^{2}\right\}
$$

Strategy: $\mathcal{L}: \mathbb{R} \times \omega \rightarrow \Omega$ is a diffeomorphism $\Longrightarrow \quad \Omega \simeq(\mathbb{R} \times \omega, G)$

$$
\left.\begin{array}{rl}
\left.G=\left(\begin{array}{ccc}
h^{2}+h_{2}^{2}+h_{3}^{2} & h_{2} & h_{3} \\
h_{2} & 1 & 0 \\
h_{3} & 0 & 1
\end{array}\right) \quad \begin{array}{l}
h(s, t)
\end{array}\right):=1-\left[t_{2} \cos \theta(s)+t_{3} \sin \theta(s)\right] \kappa(s) \\
h_{2}(s, t) & :=-t_{3}\left[\tau(s)-\theta^{\prime}(s)\right] \\
h_{3}(s, t) & :=t_{2}\left[\tau(s)-\theta^{\prime}(s)\right]
\end{array}\right\} \begin{aligned}
-\Delta_{D}^{\Omega} \simeq \quad H: \stackrel{\mathrm{w}}{=}-|G|^{-1 / 2} \partial_{i}|G|^{1 / 2} G^{i j} \partial_{j} \quad \text { on } \quad L^{2}(\mathbb{R} \times \omega, d \mathrm{vol}) \\
|G|:=\operatorname{det}(G)=h^{2}, \quad\left(G^{i j}\right):=G^{-1}, \quad d \mathrm{vol}:=h(s, t) d s d t
\end{aligned}
$$

Stability of essential spectrum

Stability of essential spectrum

Remark. Straight tube ($\kappa=0=\tau-\theta^{\prime}$):

$$
\frac{\sigma\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)=\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)=\left[E_{1}, \infty\right)}{0} E_{1}
$$

Stability of essential spectrum

Remark. Straight tube ($\kappa=0=\tau-\theta^{\prime}$):

$$
\frac{\sigma\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)=\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)=\left[E_{1}, \infty\right)}{0} E_{1}
$$

Theorem.

$$
\lim _{|s| \rightarrow \infty}\left(|\kappa(s)|+\left|\tau(s)-\theta^{\prime}(s)\right|\right)=0 \Longrightarrow \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

Proof. Weyl-type criterion adapted to quadratic forms.
Classical Weyl's criterion requires to impose additional conditions on derivatives!

Stability of essential spectrum

Remark. Straight tube ($\kappa=0=\tau-\theta^{\prime}$):

$$
\frac{\sigma\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)=\sigma_{\mathrm{ess}}\left(-\Delta_{D}^{\mathbb{R} \times \omega}\right)=\left[E_{1}, \infty\right)}{0} E_{1}
$$

Theorem.

$$
\lim _{|s| \rightarrow \infty}\left(|\kappa(s)|+\left|\tau(s)-\theta^{\prime}(s)\right|\right)=0 \quad \Longrightarrow \quad \sigma_{\text {ess }}\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

Proof. Weyl-type criterion adapted to quadratic forms.
Classical Weyl's criterion requires to impose additional conditions on derivatives!

History :
[Goldstone, Jaffe 1992] ... κ of compact support \& $\omega=$ disc
[Duclos, Exner 1995] ... additional vanishing of κ^{\prime} and $\kappa^{\prime \prime} \& \omega=$ disc
[Dermenjian, Durand, Iftimie 1998] ... $\sigma_{\text {ess }}$ of multistratified cylinders
[Chenaud, Duclos, Freitas, D.K. 2005] $\ldots \theta^{\prime}=\tau \quad(\omega$ arbitrary $)$

The effect of bending

Theorem. $\quad \kappa \neq 0 \quad \& \quad \theta^{\prime}=\tau \quad \Longrightarrow \quad \inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}$
Proof. Trial function based on $\mathcal{J}_{1}\left(\leftrightarrow E_{1}\right)$.
q.e.d.

The effect of bending

Theorem.

$$
\kappa \neq 0 \quad \& \quad \theta^{\prime}=\tau \quad \Longrightarrow \quad \inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}
$$

Proof. Trial function based on $\mathcal{J}_{1}\left(\leftrightarrow E_{1}\right)$.

Corollary. $\quad \sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right) \neq \varnothing \quad$ if in addition $\quad \lim _{|s| \rightarrow \infty} \kappa(s)=0$

bending acts as an attractive interacion

The effect of bending

Theorem. $\quad \kappa \neq 0 \quad \& \quad \theta^{\prime}=\tau \quad \Longrightarrow \quad \inf \sigma\left(-\Delta_{D}^{\Omega}\right)<E_{1}$
Proof. Trial function based on $\mathcal{J}_{1}\left(\leftrightarrow E_{1}\right)$.

Corollary. $\quad \sigma_{\text {disc }}\left(-\Delta_{D}^{\Omega}\right) \neq \varnothing$ if in addition $\quad \lim _{|s| \rightarrow \infty} \kappa(s)=0$

bending acts as an attractive interacion

History :

[Goldstone, Jaffe 1992] ... κ of compact support \& $\omega=$ disc
[Duclos, Exner 1995] ... additional conditions on κ^{\prime} and $\kappa^{\prime \prime}$ \& $\omega=$ disc
[Chenaud, Duclos, Freitas, D.K. 2005] ... ω arbitrary

The effect of twisting

Theorem ([Ekholm, Kovařík, D.K. 2005]).
Let $\kappa=0$. Let θ be such that $\theta^{\prime} \neq 0, \theta^{\prime} \in C_{0}(\mathbb{R})$ and $\theta^{\prime \prime} \in L^{\infty}(\mathbb{R})$.
Assume that ω is not circular. Then

$$
-\Delta_{D}^{\Omega}-E_{1} \geq \frac{c}{1+\left|\Gamma(\cdot)-\Gamma\left(s_{0}\right)\right|^{2}}
$$

Hardy inequality!
where $s_{0} \in \mathbb{R}$ is such that $\theta^{\prime}\left(s_{0}\right) \neq 0$ and $c=c\left(s_{0}, \theta^{\prime}, \omega\right)>0$.

The effect of twisting

Theorem ([Ekholm, Kovařík, D.K. 2005]).
Let $\kappa=0$. Let θ be such that $\theta^{\prime} \neq 0, \theta^{\prime} \in C_{0}(\mathbb{R})$ and $\theta^{\prime \prime} \in L^{\infty}(\mathbb{R})$.
Assume that ω is not circular. Then

$$
-\Delta_{D}^{\Omega}-E_{1} \geq \frac{c}{1+\left|\Gamma(\cdot)-\Gamma\left(s_{0}\right)\right|^{2}}
$$

Hardy inequality!
where $s_{0} \in \mathbb{R}$ is such that $\theta^{\prime}\left(s_{0}\right) \neq 0$ and $c=c\left(s_{0}, \theta^{\prime}, \omega\right)>0$.

twisting acts as a repulsive interaction

Proof. Writing $\psi(s, t)=\mathcal{J}_{1}(t) \phi(s, t), \quad \psi \in C_{0}^{\infty}(\mathbb{R} \times \omega)$,
$\partial_{\sigma}:=t_{3} \partial_{2}-t_{2} \partial_{3}$,

$$
\left(\psi,\left[H-E_{1}\right] \psi\right)=\left\|\mathcal{J}_{1} \partial_{1} \phi\right\|^{2}+\left\|\mathcal{J}_{1} \partial_{2} \phi\right\|^{2}+\left\|\mathcal{J}_{1} \partial_{3} \phi\right\|^{2}
$$

$$
+\left\|\theta^{\prime}\left(\mathcal{J}_{1} \partial_{\sigma} \phi+\phi \partial_{\sigma} \mathcal{J}_{1}\right)\right\|^{2}+\text { mixed terms }
$$

q.e.d.

Twisting vs bending

Theorem ([Ekholm, Kovařík, D.K. 2005]).
Let θ be such that $\tau-\theta^{\prime} \neq 0, \theta^{\prime} \in C_{0}(\mathbb{R})$ and $\theta^{\prime \prime} \in L^{\infty}(\mathbb{R})$. Assume that ω is not circular. Assume also that $\kappa \in C_{0}^{1}(\mathbb{R})$.
Then there exists $\varepsilon>0$ such that

$$
\|\kappa\|_{\infty}+\left\|\kappa^{\prime}\right\|_{\infty} \leq \varepsilon \quad \Longrightarrow \quad \sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

where $\varepsilon=\varepsilon\left(\tau, \theta^{\prime}, \omega\right)$.
$0 \quad E_{1}$

Twisting vs bending

Theorem ([Ekholm, Kovařík, D.K. 2005]).
Let θ be such that $\tau-\theta^{\prime} \neq 0, \theta^{\prime} \in C_{0}(\mathbb{R})$ and $\theta^{\prime \prime} \in L^{\infty}(\mathbb{R})$. Assume that ω is not circular. Assume also that $\kappa \in C_{0}^{1}(\mathbb{R})$.
Then there exists $\varepsilon>0$ such that

$$
\|\kappa\|_{\infty}+\left\|\kappa^{\prime}\right\|_{\infty} \leq \varepsilon \quad \Longrightarrow \quad \sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

where $\varepsilon=\varepsilon\left(\tau, \theta^{\prime}, \omega\right)$.

$$
0 \quad E_{1}
$$

Remark. Mildly curved tubes also studied by [Grushin 2005].

Twisting vs bending

Theorem ([Ekholm, Kovařík, D.K. 2005]).
Let θ be such that $\tau-\theta^{\prime} \neq 0, \theta^{\prime} \in C_{0}(\mathbb{R})$ and $\theta^{\prime \prime} \in L^{\infty}(\mathbb{R})$. Assume that ω is not circular. Assume also that $\kappa \in C_{0}^{1}(\mathbb{R})$.
Then there exists $\varepsilon>0$ such that

$$
\|\kappa\|_{\infty}+\left\|\kappa^{\prime}\right\|_{\infty} \leq \varepsilon \quad \Longrightarrow \quad \sigma\left(-\Delta_{D}^{\Omega}\right)=\left[E_{1}, \infty\right)
$$

where $\varepsilon=\varepsilon\left(\tau, \theta^{\prime}, \omega\right)$.

Remark. Mildly curved tubes also studied by [Grushin 2005].

Theorem ([Bouchitté, Mascarenhas, Trabucho 2006]).

Let $\Omega_{\varepsilon}=\mathcal{L}(I \times \varepsilon \omega), I$ bounded. Then

$$
-\Delta_{D}^{\Omega_{\varepsilon}}-\varepsilon^{-2} E_{1}(\omega) \underset{\varepsilon \rightarrow 0}{\simeq}-\Delta_{D}^{I}-\frac{\kappa^{2}}{4}+C(\omega)\left(\tau-\theta^{\prime}\right)^{2}+\mathcal{O}(\varepsilon)
$$

where $C(\omega)>0$ iff ω is not circular.

Twisted strips

Twisted strips

Theorem ([D.K. 2006]).
Assume that $\kappa \cos \theta=0$ and $0<\left\|\tau-\theta^{\prime}\right\|_{\infty} a \leq \sqrt{2}$. Then

$$
-\Delta_{D}^{\Omega}-E_{1} \geq \frac{c}{1+\left|\Gamma(\cdot)-\Gamma\left(s_{0}\right)\right|^{2}}
$$

where $s_{0} \in \mathbb{R}$ is such that $\left(\tau-\theta^{\prime}\right)\left(s_{0}\right) \neq 0$ and $c=c\left(s_{0}, \tau-\theta^{\prime}, a\right)>0$.

Twisted strips

Theorem ([D.K. 2006]).
Assume that $\kappa \cos \theta=0$ and $0<\left\|\tau-\theta^{\prime}\right\|_{\infty} a \leq \sqrt{2}$. Then

$$
-\Delta_{D}^{\Omega}-E_{1} \geq \frac{c}{1+\left|\Gamma(\cdot)-\Gamma\left(s_{0}\right)\right|^{2}}
$$

where $s_{0} \in \mathbb{R}$ is such that $\left(\tau-\theta^{\prime}\right)\left(s_{0}\right) \neq 0$ and $c=c\left(s_{0}, \tau-\theta^{\prime}, a\right)>0$.
negative curvature of the ambient space acts as a repulsive interaction

Twist via boundary conditions

$$
E_{1}=\left(\frac{\pi}{4 a}\right)^{2}
$$

Twist via boundary conditions

$E_{1}=\left(\frac{\pi}{4 a}\right)^{2}$

Theorem ([Kovařík, D.K. 2006]).

$$
-\Delta_{D N}-E_{1} \geq \frac{c}{1+x^{2}} \quad \text { where } \quad c=c(a)>0
$$

Conclusions

Moral :

\rightarrow bending acts as an attractive interaction
\rightarrow twisting acts as a repulsive interaction
\rightarrow Hardy inequalities in twisted tubes

$-\Delta_{D}^{\Omega}-E_{1} \geq \rho(\cdot)>0$

Conclusions

Moral :

\rightarrow bending acts as an attractive interaction
\rightarrow twisting acts as a repulsive interaction
\rightarrow Hardy inequalities in twisted tubes

$-\Delta_{D}^{\Omega}-E_{1} \geq \rho(\cdot)>0$

Open problems:
¿ higher-dimensional generalisations ?

Conclusions

Moral :

\rightarrow bending acts as an attractive interaction
\rightarrow twisting acts as a repulsive interaction
\rightarrow Hardy inequalities in twisted tubes

$-\Delta_{D}^{\Omega}-E_{1} \geq \rho(\cdot)>0$

Open problems:
¿ higher-dimensional generalisations ?
¿ effect of twisting on the essential spectrum ?

Conclusions

Moral :

\rightarrow bending acts as an attractive interaction
\rightarrow twisting acts as a repulsive interaction
\rightarrow Hardy inequalities in twisted tubes

Open problems:
¿ higher-dimensional generalisations ?
¿ effect of twisting on the essential spectrum ?
¿ other physical motivations?

Mourre's theory for twisted tubes?

Theorem ([D.K., Tiedra de Aldecoa 2004]).
Assume that $\theta^{\prime}=\tau$ (plus some fast decay of κ, τ at infinity).
Then $A:=-\frac{i}{2}\left(s \partial_{s}+\partial_{s} s\right)$ is strictly conjugate to H on $\mathbb{R} \backslash\left\{E_{n}\right\}_{n=1}^{\infty}$,

$$
\text { i.e. } \mathcal{P}^{H} i[H, A] \mathcal{P}^{H} \geq c \mathcal{P}^{H} \quad \text { with some } \quad c>0 \text {. }
$$

Corollary. Eigenvalues of H are countable and can accumulate at E_{n} only.

Mourre's theory for twisted tubes?

Theorem ([D.K., Tiedra de Aldecoa 2004]).
Assume that $\theta^{\prime}=\tau$ (plus some fast decay of κ, τ at infinity).
Then $A:=-\frac{i}{2}\left(s \partial_{s}+\partial_{s} s\right)$ is strictly conjugate to H on $\mathbb{R} \backslash\left\{E_{n}\right\}_{n=1}^{\infty}$,

$$
\text { i.e. } \mathcal{P}^{H} i[H, A] \mathcal{P}^{H} \geq c \mathcal{P}^{H} \quad \text { with some } \quad c>0 \text {. }
$$

Corollary. Eigenvalues of H are countable and can accumulate at E_{n} only.

Commutator for the straight tube: $i\left[H_{0}, A\right]=2\left(-\partial_{s}^{2}\right)$
$\Longrightarrow \psi_{n}:=1 \otimes \mathcal{J}_{n}$ represent the 'bad' functions.

Mourre's theory for twisted tubes?

Theorem ([D.K., Tiedra de Aldecoa 2004]).
Assume that $\theta^{\prime}=\tau$ (plus some fast decay of κ, τ at infinity).
Then $A:=-\frac{i}{2}\left(s \partial_{s}+\partial_{s} s\right)$ is strictly conjugate to H on $\mathbb{R} \backslash\left\{E_{n}\right\}_{n=1}^{\infty}$,

$$
\text { i.e. } \mathcal{P}^{H} i[H, A] \mathcal{P}^{H} \geq c \mathcal{P}^{H} \quad \text { with some } \quad c>0 .
$$

Corollary. Eigenvalues of H are countable and can accumulate at E_{n} only.

Commutator for the straight tube: $i\left[H_{0}, A\right]=2\left(-\partial_{s}^{2}\right)$
$\Longrightarrow \psi_{n}:=1 \otimes \mathcal{J}_{n}$ represent the 'bad' functions.

However, $\left(\psi_{n}, i[H, A] \psi_{n}\right)=\left\|\theta^{\prime} \partial_{\sigma} \mathcal{J}_{n}\right\|^{2}>0$ for a straight but twisted tube!
Conjecture. The result of Mourre theory can be improved for twisted tubes.

