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Nuclear Physics Institute, Academy of Sciences, Řež, Czech Republic

http://gemma.ujf.cas.cz/ d̃avid/

Based on :

[Chenaud, Duclos, Freitas, D.K.] Differential Geom. Appl. 23 (2005)
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The Problem

Hamiltonian ≈ − ~
2

2m∗
∆Ω

D where Ω = twisted and bent tube

dependence of spectrum on geometry

mathematical model for quantum waveguides due to [Exner, Šeba 1989]

Characteristics of the (present) model:





unbounded geometry

local deformation

uniform cross-section
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|t|

Rθ : R→ SO(2) family of rotation matrices : Rθ =


cos θ − sin θ

sin θ cos θ




- smooth function θ : R→ R

Ω := L(R× ω) tube of cross-section ω

L(s, t) := Γ(s) +
3∑

µ=2

tµ e
θ
µ(s) eθ

µ :=
3∑

ν=2

Rθ
µν eν

Assumptions: ‖κ1‖∞ a < 1 and Ω does not overlap itself
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bending :⇐⇒ κ 6= 0

twisting :⇐⇒
{
τ − θ′ 6= 0

ω is not circular
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Equivalent definitions of twisting

a tube of non-circular cross-section is not twisted

:⇐⇒ {eθ
1, e

θ
2, e

θ
3} is the Tang frame i.e. θ′ = τ

⇐⇒ parallel transport of the surface normal along generators

of the ruled surface generated by eθ
2

⇐⇒ zero curvature of the ruled surface

⇐⇒ no Coriolis acceleration of the (non-inertial) traveller eθ
2
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}
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(
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G =




h2 + h2
2 + h2

3 h2 h3

h2 1 0

h3 0 1




h(s, t) := 1− [t2 cos θ(s) + t3 sin θ(s)]κ(s)

h2(s, t) := −t3 [τ(s)− θ′(s)]
h3(s, t) := t2 [τ(s)− θ′(s)]

−∆Ω

D ≃ H
w

:= −|G|−1/2 ∂i |G|1/2Gij ∂j on L2
(
R× ω, dvol

)

|G| := det(G) = h2, (Gij) := G−1, dvol := h(s, t) ds dt
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Theorem. lim
|s|→∞

(
|κ(s)|+ |τ(s)− θ′(s)|

)
= 0 =⇒ σess(−∆Ω

D) = [E1,∞)

Proof. Weyl-type criterion adapted to quadratic forms. q.e.d.

Classical Weyl’s criterion requires to impose additional conditions on derivatives !

History :

[Goldstone, Jaffe 1992] . . . κ of compact support & ω =disc

[Duclos, Exner 1995] . . . additional vanishing of κ′ and κ′′ & ω =disc

[Dermenjian, Durand, Iftimie 1998] . . . σess of multistratified cylinders

[Chenaud, Duclos, Freitas, D.K. 2005] . . . θ′ = τ (ω arbitrary)
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History :

[Goldstone, Jaffe 1992] . . . κ of compact support & ω =disc

[Duclos, Exner 1995] . . . additional conditions on κ′ and κ′′ & ω =disc

[Chenaud, Duclos, Freitas, D.K. 2005] . . . ω arbitrary



The effect of twisting

Theorem ([Ekholm, Kovǎŕık, D.K. 2005]).

Let κ = 0 . Let θ be such that θ′ 6= 0 , θ′ ∈ C0(R) and θ′′ ∈ L∞(R).
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Let κ = 0 . Let θ be such that θ′ 6= 0 , θ′ ∈ C0(R) and θ′′ ∈ L∞(R).

Assume that ω is not circular . Then

−∆Ω

D −E1 ≥
c

1 + |Γ(·)− Γ(s0)|2
Hardy inequality !

where s0 ∈ R is such that θ′(s0) 6= 0 and c = c(s0, θ
′, ω) > 0.

twisting acts as a repulsive interaction

Proof. Writing ψ(s, t) = J1(t)φ(s, t), ψ ∈ C∞
0 (R× ω), ∂σ := t3 ∂2 − t2 ∂3,

(
ψ, [H −E1]ψ

)
= ‖J1∂1φ‖2 + ‖J1∂2φ‖2 + ‖J1∂3φ‖2

+ ‖θ′ (J1∂σφ+ φ∂σJ1)‖2+ mixed terms . . . q.e.d.
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Let θ be such that τ − θ′ 6= 0 , θ′ ∈ C0(R) and θ′′ ∈ L∞(R).

Assume that ω is not circular . Assume also that κ ∈ C1
0 (R).

Then there exists ε > 0 such that

‖κ‖∞ + ‖κ′‖∞ ≤ ε =⇒ σ
(
−∆Ω

D

)
= [E1,∞)

where ε = ε(τ, θ′, ω).

E10

Remark. Mildly curved tubes also studied by [Grushin 2005].



Twisting vs bending
Theorem ([Ekholm, Kovǎŕık, D.K. 2005]).
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Remark. Mildly curved tubes also studied by [Grushin 2005].

Theorem ([Bouchitté, Mascarenhas, Trabucho 2006]). ←− graph model

Let Ωε = L(I × εω), I bounded. Then

−∆Ωε

D − ε−2E1(ω) ≃
ε→0

−∆I
D −

κ2

4
+ C(ω)(τ − θ′)2 +O(ε)

where C(ω) > 0 iff ω is not circular.
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Theorem ([D.K. 2006]).

Assume that κ cos θ = 0 and 0 < ‖τ − θ′‖∞ a ≤
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2 . Then
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Twisted strips

ω = (−a, a)× (−b, b) −−−→
b→0

(−a, a)

E1 =
( π

2a

)2

Theorem ([D.K. 2006]).

Assume that κ cos θ = 0 and 0 < ‖τ − θ′‖∞ a ≤
√

2 . Then

−∆Ω

D −E1 ≥
c

1 + |Γ(·)− Γ(s0)|2

where s0 ∈ R is such that (τ − θ′)(s0) 6= 0 and c = c(s0, τ − θ′, a) > 0.

negative curvature of the ambient space acts as a repulsive interaction
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Twist via boundary conditions

2a

D

N

N

D

y

xE1 =
( π

4a

)2

Theorem ([Kovǎŕık, D.K. 2006]).

−∆DN −E1 ≥
c

1 + x2
where c = c(a) > 0.
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Conclusions

Moral :

→ bending acts as an attractive interaction
E10

→ twisting acts as a repulsive interaction
E10

→ Hardy inequalities in twisted tubes −∆Ω

D −E1 ≥ ρ(·) > 0

Open problems :

¿ higher-dimensional generalisations ?

¿ effect of twisting on the essential spectrum ?

¿ other physical motivations ?



Mourre’s theory for twisted tubes ?

Theorem ([D.K., Tiedra de Aldecoa 2004]).

Assume that θ′ = τ (plus some fast decay of κ, τ at infinity).

Then A := − i
2
(s ∂s + ∂s s) is strictly conjugate to H on R \ {En}∞n=1,

i.e. PHi[H,A]PH ≥ cPH with some c > 0.

Corollary. Eigenvalues of H are countable and can accumulate at En only.
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Mourre’s theory for twisted tubes ?

Theorem ([D.K., Tiedra de Aldecoa 2004]).

Assume that θ′ = τ (plus some fast decay of κ, τ at infinity).

Then A := − i
2
(s ∂s + ∂s s) is strictly conjugate to H on R \ {En}∞n=1,

i.e. PHi[H,A]PH ≥ cPH with some c > 0.

Corollary. Eigenvalues of H are countable and can accumulate at En only.

Commutator for the straight tube: i[H0, A] = 2(−∂2
s )

=⇒ ψn := 1⊗ Jn represent the ‘bad’ functions.

However,
(
ψn, i[H,A]ψn

)
= ‖θ′∂σJn‖2 > 0 for a straight but twisted tube !

Conjecture. The result of Mourre theory can be improved for twisted tubes.


