Bending Moment in Membrane Theory

by
G. BOUCHITTÉ (Université de Toulon et du Var) I. FONSECA (Carnegie Mellon University) L. MASCARENHAS (Universidade de Lisboa)

Abstract (J. Elasticity 73, no. 1-3, 75-99 (2004))
Via Γ-convergence, we deduce a 2-D membrane model from a 3-D nonlinear elasticity framework where we consider a class of surface forces generating the bending moment.

The problem
The rescaled total energy of a deformation U of Ω_{ε} is given by

Where, for $p^{\prime}=p /(p-1), \quad 1<p<+\infty$,

$$
\begin{gathered}
<F_{\varepsilon}, U>:=\int_{\Omega_{\varepsilon}} f_{\varepsilon} U d \tilde{x}+\int_{\omega}\left(g_{0}^{+} U\left(\tilde{x}_{\alpha}, \varepsilon / 2\right)-g_{0}^{-} U\left(\tilde{x}_{\alpha},-\varepsilon / 2\right)\right) d \tilde{x}_{\alpha} \\
+\int_{\omega} \frac{1}{\varepsilon} g\left(U\left(\tilde{x}_{\alpha}, \varepsilon / 2\right)-U\left(\tilde{x}_{\alpha},-\varepsilon / 2\right)\right) d \tilde{x}_{\alpha}
\end{gathered}
$$

with $g_{0}^{+}, g_{0}^{-}, g \in L^{p^{\prime}}\left(\omega ; \mathbb{R}^{3}\right)$.

$$
\int_{\omega} \frac{1}{\varepsilon} g\left(U\left(\tilde{x}_{\alpha}, \varepsilon / 2\right)-U\left(\tilde{x}_{\alpha},-\varepsilon / 2\right)\right) d \tilde{x}_{\alpha}=\int_{\omega} g \frac{U\left(\tilde{x}_{\alpha}, \frac{\varepsilon}{2}\right)-U\left(\tilde{x}_{\alpha},-\frac{\varepsilon}{2}\right)}{\varepsilon} d \tilde{x}_{\alpha}
$$

$$
U\left(\tilde{x}_{\alpha}, \frac{\varepsilon}{2}\right)
$$

$$
\varepsilon \xlongequal{\square}
$$

If the deformations U satisfy a boundary condition of place on Γ_{ε}, the equilibrium problem under the load F_{ε} is :

$$
\begin{equation*}
\inf _{U-\tilde{x} \in W_{\Gamma_{\varepsilon}}^{1, p}\left(\Omega_{\varepsilon} ; \mathbb{R}^{3}\right)}\left\{\frac{1}{\varepsilon} \int_{\Omega_{\varepsilon}} W(D U) d \tilde{x}-<F_{\varepsilon}, U>\right\} \tag{1}
\end{equation*}
$$

We assume that the potential W is a Bore function satisfying :

$$
\begin{equation*}
\frac{1}{C}|\xi|^{p}-C \leq W(\xi) \leq C\left(1+|\xi|^{p}\right) \tag{Hi}
\end{equation*}
$$

Existence of a solution for problem (1) can be obtained via direct method, hypothesis (H1) and the additional hypothesis that W is quasiconvex.

In order to pass to the limit in problem (1) as $\varepsilon \rightarrow 0$ we perform the usual change of variables :

$$
\begin{aligned}
& \Omega_{\varepsilon} \longrightarrow \Omega=\omega \times I(:=(-1 / 2,1 / 2)) \\
& \tilde{x}=\left(\tilde{x}_{\alpha}, \tilde{x}_{3}\right) \in \Omega_{\varepsilon} \longrightarrow x=\left(x_{\alpha}, x_{3}\right)=\left(\tilde{x}_{\alpha}, \frac{1}{\varepsilon} \tilde{x}_{3}\right) \in \Omega
\end{aligned}
$$

and define $u, u^{ \pm}, u_{0, \varepsilon}$
$u\left(x_{\alpha}, x_{3}\right):=U\left(\tilde{x}_{\alpha}, \tilde{x}_{3}\right)$
$u^{ \pm}\left(x_{\alpha}\right):=u\left(x_{\alpha}, \pm \frac{1}{2}\right)$
$u_{0, \varepsilon}\left(x_{\alpha}, x_{3}\right):=\left(x_{\alpha}, \varepsilon x_{3}\right)$ $=\left(\tilde{x}_{\alpha}, \tilde{x}_{3}\right)$

$f_{\varepsilon}:=\frac{1}{\varepsilon} f\left(\tilde{x}_{\alpha}, \frac{\tilde{x}_{3}}{\varepsilon}\right), f \in L^{p^{\prime}}\left(\overline{\left.\Omega ; \mathbb{R}^{3}\right)}\right.$

Problem (1) becomes

$\left(\mathcal{P}_{\varepsilon}\right) \quad \inf _{u-u_{0, \varepsilon} \in W_{\Gamma}^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)}\left\{\int_{\Omega} W\left(D_{\alpha} u \left\lvert\, \frac{1}{\varepsilon} D_{3} u\right.\right) d x-L_{\varepsilon}(u)\right\}$,
with

$$
L_{\varepsilon}(u):=\int_{\Omega} f u d x+\int_{\omega}\left(g_{0}^{+} u^{+}-g_{0}^{-} u^{-}\right) d x_{\alpha}+\int_{\omega} g\left(\frac{u^{+}-u^{-}}{\varepsilon}\right) d x_{\alpha}
$$

where

$$
\frac{U\left(\tilde{x}_{\alpha}, \frac{\varepsilon}{2}\right)-U\left(\tilde{x}_{\alpha},-\frac{\varepsilon}{2}\right)}{\varepsilon}=\frac{u^{+}\left(x_{\alpha}\right)-u^{-}\left(x_{\alpha}\right)}{\varepsilon}=\int_{I} \frac{1}{\varepsilon} D_{3} u\left(x_{\alpha}, x_{3}\right) d x_{3}
$$

Coercivity (H1) plus b. c. $u_{\varepsilon}=u_{0, \varepsilon}$ on Γ, imply that any diagonal infimizing sequence $\left\{u_{\varepsilon}\right\}$ satisfies :

$$
\sup _{\varepsilon}\left\{\int_{\Omega}\left|D_{\alpha} u_{\varepsilon}\right|^{p} d x+\int_{\Omega} \frac{1}{\varepsilon^{p}}\left|D_{3} u_{\varepsilon}\right|^{p} d x\right\}<+\infty
$$

Then $u_{\varepsilon} \rightharpoonup u=u\left(x_{\alpha}\right)$ and $b_{\varepsilon}:=\frac{1}{\varepsilon} D_{3} u_{\varepsilon} \rightharpoonup b$ in $W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{p}\left(\Omega ; \mathbb{R}^{3}\right)$.
One obtains
$u=u\left(x_{\alpha}\right)$ and b is no longer related with u.

The limit problem will involve explicitly the average :

$$
\bar{b}\left(x_{\alpha}\right):=\int_{I} b\left(x_{\alpha}, x_{3}\right) d x_{3}
$$

More precisely, recalling the corresponding term in $L_{\varepsilon}\left(u_{\varepsilon}\right)$:

$$
\begin{aligned}
& \int_{\omega} g\left(\frac{u_{\varepsilon}^{+}-u_{\varepsilon}^{-}}{\varepsilon}\right) d x_{\alpha}=\int_{\omega} g\left(\int_{I} \frac{1}{\varepsilon} D_{3} u_{\varepsilon} d x_{3}\right) d x_{\alpha} \\
= & \int_{\omega} g\left(\int_{I} b_{\varepsilon} d x_{3}\right) d x_{\alpha} \longrightarrow \int_{\omega} g\left(\int_{I} b d x_{3}\right) d x_{\alpha}=\int_{\omega} g \bar{b} d x_{\alpha} .
\end{aligned}
$$

Then $\lim _{\varepsilon \rightarrow 0} L_{\varepsilon}\left(u_{\varepsilon}\right)=L(u, \bar{b})$ with

$$
L(u, \bar{b}):=\int_{\omega} \bar{f} u d x_{\alpha}+\int_{\omega}\left(g_{0}^{+}-g_{0}^{-}\right) u d x_{\alpha}+\int_{\omega} g \bar{b} d x_{\alpha} \quad\left(\bar{f}:=\int_{I} f d x_{3}\right)
$$

In order to individualize \bar{b} in the principal part of the total energy, we introduce

$$
E_{\varepsilon}: W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{p}\left(\omega ; \mathbb{R}^{3}\right) \rightarrow \overline{\mathbb{R}}
$$

defined by

$$
E_{\varepsilon}(u, \bar{b}):= \begin{cases}\int_{\Omega} W\left(D_{\alpha} u \left\lvert\, \frac{1}{\varepsilon} D_{3} u\right.\right) d x & \text { if } \int_{I} \frac{1}{\varepsilon} D_{3} u d x_{3}=\bar{b} \\ +\infty & \text { otherwise }\end{cases}
$$

The aim is to prove that

1. $E_{\varepsilon}(u, \bar{b}) \Gamma$-converges to $E(u, \bar{b})$ in the weak top. $W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right) \times L^{p}\left(\omega ; \mathbb{R}^{3}\right)$.
2. $E(u, \bar{b})$ has an integral representation and to characterize its density.

Defining

$$
\mathcal{V}:=\left\{u \in W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right) \mid D_{3} u(x)=0 \text { a.e. in } x \in \Omega\right\}
$$

and, for $(u, \bar{b}) \in \mathcal{V} \times L^{p}\left(\omega ; \mathbb{R}^{3}\right)$,

$$
E(u, \bar{b})=\int_{\omega} \mathcal{Q}^{*} W\left(D_{\alpha} u \mid \bar{b}\right)
$$

where $\mathcal{Q}^{*} W$ is the cross-quasiconvex envelop of W, introduced by \mathbf{H}. LeDret \& A. Raoult in ARMA 2000, and coincides with

$$
\begin{aligned}
& \mathcal{Q}^{*} W(F \mid b):=\inf _{(\varphi, \psi)}\left\{\int_{Q^{\prime}} W\left(F+D_{\alpha} \varphi \mid b+\psi\right) d x_{\alpha}\right. \\
&\left.\varphi \in W_{\#}^{1, p}\left(Q^{\prime} ; \mathbb{R}^{3}\right), \phi \in L_{0}^{p}\left(Q^{\prime} ; \mathbb{R}^{3}\right)\right\}
\end{aligned}
$$

with $I:=(-1 / 2,1 / 2), Q^{\prime}:=I^{2}$.

Theorem

Under the hypothesis $(H 1)$, the sequence $\left\{E_{\varepsilon}\right\} \Gamma$-converges to E, as $\varepsilon \rightarrow 0$, precisely,
i) if $u_{\varepsilon} \rightharpoonup u$ in $W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)$ and $\bar{b}_{\varepsilon}=\left(\frac{u_{\varepsilon}^{+}-u_{\varepsilon}^{-}}{\varepsilon}\right)=\int_{I} \frac{1}{\varepsilon} D_{3} u_{\varepsilon} d x_{3} \rightharpoonup \bar{b}$ in $L^{p}\left(\omega ; \mathbb{R}^{3}\right)$ then

$$
\liminf _{\varepsilon \rightarrow 0} \int_{\Omega} W\left(D_{\alpha} u_{\varepsilon} \left\lvert\, \frac{1}{\varepsilon} D_{3} u_{\varepsilon}\right.\right) d x \geq E(u, \bar{b})
$$

ii) for every pair (u, \bar{b}) in $\mathcal{V} \times L^{p}\left(\omega ; \mathbb{R}^{3}\right)$, there exists a sequence $\left\{u_{\varepsilon}\right\}$ such that

$$
\left(u_{\varepsilon}, \bar{b}_{\varepsilon}\right) \rightharpoonup(u, \bar{b}) \quad, \quad \lim _{\varepsilon \rightarrow 0} \int_{\Omega} W\left(D_{\alpha} u_{\varepsilon} \left\lvert\, \frac{1}{\varepsilon} D_{3} u_{\varepsilon}\right.\right) d x=E(u, \bar{b})
$$

Corollary
Let W satisfy (H1).
Let $f \in L^{p^{\prime}}\left(\Omega, \mathbb{R}^{3}\right), g_{0}^{ \pm}, g \in L^{p^{\prime}}\left(\omega, \mathbb{R}^{3}\right)$.
Let $\left\{u_{\varepsilon}\right\}$ be a diagonal infimizing sequence for $\left(\mathcal{P}_{\varepsilon}\right)$.
Then the sequence $\left\{\left(u_{\varepsilon}, \bar{b}_{\varepsilon}\right)\right\}$ is weakly relatively compact in

$$
W^{1, p}\left(\Omega, \mathbb{R}^{3}\right) \times L^{p}\left(\omega, \mathbb{R}^{3}\right)
$$

Furthermore, any cluster point (u, \bar{b}) of this sequence belongs to $\mathcal{V} \times L^{p}\left(\omega, \mathbb{R}^{3}\right)$ and is a solution of
(\mathcal{P})

$$
\min _{\substack{u-x_{\alpha} \in W_{0}^{1, p}\left(\omega ; \mathbb{R}^{3}\right) \\ \bar{b} \in L^{p}\left(\omega, \mathbb{R}^{3}\right)}}\left\{\int_{\omega} \mathcal{Q}^{*} W\left(D_{\alpha} u \mid \bar{b}\right) d x_{\alpha}-L(u, \bar{b})\right\} .
$$

Idea of the proof

We localize the functionals E_{ε} :

$$
E_{\varepsilon}(u, \bar{b}, A):= \begin{cases}\int_{A \times I} W\left(D_{\alpha} u \left\lvert\, \frac{1}{\varepsilon} D_{3} u\right.\right) d x & \text { if } \frac{1}{\varepsilon} \int_{I} D_{3} u\left(x_{\alpha}, x_{3}\right) d x_{3}=\bar{b}\left(x_{\alpha}\right) \\ +\infty & \text { otherwise }\end{cases}
$$

To prove that $\left\{E_{\varepsilon}(\cdot, \cdot, A)\right\} \Gamma$-converges to some functional $E_{0}(\cdot, \cdot, A)$ for all open $A \subset \omega$, it is enough to show that any given sequence $\left\{\varepsilon_{k}\right\}$ converging to 0^{+}admits a subsequence $\left\{\varepsilon_{k_{n}}\right\}$ such that the Γ-lower limit of $E_{\varepsilon_{k_{n}}}$ given by

$$
\begin{array}{r}
E^{-}(u, \bar{b}, A):=\inf \left\{\liminf _{n} \int_{A \times I} W\left(D_{\alpha} u_{n} \mid \lambda_{n} D_{3} u_{n}\right) d x \mid u_{n} \rightharpoonup u W^{1, p}\left(A \times I ; \mathbb{R}^{3}\right)\right. \\
\left.\lambda_{n} \int_{I} D_{3} u_{n} d x_{3} \rightharpoonup \bar{b}, L^{p}\left(A ; \mathbb{R}^{3}\right)\right\}
\end{array}
$$

where $\lambda_{n}:=\left(\varepsilon_{k_{n}}\right)^{-1}$, coincides with $E_{0}(\cdot, \cdot, A)$ for all (u, \bar{b}) in $\mathcal{V} \times L^{p}\left(\omega ; \mathbb{R}^{3}\right)$.

Idea of the proof

- We prove that $E^{-}(u, \bar{b}, \cdot)$ is the trace of a measure $\mu \ll \mathcal{L}^{2}\lfloor\omega$.
- The infimum in $E^{-}(u, \bar{b}, A)$ remains unchanged if we repalce W by $\mathcal{Q} W$.
- We prove, by blow up,

$$
E^{-}(u, \bar{b}, A) \geq \int_{A} \mathcal{Q}^{*}\left(D_{\alpha} u \mid \bar{b}\right) d x_{\alpha}
$$

- We prove, using the fact that $E^{-}(u, \bar{b}, \cdot)=: \mu \ll \mathcal{L}^{2}\lfloor\omega$, that

$$
E^{-}(u, \bar{b}, A) \leq \int_{A} \mathcal{Q}^{*}\left(D_{\alpha} u \mid \bar{b}\right) d x_{\alpha}
$$

New problem
In the previous pb the mean condition on the bending term was imposed by the exterior forces.

So it seems natural to study the asymptotic behavior (Γ-limit) of the sequence of functionals $\mathcal{I}_{\varepsilon}$:

$$
\mathcal{I}_{\varepsilon}(u, b):= \begin{cases}\int_{A \times I} W\left(D_{\alpha} u \left\lvert\, \frac{1}{\varepsilon} D_{3} u\right.\right) d x & \text { if } \frac{1}{\varepsilon} D_{3} u\left(x_{\alpha}, x_{3}\right)=b\left(x_{\alpha}, x_{3}\right) \\ +\infty & \text { otherwise }\end{cases}
$$

without imposing the mean condition.
This means to give, for any subsequence $\varepsilon_{n} \searrow 0$, the same integral representation to the Γ-lower limit of $\mathcal{I}_{\varepsilon_{n}}$ defined by

$$
\begin{array}{r}
\mathcal{I}(u, b):=\inf \left\{\left.\liminf _{n} \int_{\omega \times I} W\left(D_{\alpha} u_{n} \left\lvert\, \frac{1}{\varepsilon_{n}} D_{3} u_{n}\right.\right) d x \right\rvert\, u_{n} \rightharpoonup u W^{1, p}\left(\omega \times I ; \mathbb{R}^{3}\right)\right. \\
\left.\frac{1}{\varepsilon_{n}} D_{3} u_{n} \rightharpoonup b, L^{p}\left(\omega \times I ; \mathbb{R}^{3}\right)\right\}
\end{array}
$$

for all (u, b) in $\mathcal{V} \times L^{p}\left(\Omega ; \mathbb{R}^{3}\right)$.

Then

We fix a countable dense family $\left\{\theta_{i}\right\}_{i \in \mathbb{N}}$ in $L^{p^{\prime}}\left(I ; \mathbb{R}^{3}\right)$, where p^{\prime} is the conjugate exponent of p.

For every $k \in \mathbb{N}$ and $(F, b) \in \mathbb{M}^{3 \times 2} \times L^{p}\left(I ; \mathbb{R}^{3}\right)$ define

$$
\begin{aligned}
& \mathcal{Q}_{k} W(F \mid b):=\inf _{(\varphi, \lambda)}\left\{\int_{Q} W\left(F+D_{\alpha} \varphi \mid \lambda D_{3} \varphi\right) d x \mid \lambda \in \mathbb{R}, \varphi \in W^{1, p}\left(Q ; \mathbb{R}^{3}\right)\right. \text {, } \\
& \varphi\left(\cdot, x_{3}\right) \text { is } Q^{\prime} \text { periodic a.e. } x_{3} \in I \\
& \left.\left|\int_{Q} \lambda D_{3} \varphi \quad \theta_{i} d x-\int_{I} b \theta_{i} d x_{3}\right| \leq \frac{1}{k}, \forall i=1 \cdots k\right\}, \\
& \mathcal{Q}_{\infty} W(F \mid b):=\lim _{k} \mathcal{Q}_{k}(F \mid b)=\sup _{k} \mathcal{Q}_{k}(F \mid b) .
\end{aligned}
$$

Proposition

The following inequality holds

$$
\int_{I} \mathcal{Q}^{*} W(F \mid b(t)) d t \leq \mathcal{Q}_{\infty} W(F \mid b) \leq \int_{I} W(F \mid b(t)) d t
$$

for all $(F, b) \in \mathbb{M}^{3 \times 2} \times L^{p}\left(I ; \mathbb{R}^{3}\right)$.
Consequently, if W is cross-quasiconvex $\left(\mathcal{Q}^{*} W=W\right)$

$$
\mathcal{Q}_{\infty} W(F \mid b)=\int_{I} W(F \mid b(t)) d t
$$

Theorem

Let W be locally p-Lipschitz, satisfying the p-growth condition (H1). Then the sequence $\left\{\mathcal{I}_{\varepsilon}\right\} \Gamma$-converges to the functional defined by

$$
\mathcal{I}(u, b)=\int_{\omega} \mathcal{Q}_{\infty} W\left(D_{\alpha} u\left(x_{\alpha}\right) \mid b\left(x_{\alpha}, \cdot\right)\right) d x_{\alpha}
$$

with $(u, b) \in \mathcal{V} \times L^{p}\left(\Omega ; \mathbb{R}^{3}\right)$.

Corollary
If W is cross-quasiconvex, then

$$
\mathcal{I}(u, b)=\int_{\omega \times I} W(F \mid b(t)) d t d x_{\alpha}
$$

Open question
To prove (or disprove) the locallity of $\mathcal{I}(u, b)$, i.e., the existence of some density function \tilde{W}, s.t.

$$
\mathcal{I}(u, b)=\int_{\omega} \mathcal{Q}_{\infty} W\left(D_{\alpha} u\left(x_{\alpha}\right) \mid b\left(x_{\alpha}, \cdot\right)\right) d x_{\alpha}=\int_{\omega \times I} \tilde{W}\left(D_{\alpha} u\left(x_{\alpha}\right) \mid b\left(x_{\alpha}, x_{3}\right)\right) d x
$$

Remark
It is simple to prove that if \mathcal{I} is local, then

$$
\tilde{W}(F, b)=\mathcal{Q}^{*}(F, b)
$$

for all $(F, b) \in \mathbb{M}^{3 \times 2} \times \mathbb{R}^{3}$.

