Bending Moment in Membrane Theory

by

- G. BOUCHITTÉ (Université de Toulon et du Var)
- I. FONSECA (Carnegie Mellon University)
- L. MASCARENHAS (Universidade de Lisboa)

Abstract (J. Elasticity 73, no. 1-3, 75–99 (2004))

Via Γ -convergence, we deduce a 2-D membrane model from a 3-D nonlinear elasticity framework where we consider a class of surface forces generating the bending moment.

The problem

The rescaled total energy of a deformation U of Ω_{ε} is given by

Where, for p' = p/(p-1), 1 ,

$$\langle F_{\varepsilon}, U \rangle := \int_{\Omega_{\varepsilon}} f_{\varepsilon} \ U \ d\tilde{x} + \int_{\omega} \left(g_{0}^{+} \ U(\tilde{x}_{\alpha}, \varepsilon/2) - g_{0}^{-} \ U(\tilde{x}_{\alpha}, -\varepsilon/2) \right) \ d\tilde{x}_{\alpha}$$

$$+ \int_{\omega} \frac{1}{\varepsilon} g \ \left(U(\tilde{x}_{\alpha}, \varepsilon/2) - \ U(\tilde{x}_{\alpha}, -\varepsilon/2) \right) \ d\tilde{x}_{\alpha},$$

with $g_0^+, g_0^-, g \in L^{p'}(\omega; \mathbb{R}^3)$.

$$\int_{\omega} \frac{1}{\varepsilon} g \left(U(\tilde{x}_{\alpha}, \varepsilon/2) - U(\tilde{x}_{\alpha}, -\varepsilon/2) \right) d\tilde{x}_{\alpha} = \int_{\omega} g \frac{U(\tilde{x}_{\alpha}, \frac{\varepsilon}{2}) - U(\tilde{x}_{\alpha}, -\frac{\varepsilon}{2})}{\varepsilon} d\tilde{x}_{\alpha}$$

If the deformations U satisfy a boundary condition of place on Γ_{ε} , the equilibrium problem under the load F_{ε} is :

(1)
$$\inf_{\boldsymbol{U}-\tilde{\boldsymbol{x}}\in W_{\Gamma_{\varepsilon}}^{1,p}(\Omega_{\varepsilon};\mathbb{R}^{3})} \left\{ \frac{1}{\varepsilon} \int_{\Omega_{\varepsilon}} W(DU) \ d\tilde{\boldsymbol{x}} - \langle F_{\varepsilon}, U \rangle \right\}$$

We assume that the potential W is a Borel function satisfying:

(H1)
$$\frac{1}{C}|\xi|^p - C \le W(\xi) \le C(1 + |\xi|^p)$$

Existence of a solution for problem (1) can be obtained via direct method, hypothesis (H1) and the additional hypothesis that W is quasiconvex.

In order to pass to the limit in problem (1) as $\varepsilon \to 0$ we perform the usual change of variables :

$$\Omega_{\varepsilon} \longrightarrow \Omega = \omega \times I \Big(:= (-1/2, 1/2) \Big)$$

$$\tilde{x} = (\tilde{x}_{\alpha}, \tilde{x}_{3}) \in \Omega_{\varepsilon} \longrightarrow x = (x_{\alpha}, x_{3}) = (\tilde{x}_{\alpha}, \frac{1}{\varepsilon} \tilde{x}_{3}) \in \Omega$$

and define $u, u^{\pm}, u_{0,\varepsilon}$

$$u(x_{\alpha}, x_3) := U(\tilde{x}_{\alpha}, \tilde{x}_3)$$

$$u^{\pm}(x_{\alpha}) := u\left(x_{\alpha}, \pm \frac{1}{2}\right)$$

$$u_{0,\varepsilon}(x_{\alpha}, x_3) := (x_{\alpha}, \varepsilon x_3)$$
$$= (\tilde{x}_{\alpha}, \tilde{x}_3)$$

$$f_{\varepsilon} := \frac{1}{\varepsilon} f\left(\tilde{x}_{\alpha}, \frac{\tilde{x}_{3}}{\varepsilon}\right), \ f \in L^{p'}(\overline{\Omega; \mathbb{R}^{3}})$$

Problem (1) becomes

$$(\mathcal{P}_{\varepsilon}) \qquad \inf_{u-u_{0,\varepsilon}\in W^{1,p}_{\Gamma}(\Omega;\mathbb{R}^3)} \left\{ \int_{\Omega} W\left(D_{\alpha}u \mid \frac{1}{\varepsilon}D_3u\right) dx - L_{\varepsilon}(u) \right\},$$

with

$$L_{\varepsilon}(u) := \int_{\Omega} f \ u \ dx + \int_{\omega} (g_0^+ \ u^+ - g_0^- \ u^-) \ dx_{\alpha} + \int_{\omega} g \ \left(\frac{u^+ - u^-}{\varepsilon}\right) \ dx_{\alpha}$$

where

$$\frac{U(\tilde{x}_{\alpha}, \frac{\varepsilon}{2}) - U(\tilde{x}_{\alpha}, -\frac{\varepsilon}{2})}{\varepsilon} = \frac{u^{+}(x_{\alpha}) - u^{-}(x_{\alpha})}{\varepsilon} = \int_{I} \frac{1}{\varepsilon} D_{3} u(x_{\alpha}, x_{3}) dx_{3}.$$

Coercivity (H1) plus b. c. $u_{\varepsilon} = u_{0,\varepsilon}$ on Γ , imply that any diagonal infimizing sequence $\{u_{\varepsilon}\}$ satisfies :

$$\sup_{\varepsilon} \left\{ \int_{\Omega} |D_{\alpha} u_{\varepsilon}|^{p} dx + \int_{\Omega} \frac{1}{\varepsilon^{p}} |D_{3} u_{\varepsilon}|^{p} dx \right\} < +\infty.$$

Then
$$u_{\varepsilon} \rightharpoonup u = u(x_{\alpha})$$
 and $b_{\varepsilon} := \frac{1}{\varepsilon} D_3 u_{\varepsilon} \rightharpoonup b$ in $W^{1,p}(\Omega; \mathbb{R}^3) \times L^p(\Omega; \mathbb{R}^3)$.

One obtains

 $u = u(x_{\alpha})$ and b is no longer related with u.

The limit problem will involve explicitly the average:

$$\bar{b}(x_{\alpha}) := \int_{I} b(x_{\alpha}, x_{3}) \ dx_{3}.$$

More precisely, recalling the corresponding term in $L_{\varepsilon}(u_{\varepsilon})$:

$$\int_{\omega} g\left(\frac{u_{\varepsilon}^{+} - u_{\varepsilon}^{-}}{\varepsilon}\right) dx_{\alpha} = \int_{\omega} g\left(\int_{I} \frac{1}{\varepsilon} D_{3} u_{\varepsilon} dx_{3}\right) dx_{\alpha}$$

$$= \int_{\omega} g\left(\int_{I} b_{\varepsilon} \ dx_{3}\right) \ dx_{\alpha} \longrightarrow \int_{\omega} g\left(\int_{I} b \ dx_{3}\right) \ dx_{\alpha} = \int_{\omega} g \ \overline{b} \ dx_{\alpha}.$$

Then $\lim_{\varepsilon \to 0} L_{\varepsilon}(u_{\varepsilon}) = L(u, \bar{b})$ with

$$L(u, \bar{b}) := \int_{\omega} \bar{f} \ u \ dx_{\alpha} + \int_{\omega} (g_0^+ - g_0^-) \ u \ dx_{\alpha} + \int_{\omega} g \ \bar{b} \ dx_{\alpha} \qquad \left(\bar{f} := \int_{I} f \ dx_3\right)$$

In order to individualize \bar{b} in the principal part of the total energy, we introduce

$$E_{\varepsilon}: W^{1,p}(\Omega; \mathbb{R}^3) \times L^p(\omega; \mathbb{R}^3) \to \overline{\mathbb{R}},$$

defined by

$$E_{\varepsilon}(u, \overline{b}) := \begin{cases} \int_{\Omega} W \left(D_{\alpha} u \mid \frac{1}{\varepsilon} D_{3} u \right) dx & \text{if } \int_{I} \frac{1}{\varepsilon} D_{3} u dx_{3} = \overline{b}, \\ +\infty & \text{otherwise.} \end{cases}$$

The aim is to prove that

- 1. $E_{\varepsilon}(u,\bar{b})$ Γ -converges to $E(u,\bar{b})$ in the weak top. $W^{1,p}(\Omega;\mathbb{R}^3) \times L^p(\omega;\mathbb{R}^3)$.
- 2. $E(u, \bar{b})$ has an integral representation and to characterize its density.

Defining

$$\mathcal{V} := \{ u \in W^{1,p}(\Omega; \mathbb{R}^3) \mid D_3 u(x) = 0 \text{ a.e. in } x \in \Omega \}$$

and, for $(u, \bar{b}) \in \mathcal{V} \times L^p(\omega; \mathbb{R}^3)$,

$$E(u, \bar{b}) = \int_{\omega} \mathcal{Q}^* W(D_{\alpha} u | \bar{b}),$$

where Q^*W is the cross-quasiconvex envelop of W, introduced by H. LeDret & A. Raoult in ARMA 2000, and coincides with

$$Q^*W(F|b) := \inf_{(\varphi,\psi)} \Big\{ \int_{Q'} W(F + D_{\alpha}\varphi|b + \psi) \ dx_{\alpha} :$$
$$\varphi \in W_{\#}^{1,p}(Q'; \mathbb{R}^3), \ \phi \in L_0^p(Q'; \mathbb{R}^3) \Big\},$$

with $I := (-1/2, 1/2), Q' := I^2$.

Theorem

Under the hypothesis (H1), the sequence $\{E_{\varepsilon}\}$ Γ -converges to E, as $\varepsilon \to 0$, precisely,

i) if
$$u_{\varepsilon} \rightharpoonup u$$
 in $W^{1,p}(\Omega; \mathbb{R}^3)$ and $\bar{b}_{\varepsilon} = \left(\frac{u_{\varepsilon}^+ - u_{\varepsilon}^-}{\varepsilon}\right) = \int_I \frac{1}{\varepsilon} D_3 u_{\varepsilon} \ dx_3 \rightharpoonup \bar{b}$ in $L^p(\omega; \mathbb{R}^3)$ then

$$\liminf_{\varepsilon \to 0} \int_{\Omega} W \left(D_{\alpha} u_{\varepsilon} \mid \frac{1}{\varepsilon} D_{3} u_{\varepsilon} \right) dx \ge E(u, \bar{b}) ;$$

ii) for every pair (u, \bar{b}) in $\mathcal{V} \times L^p(\omega; \mathbb{R}^3)$, there exists a sequence $\{u_{\varepsilon}\}$ such that

$$(u_{\varepsilon}, \bar{b}_{\varepsilon}) \rightharpoonup (u, \bar{b}) \quad , \quad \lim_{\varepsilon \to 0} \int_{\Omega} W \left(D_{\alpha} u_{\varepsilon} \mid \frac{1}{\varepsilon} D_{3} u_{\varepsilon} \right) dx = E(u, \bar{b}) .$$

Corollary

Let W satisfy (H1).

Let
$$f \in L^{p'}(\Omega, \mathbb{R}^3)$$
, g_0^{\pm} , $g \in L^{p'}(\omega, \mathbb{R}^3)$.

Let $\{u_{\varepsilon}\}$ be a diagonal infimizing sequence for $(\mathcal{P}_{\varepsilon})$.

Then the sequence $\{(u_{\varepsilon}, \bar{b}_{\varepsilon})\}$ is weakly relatively compact in $W^{1,p}(\Omega, \mathbb{R}^3) \times L^p(\omega, \mathbb{R}^3)$.

Furthermore, any cluster point (u, \bar{b}) of this sequence belongs to $\mathcal{V} \times L^p(\omega, \mathbb{R}^3)$ and is a solution of

$$\min_{\substack{u-x_{\alpha}\in W_{0}^{1,p}(\omega;\mathbb{R}^{3})\\ \bar{b}\in L^{p}(\omega,\mathbb{R}^{3})}} \left\{ \int_{\omega} \mathcal{Q}^{*}W(D_{\alpha}u \mid \bar{b}) \ dx_{\alpha} - L(u,\bar{b}) \right\}.$$

Idea of the proof

We localize the functionals E_{ε} :

$$E_{\varepsilon}(u, \bar{b}, \mathbf{A}) := \begin{cases} \int_{\mathbf{A} \times I} W(D_{\alpha} u \mid_{\varepsilon}^{1} D_{3} u) dx & \text{if } \frac{1}{\varepsilon} \int_{I} D_{3} u(x_{\alpha}, x_{3}) dx_{3} = \bar{b}(x_{\alpha}), \\ +\infty & \text{otherwise.} \end{cases}$$

To prove that $\{E_{\varepsilon}(\cdot,\cdot,A)\}$ Γ -converges to some functional $E_0(\cdot,\cdot,A)$ for all open $A \subset \omega$, it is enough to show that any given sequence $\{\varepsilon_k\}$ converging to 0^+ admits a subsequence $\{\varepsilon_{k_n}\}$ such that the Γ -lower limit of $E_{\varepsilon_{k_n}}$ given by

$$E^{-}(u, \overline{b}, \mathbf{A}) := \inf \left\{ \liminf_{n} \int_{\mathbf{A} \times I} W \left(D_{\alpha} u_{n} \mid \lambda_{n} \ D_{3} u_{n} \right) dx \mid u_{n} \rightharpoonup u \ W^{1,p}(\mathbf{A} \times I; \mathbb{R}^{3}), \right.$$
$$\left. \lambda_{n} \int_{I} D_{3} u_{n} \ dx_{3} \rightharpoonup \overline{b}, \ L^{p}(\mathbf{A}; \mathbb{R}^{3}) \right\},$$

where $\lambda_n := (\varepsilon_{k_n})^{-1}$, coincides with $E_0(\cdot, \cdot, A)$ for all (u, \overline{b}) in $\mathcal{V} \times L^p(\omega; \mathbb{R}^3)$.

Idea of the proof

- We prove that $E^-(u, \bar{b}, \cdot)$ is the trace of a measure $\mu \ll \mathcal{L}^2[\omega]$.
- The infimum in $E^-(u, \bar{b}, A)$ remains unchanged if we repalce W by QW.
- We prove, by blow up,

$$E^-(u, \overline{b}, A) \ge \int_A \mathcal{Q}^*(D_\alpha u | \overline{b}) \ dx_\alpha.$$

• We prove, using the fact that $E^-(u, \bar{b}, \cdot) =: \mu << \mathcal{L}^2[\omega, \text{ that }$

$$E^-(u, \bar{b}, A) \le \int_A \mathcal{Q}^*(D_\alpha u | \bar{b}) \ dx_\alpha.$$

New problem

In the previous pb the mean condition on the bending term was imposed by the exterior forces.

So it seems natural to study the asymptotic behavior (Γ -limit) of the sequence of functionals $\mathcal{I}_{\varepsilon}$:

$$\mathcal{I}_{\varepsilon}(u,b) := \begin{cases} \int_{A \times I} W(D_{\alpha}u \mid \frac{1}{\varepsilon} D_3 u) \ dx & \text{if } \frac{1}{\varepsilon} D_3 u(x_{\alpha}, x_3) = b(x_{\alpha}, x_3), \\ +\infty & \text{otherwise,} \end{cases}$$

without imposing the mean condition.

This means to give, for any subsequence $\varepsilon_n \setminus 0$, the same integral representation to the Γ -lower limit of $\mathcal{I}_{\varepsilon_n}$ defined by

$$\mathcal{I}(u,b) := \inf \left\{ \liminf_{n} \int_{\omega \times I} W \left(D_{\alpha} u_{n} \mid \frac{1}{\varepsilon_{n}} D_{3} u_{n} \right) dx \mid u_{n} \rightharpoonup u \ W^{1,p}(\omega \times I; \mathbb{R}^{3}), \right.$$

$$\left. \frac{1}{\varepsilon_{n}} D_{3} u_{n} \rightharpoonup b, \ L^{p}(\omega \times I; \mathbb{R}^{3}) \right\},$$

for all (u, \mathbf{b}) in $\mathcal{V} \times L^p(\Omega; \mathbb{R}^3)$.

Then

We fix a countable dense family $\{\theta_i\}_{i\in\mathbb{N}}$ in $L^{p'}(I;\mathbb{R}^3)$, where p' is the conjugate exponent of p.

For every $k \in \mathbb{N}$ and $(F, b) \in \mathbb{M}^{3 \times 2} \times L^p(I; \mathbb{R}^3)$ define

$$Q_{k}W(F|b) := \inf_{(\varphi,\lambda)} \Big\{ \int_{Q} W(F + D_{\alpha}\varphi | \lambda D_{3}\varphi) \ dx \mid \lambda \in \mathbb{R}, \ \varphi \in W^{1,p}(Q;\mathbb{R}^{3}),$$

$$\varphi(\cdot, x_{3}) \text{ is } Q' \text{ periodic a.e. } x_{3} \in I$$

$$\left| \int_{Q} \lambda D_{3}\varphi \ \theta_{i} \ dx - \int_{I} b \ \theta_{i} \ dx_{3} \right| \leq \frac{1}{k}, \ \forall \ i = 1 \cdots k \Big\},$$

$$Q_{\infty}W(F|b) := \lim_{k} Q_{k}(F|b) = \sup_{k} Q_{k}(F|b).$$

Proposition

The following inequality holds

$$\int_{I} \mathcal{Q}^{*}W(F|b(t)) dt \leq \mathcal{Q}_{\infty}W(F|b) \leq \int_{I} W(F|b(t)) dt,$$

for all $(F, b) \in \mathbb{M}^{3 \times 2} \times L^p(I; \mathbb{R}^3)$.

Consequently, if W is cross-quasiconvex $(Q^*W = W)$

$$Q_{\infty}W(F|b) = \int_{I} W(F|b(t)) dt.$$

Theorem

Let W be locally p-Lipschitz, satisfying the p-growth condition (H1). Then the sequence $\{\mathcal{I}_{\varepsilon}\}$ Γ -converges to the functional defined by

$$\mathcal{I}(u,b) = \int_{\omega} \mathcal{Q}_{\infty} W(D_{\alpha} u(x_{\alpha}) | b(x_{\alpha}, \cdot)) \ dx_{\alpha}$$

with $(u, b) \in \mathcal{V} \times L^p(\Omega; \mathbb{R}^3)$.

Corollary

If W is cross-quasiconvex, then

$$\mathcal{I}(u,b) = \int_{\omega \times I} W(F|b(t)) \ dt \ dx_{\alpha}.$$

Open question

To prove (or disprove) the locallity of $\mathcal{I}(u,b)$, i.e., the existence of some density function \tilde{W} , s.t.

$$\mathcal{I}(u,b) = \int_{\omega} \mathcal{Q}_{\infty} W(D_{\alpha} u(x_{\alpha}) | b(x_{\alpha}, \cdot)) \ dx_{\alpha} = \int_{\omega \times I} \tilde{W}(D_{\alpha} u(x_{\alpha}) | b(x_{\alpha}, x_{3})) \ dx$$

Remark

It is simple to prove that if \mathcal{I} is local, then

$$\tilde{W}(F,b) = \mathcal{Q}^*(F,b)$$

for all $(F, b) \in \mathbb{M}^{3 \times 2} \times \mathbb{R}^3$.