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ε2

The problem under study : 2

{
−∆uε = λε uε, Ωε

uε = 0, ∂Ωε

lim
ε→0

(λε, uε) =?



The Physical Motivation 3

Schrödinger’s equation for the time dependent wave function Ψ associated to a
particle :

i h̄
∂Ψ
∂t

= H Ψ,

h̄ = h/2π,

h – Plank’s constant (h = 6.6262 × 10−27 erg s = 6.6262 × 10−34 J s)

H is the Hamiltonian operator

For a threedimensional problem one has :

H Ψ = − h̄2

2m
∆Ψ+ V Ψ,

− h̄2

2m ∆ – Kinetic energy operator V – potential operator

m – the mass of the particle



The Physical Motivation (cont.) 4

H1 : V is independent of time

Ψ(x, t) = Ψ(x) T (t)

T (t) = e−i(E/h̄)t

E – Energy of the system

− h̄2

2m
∆Ψ+ V Ψ = E Ψ

Time independent Scrödinger’s equation



The Physical Motivation (cont.) 5

H2 :

V =
{

+∞ if x $∈ Ωε,
0 if x ∈ Ωε,

{
−∆Ψε = 2m

h̄2 E Ψε, Ωε

Ψε = 0, ∂Ωε

{
−∆uε = λε uε, Ωε

uε = 0, ∂Ωε

Since Ωε is bounded one has a discrete spectrum :

σε = {λε
i : i ∈ N}, 0 < λε

0 ≤ λε
1 ≤ · · · ≤ λε

i ≤ λε
i+1 · · ·



The Result 6

λε
i =

λ0

ε2
+

(
λ1

ε

)
+ µε

i , µε
i −→ µi

−w′′ + q(s) w = µ w, w ∈ H1
0 (0, L).



Geometry of the domain (1D waveguide) 7

The “axis” of the domain :

r : s ∈ [0, L] → r(s) ∈ R3 – a curve in R3 s – arc length parameter

The “cross section” of the domain :

ω ⊂ R2 – an open bounded, simply connected subset of R2



Geometry of the domain (1D waveguide) – The Frenet System 8

T =
dr

ds
= r′, ‖r′‖R3 = 1,

N = T ′/‖T ′‖R3 , T ′(s) $= 0,

B = T × N.

k : s ∈ [0, L] → k(s) ∈ R – curvature function

τ : s ∈ [0, L] → τ(s) ∈ R – torsion function

T ′ = k N,

N ′ = −k T + τ B,

B′ = −τ N.



Geometry of the domain (1D waveguide) – ΩF 9

ΩF = {x ∈ R3 : x = r(s) + y1 N(s) + y2 B(s), s ∈ [0, L], y = (y1, y2) ∈ ω}

Figure 1.1 - Reference domain associated with Frenet’s system



Geometry of the domain (1D waveguide) – ΩF (cont.) 10

i) The Frenet system my not be defined for all s ∈ [0, L] for one may have points
for which T ′ = 0.

ii) In each point s ∈ [0, L], the cross section of the domain ΩF has a prescribed
rotation with respect to curve r, given by the value of the torsion function τ at
that point.



Geometry of the domain (1D waveguide) – Tang’s System 11

X ′ = λ T,

Y ′ = µT,

T ′ = −λ X − µ Y,

where λ and µ are functions of the arclength parameter s.

For each s ∈ [0, L] Tang’s reference system is such that (X, Y ) can be seen as a
two dimensional basis, in ω, rotated from (N, B), around T , of an angle α = α(s).
In fact if :

X = cosα N + sinα B = Nα,

Y = − sinα N + cosα B = Bα,

using Frenet’s formulas, one obtains :

α′ = −τ,

λ = −k cosα,

µ = k sinα,



Geometry of the domain (1D waveguide) – ΩT 12

ΩT = {x ∈ R3 : x = r(s) + y1 X(s) + y2 Y (s), s ∈ [0, L], y = (y1, y2) ∈ ω}

Figure 1.2 - Reference domain associated with Tang’s system



Geometry of the domain (1D waveguide) – Ωα 13

We are then faced with three possible choices for the reference set, namely :
i) We may follow Tang’s reference system and obtain a domain ΩT , without torsion

with respect to the central axis r ;
ii) We may follow Frenet’s reference system and obtain a domain ΩF , rotated of

the same amount as Frenet’s system (τ), with respect to the central axis r ;
iii) We may follow yet another reference system (T, Nα, Bα), and obtain a generic

domain Ωα defined through :

Ωα = {x ∈ R3 : x = r(s)+y1 Nα(s)+y2 Bα(s), s ∈ [0, L], y = (y1, y2) ∈ ω}, (1.1)

whose cross section presents an arbitrary rotation of an angle α with respect
Frenet’s domain.

If for every s ∈ [0, L], α = 0 then Ωα ≡ ΩF and if α is such that α′ = −τ , then
Ωα = ΩT .



Geometry of the domain (1D waveguide) – Ωα
ε 14

We are interested in the eigenvalue problem posed in a domain for which the
diameter of the cross section ω is much smaller than its length L. Specifically, we
consider a real parameter ε > 0 and a cross section, obtained from the reference
one, by an homothety of ratio ε. That is we define the thin domain :

Ωα
ε := {x ∈ R3 : x = r(s)+ε y1 Nα +ε y2 Bα, s ∈ [0, L], y = (y1, y2) ∈ ω}, (1.2)

and study the behavior of the eigensolution (λε, uε), associated with problem
{
−∆uε = λεuε,
uε ∈ H1

0 (Ωα
ε ).

as ε goes to zero, and hope to see the influence of the curvature (k(s)) and torsion
(τ(s)) functions in the limit problem.

If for every s ∈ [0, L], α = 0 then Ωα
ε ≡ ΩF

ε and if α is such that α′ = −τ , then
Ωα

ε = ΩT
ε .



Variational Formulation and change of variable 15

Fε(w) :=
∫

Ωα
ε

(
|∇w|2 − λε|w|2

)
dx.

Consider, then, the following transformation, for each ε > 0,

ψ : [0, L] × ω −→ Ωα
ε

(s, (y1, y2)) ,→ x = r(s) + ε y1Nα + ε y2Bα

and define, for each w ∈ H1
0 (∨α

ε ), v(s, (y1, y2)) := w(ψ(s, (y1, y2))).

Recalling that

Nα := cosα(s)N(s) + sinα(s)B(s)
Bα := − sinα(s)N(s) + cosα(s)B(s),

we obtain, in the Frénet system (T, N, B) :



Variational Formulation and change of variable (cont.) 16

∇ψ =





βε 0 0

−ε(τ + α′)(z⊥α · y) ε cosα −ε sinα

ε(τ + α′)(zα · y) ε sinα ε cosα




, det∇ψ = ε2βε ,

where :

zα := (cosα,− sinα) , z⊥α := (sinα, cosα) , βε := 1 − εk(zα · y)

Then

∇ψ−1 =





1
βε

0 0

(τ+α′)y2
βε

cos α
ε

sin α
ε

−(τ+α′)y1
βε

− sin α
ε

cos α
ε







Variational Formulation in the fixed domain 17

Gε(v) :=
1
ε2

Fε(w) =
∫ L

0

∫

ω

{
1
βε

∣∣∣v′ + ∇yv · R y (τ + α′)
∣∣∣
2

+

+
βε

ε2

(
|∇yv|2 − ε2λε|v|2

)}
dy ds,

where

( )′ – derivative of ( ) with respect to s,

∇yv – the derivative of v with respect to y,

R – rotation matrix
(

0 1
−1 0

)
=⇒ R y =

{
y2

− y1

}
.



The main result 18

The sequence {Gε} of functionals defined in H1
0 ((0, L)× ω) Γ-converges, to the

functional G, defined by

G(v) :=
{

G0(w) if v(s, y) = w(s) u0(y)
+∞ if not

G0(w) :=
∫ L

0

{
|w′(s)|2 +

[
(τ(s) + α′(s))2 C(ω) − k2(s)

4

]
|w(s)|2

}
ds,

where C(ω) :=
∫

ω |∇yu0 · R y|2 dy,

R – rotation matrix
(

0 1
−1 0

)
=⇒ R y =

{
y2

− y1

}

and where u0 is the normalized eigenfuntion corresponding to the first eigenvalue
of problem

−∆u = γu , u ∈ H1
0 (ω). −→ (λ0, u0)



Some remarks on the main result 19

i) The infimum for λ2 is always attained and it corresponds to the first eigenvalue
of the following Sturm-Liouville problem :

−ϕ′′ + q ϕ = µ ϕ, ϕ ∈ H1
0 (0, L), q(s) := (τ(s) + α′(s))2 C(ω) − (k(s))2

4
.

ii) It is possible to prove that µ1 coincides with the second order term (λ2) of the
asymptotic expansion

ε2λε = λ0 + ελ1 + ε2λ2 + · · · ,

where λ0 is the first eigenvalue of the eigenvalue problem in ω and λ1 is zero.

iii) It is clear that if q is constant, then λ2 =
π2

L2
+ q and, consequently,

G0(w) :=
∫ L

0

(
|w′|2 − π2

L2
|w|2

)
ds.

iv) Due to the definition of λ2, G0(w) ≥ 0 for all w ∈ H1
0 (0, L) and the minimizers

of G0 coincide, up to a multiplying constant, with the minimizers of λ2.



Some remarks on the main result (cont.) 20

i) The Euler-Lagrange equation associated G0(w) is of the form :

−w′′ +
[
(τ + α′)2 C − k2

4

]

︸ ︷︷ ︸
q

w − λ2 w = 0.

As mentioned before, this is a problem of the Sturm-Liouville type and it is
exactly the same problem for λ2. The only difference being that the minimum for
w is zero and for λ2 is, obviously, λ2.

ii) This equation may be interpreted as a onedimensional problem for the spatial
wave equation with :

2m

h̄2 (V − E) =
[
(τ + α′)2 C − k2

4
− λ2

]
,

that is, although we have started from a threedimensional problem without a
potential in the interior of the domain under consideration, in the limit, in a
onedimensional curved waveguide, the particle sees the curvature, the torsion and
the influence of the cross section as a (nonhomogeneous) potential function in an
equivalent straight waveguide of the same total length.



Some remarks on the main result (cont.) 21

k(s) – influence of the curvature,

τ(s) + α′(s) – influence of the torsion,

C – the influence of the shape of the cross section.

iii) If, from the start, we have a straight waveguide then k ≡ 0, τ ≡ 0, α′ ≡ 0 and
one obtains the classical onedimensional result :

w(x) = ϕ0(x) =
√

2
L

sin
πx

L
,

2m

h̄2 E =
(π

L

)2

.

iv) If k and τ + α′ are constants then, once again, one obtains the classical
onedimensional result.



Some remarks on the main result (cont.) 22

v) For a circular cross section of radius R, the ground state (u0) is radial, associated
with the eigenproblem −∆u = γu and of the form :

u0(r) =
√

2
RJ1(

√
γ0R)

J0(
√

γ0 r), γ0 =
(rn

R

)2
, n ∈ N,

where,

r – radial direction,

J0 and J1 – first and second Bessel functions of the first kind,

r0 – first zero of J0.

Since u0 is a radial function, its gradient is lso radial and, therefore, orthogonal
to the direction defined by R y = (y2,−y1).

Consequentely, for the circular cross section, C ≡ 0.



Some ideas about the proof 23

−∆y u0 = λ0 u0, u0 ∈ H1
0 (ω)

−∆y u1 − λ0 u1 = −k (zα · ∇y u0), u1 ∈ H1
0 (ω), (s fixed)

Fredholm orthogonality condition

k

∫

ω
(zα · ∇y u0) u0 dy = 0,

ensuring the existence of a solution u1.

Some properties of u0 and u1, for example :

∫

ω

(
|∇yu0|2 − λ0|u0|2

)
dy = 0,

∫

ω
(zα · y)

(
|∇yu0|2 − λ0|u0|2

)
dy = 0



Some ideas about the proof (cont.) 24

Lemma. Let

γ2 := inf
v∈H1

0 (ω)

∫

ω

[
|∇yv|2 − λ0|v|2 + 2 k (zα · ∇yu0)v

]
dy.

Then, the infimum is attained in u1 and

γ2 = −k2

4
.

Proof : Use the properties of u0, u1 and integration by parts sucessively.



Some ideas about the proof (cont.) 25

Gε(v) :=
1
ε2

Fε(w) =
∫ L

0

∫

ω

{
1
βε

∣∣∣v′ + ∇yv · R y (τ + α′)
∣∣∣
2

+

+
βε

ε2

(
|∇yv|2 − ε2λε|v|2

)}
dy ds,

Lemma. Let γε be given by

γε := inf
v∈H1

0(ω)
v #≡0

∫
ω βε|∇yv|2 dy∫

ω βε|v|2 dy
.

Then

γ2(s) = lim
ε→0

γε − λ0

ε2
= −k2(s)

4
, uniformly in [0, L]



Some ideas about the proof (cont.) 26

Lemma. Let λε be the first eigenvalue of the problem under study and recall the
definition of λ2, introduced in the theorem, then the following convergence holds

lim
ε→0

ε2λε − λ0

ε2
= λ2.



0

0

L

L

a

R

s

s

Example 27

(τ + α′)2 C ≡ 0

k is constant in a certain interval [a, L] ⊂ [0, L] and zero in [0, a[.



Example (cont.) 28

w ∈ H1(0, L), such that :

w(s) =
{

w1(s) if 0 ≤ s ≤ a,
w2(s) if a ≤ s ≤ L,

solving :
{
−w′′

1 − λ2 w1 = 0, if 0 ≤ s ≤ a,
−w′′

2 − (λ2 − q) w2 = 0 if a ≤ s ≤ L, (1.3)

subjected to the boundary conditions :

w1(0) = 0, w2(L) = 0,

and to the compatibility conditions :

w1(a) = w2(a), w′
1(a) = w′

2(a). (1.4)



Example (cont.) 29

Let k1 =
√

λ2 and k2 =
√

λ2 − q, therefore :

(eik1a − e−ik1a) [eik2(L−a) + e−ik2(L−a)]+

+
k1

k2
(eik1a + e−ik1a) [eik2(L−a) − e−ik2(L−a)] = 0 =⇒ λ2 = · · ·

In the present case, solving this equation is equivalent to solving :

sinh(k1a) cos[k2(L − a)] +
k1

k2
cosh(k1a) sin[k2(L − a)] = 0,

k1 =
√
−λ2, k2 =

√
λ2 − q, if q < λ2 < 0,

or

sin(k1a) cos[k2(L − a)] +
k1

k2
cos(k1a) sin[k2(L − a)] = 0,

k1 =
√

λ2, k2 =
√

λ2 − q, if q < 0 < λ2.



((((ππππ////L)))) ((((2222ππππ////L))))2 2

2 2 2

22 ((((3333ππππ////L)))) ((((4444ππππ////L))))

((((ππππ////L))))    ++++    q ((((2222ππππ////L))))    ++++    q ((((4444ππππ////L))))    ++++    q((((3333ππππ////L))))    ++++    q 2

Example (cont.) 30

q = −6 and L = 2

Figure 1.3 - λn vs. a/l for q = −6 and L = 2.



Example (cont.) 31

a/L = 1 =⇒ λn =
(nπ

L

)2
, n ∈ N.

a/L = 0 =⇒ λn =
(nπ

L

)2
+ q, n ∈ N.

q = −6 = −k2/4, a = 1, L = 2, =⇒ λ2 ≈ −1.363855334



Example (cont.) 32

P (s) = w∗(s)w(s) becomes :

Figure 1.4 - Probability density function (in red) and for the classical case (in blue)
(q = −6 = −k2/4, a = 1 and L = 2)



Example (cont.) 33

q = −80 = −k2/4, a = 1.8, L = 2.

Figure 1.5 - Probability density function (in red) and for the classical case (in blue)
(q = −80 = −k2/4, a = 1.8 and L = 2)



Geometry of the domain (2D waveguide) 34

The “reference middle surface” – a surface in R3 :

ω̃ = { x̃ = (x1, x2, θ(x1, x2)) ∈ R3 : (x1, x2) ∈ ω ⊂ R2, θ ∈ C3(ω)}



Geometry of the domain (2D waveguide) 35

The curvilinear reference system :

aα =
∂x̃

∂xα
, a1 = (1, 0, ∂1θ), a2 = (0, 1, ∂2θ)

a3 = n =
a1 × a2

|a1 × a2|
=

1√
α

(−∂1θ,−∂2θ, 1), α = 1 + |∂1θ|2 + |∂2θ|2



Geometry of the domain (2D waveguide) 36

The “shell” :

Ω̃ε = { x̃ε = ((x1, x2, θ(x1, x2)) + xε
3 n(x1, x2)) ∈ R3 : (x1, x2) ∈ ω ⊂ R2}

The thickness of the shell : 2 ε, ε > 0

The thickness variable : xε
3 = ε x3



Geometry of the domain (2D waveguide) 37



Fundamental Forms (2D waveguide) 38

The first fundamental form matrix [a] = (aαβ), aαβ = aα · aβ :

a11 = 1 + |∂1θ|2, a22 = 1 + |∂2θ|2, a12 = a21 = ∂1θ ∂2θ

The second fundamental form matrix [b] = (bαβ), bαβ = − n · aα,β :

b11 = −∂11θ√
α

, b22 = −∂22θ√
α

, b12 = b21 −
∂12θ√

α

Remark : |a| = α



Curvature Functions (2D waveguide) 39

The Mean Curvature function H is given by :

H =
b11a22 + b22a11 − 2b12a12

2|a|

The Gaussian Curvature function K is given by :

K =
|b|
|a|

Remark : det[a] = α



Variational Formulation 40

F̃ε(w̃ε) :=
∫

Ω̃ε

(
|∇w̃ε|2 − λε|w̃ε|2

)
dx̃ε.

The Limit (eigenvalue) Problem

−∂β

(
Aαβ√
|a|

∂αw

)
+ (K − H2) w

√
|a| = λ2 w

√
|a|.

Remarks :

K = k1k2, H =
(k1 + k2)

2
=⇒ K − H2 = − (k1 − k2)2

4

If k1 ≡ 0 or k2 ≡ 0 then K − H2 = −k2/4 as in the 1D case !



The Limit (eigenvalue) Problem 41

The first term represents the Laplacian written in the curviliner coordinates.
In fact from the variational formulation of this limit problem one has :

λ2 = inf

∫

ω

Aαβ√
|a|

∂αw ∂βw dx1dx2 + (K − H2) w
√

|a| dx1dx2

∫
ω w

√
|a| dx1dx2

but :

Aαβ

|a| ∂αw ∂βw = |∂τw|2 and
√

|a| dx1dx2 = ds1ds2

therefore, in curvilinear coordinates, the limit problem is :

−∂ττw + (K − H2) w = λ2w

K = k1k2, H =
(k1 + k2)

2
=⇒ K − H2 = − (k1 − k2)2

4



Under study 42

{
−div (a(y) ∇uε) = λε uε, Ωε

uε = 0, ∂Ωε

γε(s) = γ0(s) + ε γ1(s) + ε2 γ2(s) + · · ·

λε =
1
ε2

λ0 +
1
ε

λ1 + λ2 + · · ·

But now

γ1(s) $= 0, λ1 $= 0, γ2(s) $= −k2(s)/4, etc.

In fact, if :

−div (a(y) ∇u0) − λ0 u0 = 0, u0 ∈ H1
0 (ω)

−div (a(y) ∇u1)−λ0 u1 = k

∫

ω
a(y) (z ·∇u0) u0 dy−a(y) (z ·∇u0), u1 ∈ H1

0 (ω)



Under study (cont.) 43

Then :

γ0(s) = λ0,

γ1(s) = k(s)
∫

ω
a(y) (z · ∇u0) u0 dy $= 0,

γ2(s) = k2(s)
[∫

ω
a(y) (z · ∇u1) u0 dy − 1

2

∫

ω
a(y) |u0|2 dy

]
$= −k2(s)

4
,

λ1 = inf
ϕ∈H1

0(0,L)

‖ϕ‖
L2(0,L)=1

∫ L

0
k(s) [a(y) (z · ∇u0) u0] |ϕ|2 ds $= 0, etc.



Under study (cont.) 44

{
−div (A(y) ∇uε) = λε uε, Ωε

uε = 0, ∂Ωε

Neumann boundary conditions, etc.

Elasticity operator, etc.
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