On the curvature and torsion effects in one and twodimensional waveguides

G. Bouchitté
ANAM et Département de Mathématiques
Université du Sud, Toulon - Var, BP 132, 83957 La Garde, France
L. Mascarenhas
CMAF and Departamento de Matemática, FCTUNL
Quinta da Torre, 2829-516 Caparica, Portugal
L. Trabucho
CMAF and Departamento de Matemática, FCUL
Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

The problem under study :

$$
\begin{cases}-\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon}, & \Omega_{\varepsilon} \\ u_{\varepsilon}=0, & \partial \Omega_{\varepsilon}\end{cases}
$$

$$
\lim _{\varepsilon \rightarrow 0}\left(\lambda_{\varepsilon}, u_{\varepsilon}\right)=?
$$

Schrödinger's equation for the time dependent wave function $\bar{\Psi}$ associated to a particle :

$$
i \hbar \frac{\partial \bar{\Psi}}{\partial t}=\bar{H} \bar{\Psi}
$$

$\hbar=h / 2 \pi$,
h - Plank's constant ($\left.h=6.6262 \times 10^{-27} \mathrm{erg} \mathrm{s}=6.6262 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)$
\bar{H} is the Hamiltonian operator
For a threedimensional problem one has :

$$
\bar{H} \bar{\Psi}=-\frac{\hbar^{2}}{2 m} \Delta \bar{\Psi}+V \bar{\Psi}
$$

$-\frac{\hbar^{2}}{2 m} \Delta$ - Kinetic energy operator
V - potential operator
m - the mass of the particle

The Physical Motivation (cont.)
H1: V is independent of time

$$
\bar{\Psi}(x, t)=\Psi(x) T(t)
$$

$$
T(t)=e^{-i(E / \hbar) t}
$$

E - Energy of the system

$$
-\frac{\hbar^{2}}{2 m} \Delta \Psi+V \Psi=E \Psi
$$

Time independent Scrödinger's equation

The Physical Motivation (cont.)
H2 :

$$
\begin{gathered}
V= \begin{cases}+\infty & \text { if } x \notin \Omega_{\varepsilon}, \\
0 & \text { if } x \in \Omega_{\varepsilon},\end{cases} \\
\begin{cases}-\Delta \Psi_{\varepsilon}=\frac{2 m}{\hbar^{2}} E \Psi_{\varepsilon}, & \Omega_{\varepsilon} \\
\Psi_{\varepsilon}=0, & \partial \Omega_{\varepsilon}\end{cases} \\
\begin{cases}-\Delta u_{\varepsilon}=\lambda_{\varepsilon} & u_{\varepsilon}, \\
u_{\varepsilon}=0, & \Omega_{\varepsilon} \\
u_{\varepsilon}\end{cases}
\end{gathered}
$$

Since Ω^{ε} is bounded one has a discrete spectrum :

$$
\sigma^{\varepsilon}=\left\{\lambda_{i}^{\varepsilon}: i \in \mathbb{N}\right\}, \quad 0<\lambda_{0}^{\varepsilon} \leq \lambda_{1}^{\varepsilon} \leq \cdots \leq \lambda_{i}^{\varepsilon} \leq \lambda_{i+1}^{\varepsilon} \cdots
$$

$$
\begin{gathered}
\lambda_{i}^{\varepsilon}=\frac{\lambda_{0}}{\varepsilon^{2}}+\left(\frac{\lambda_{1}}{\varepsilon}\right)+\mu_{i}^{\varepsilon}, \quad \mu_{i}^{\varepsilon} \longrightarrow \mu_{i} \\
-w^{\prime \prime}+q(s) w=\mu w, \quad w \in H_{0}^{1}(0, L)
\end{gathered}
$$

Geometry of the domain (1D waveguide)

The "axis" of the domain :
$r: s \in[0, L] \rightarrow r(s) \in \mathbb{R}^{3}$ - a curve in \mathbb{R}^{3}
s - arc length parameter

The "cross section" of the domain :
$\omega \subset \mathbb{R}^{2}$ - an open bounded, simply connected subset of \mathbb{R}^{2}

Geometry of the domain (1D waveguide) - The Frenet System

$$
\begin{aligned}
& T=\frac{d r}{d s}=r^{\prime}, \quad\left\|r^{\prime}\right\|_{\mathbb{R}^{3}}=1 \\
& N=T^{\prime} /\left\|T^{\prime}\right\|_{\mathbb{R}^{3}}, \quad T^{\prime}(s) \neq 0 \\
& B=T \times N
\end{aligned}
$$

$k: s \in[0, L] \rightarrow k(s) \in \mathbb{R}$ - curvature function
$\tau: s \in[0, L] \rightarrow \tau(s) \in \mathbb{R}-$ torsion function

$$
\begin{aligned}
& T^{\prime}=k N \\
& N^{\prime}=-k T+\tau B \\
& B^{\prime}=-\tau N
\end{aligned}
$$

Geometry of the domain (1D waveguide) $-\Omega^{F}$

$$
\Omega^{F}=\left\{x \in \mathbb{R}^{3}: x=r(s)+y_{1} N(s)+y_{2} B(s), s \in[0, L], y=\left(y_{1}, y_{2}\right) \in \omega\right\}
$$

Figure 1.1 - Reference domain associated with Frenet's system

Geometry of the domain (1D waveguide) $-\Omega^{F}$ (cont.)
i) The Frenet system my not be defined for all $s \in[0, L]$ for one may have points for which $T^{\prime}=0$.
ii) In each point $s \in[0, L]$, the cross section of the domain Ω^{F} has a prescribed rotation with respect to curve r, given by the value of the torsion function τ at that point.

Geometry of the domain (1D waveguide) - Tang's System

$$
\begin{aligned}
& X^{\prime}=\lambda T \\
& Y^{\prime}=\mu T \\
& T^{\prime}=-\lambda X-\mu Y
\end{aligned}
$$

where λ and μ are functions of the arclength parameter s.
For each $s \in[0, L]$ Tang's reference system is such that (X, Y) can be seen as a two dimensional basis, in ω, rotated from (N, B), around T, of an angle $\alpha=\alpha(s)$. In fact if :

$$
\begin{aligned}
& X=\cos \alpha N+\sin \alpha B=N_{\alpha} \\
& Y=-\sin \alpha N+\cos \alpha B=B_{\alpha}
\end{aligned}
$$

using Frenet's formulas, one obtains :

$$
\begin{aligned}
& \alpha^{\prime}=-\tau \\
& \lambda=-k \cos \alpha \\
& \mu=k \sin \alpha
\end{aligned}
$$

Geometry of the domain (1D waveguide) $-\Omega^{T}$

$$
\Omega^{T}=\left\{x \in \mathbb{R}^{3}: x=r(s)+y_{1} X(s)+y_{2} Y(s), s \in[0, L], y=\left(y_{1}, y_{2}\right) \in \omega\right\}
$$

Figure 1.2 - Reference domain associated with Tang's system

Geometry of the domain (1D waveguide) - Ω^{α}
We are then faced with three possible choices for the reference set, namely :
i) We may follow Tang's reference system and obtain a domain Ω^{T}, without torsion with respect to the central axis r;
ii) We may follow Frenet's reference system and obtain a domain Ω^{F}, rotated of the same amount as Frenet's system (τ), with respect to the central axis r;
iii) We may follow yet another reference system $\left(T, N_{\alpha}, B_{\alpha}\right)$, and obtain a generic domain Ω^{α} defined through :

$$
\Omega^{\alpha}=\left\{x \in \mathbb{R}^{3}: x=r(s)+y_{1} N_{\alpha}(s)+y_{2} B_{\alpha}(s), s \in[0, L], y=\left(y_{1}, y_{2}\right) \in \omega\right\},
$$

whose cross section presents an arbitrary rotation of an angle α with respect Frenet's domain.

If for every $s \in[0, L], \alpha=0$ then $\Omega^{\alpha} \equiv \Omega^{F}$ and if α is such that $\alpha^{\prime}=-\tau$, then $\Omega^{\alpha}=\Omega^{T}$.

Geometry of the domain (1D waveguide) $-\Omega_{\epsilon}^{\alpha}$
We are interested in the eigenvalue problem posed in a domain for which the diameter of the cross section ω is much smaller than its length L. Specifically, we consider a real parameter $\varepsilon>0$ and a cross section, obtained from the reference one, by an homothety of ratio ε. That is we define the thin domain :

$$
\begin{equation*}
\Omega_{\varepsilon}^{\alpha}:=\left\{x \in \mathbb{R}^{3}: x=r(s)+\varepsilon y_{1} N_{\alpha}+\varepsilon y_{2} B_{\alpha}, s \in[0, L], y=\left(y_{1}, y_{2}\right) \in \omega\right\} \tag{1.2}
\end{equation*}
$$

and study the behavior of the eigensolution $\left(\lambda_{\varepsilon}, u \varepsilon\right)$, associated with problem

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \\
u_{\varepsilon} \in H_{0}^{1}\left(\Omega_{\varepsilon}^{\alpha}\right)
\end{array}\right.
$$

as ε goes to zero, and hope to see the influence of the curvature $(k(s))$ and torsion $(\tau(s))$ functions in the limit problem.

If for every $s \in[0, L], \alpha=0$ then $\Omega_{\varepsilon}^{\alpha} \equiv \Omega_{\varepsilon}^{F}$ and if α is such that $\alpha^{\prime}=-\tau$, then $\Omega_{\varepsilon}^{\alpha}=\Omega_{\varepsilon}^{T}$.

Variational Formulation and change of variable

$$
F_{\varepsilon}(w):=\int_{\Omega_{\varepsilon}^{\alpha}}\left(|\nabla w|^{2}-\lambda_{\varepsilon}|w|^{2}\right) d x
$$

Consider, then, the following transformation, for each $\varepsilon>0$,

$$
\begin{aligned}
& \psi:[0, L] \times \omega \longrightarrow \Omega_{\varepsilon}^{\alpha} \\
& \left(s,\left(y_{1}, y_{2}\right)\right) \mapsto x=r(s)+\varepsilon y_{1} N_{\alpha}+\varepsilon y_{2} B_{\alpha}
\end{aligned}
$$

and define, for each $w \in H_{0}^{1}\left(\vee_{\varepsilon}^{\alpha}\right), v\left(s,\left(y_{1}, y_{2}\right)\right):=w\left(\psi\left(s,\left(y_{1}, y_{2}\right)\right)\right)$.
Recalling that

$$
\begin{aligned}
& N_{\alpha}:=\cos \alpha(s) N(s)+\sin \alpha(s) B(s) \\
& B_{\alpha}:=-\sin \alpha(s) N(s)+\cos \alpha(s) B(s)
\end{aligned}
$$

we obtain, in the Frénet system (T, N, B) :

Variational Formulation and change of variable (cont.)

$$
\nabla \psi=\left(\begin{array}{ccc}
\beta_{\varepsilon} & 0 & 0 \\
-\varepsilon\left(\tau+\alpha^{\prime}\right)\left(z_{\alpha}^{\perp} \cdot y\right) & \varepsilon \cos \alpha & -\varepsilon \sin \alpha \\
\varepsilon\left(\tau+\alpha^{\prime}\right)\left(z_{\alpha} \cdot y\right) & \varepsilon \sin \alpha & \varepsilon \cos \alpha
\end{array}\right), \quad \operatorname{det} \nabla \psi=\varepsilon^{2} \beta_{\varepsilon}
$$

where :

$$
z_{\alpha}:=(\cos \alpha,-\sin \alpha), \quad z_{\alpha}^{\perp}:=(\sin \alpha, \cos \alpha), \quad \beta_{\varepsilon}:=1-\varepsilon k\left(z_{\alpha} \cdot y\right)
$$

Then

$$
\nabla \psi^{-1}=\left(\begin{array}{ccc}
\frac{1}{\beta_{\varepsilon}} & 0 & 0 \\
\frac{\left(\tau+\alpha^{\prime}\right) y_{2}}{\beta_{\varepsilon}} & \frac{\cos \alpha}{\varepsilon} & \frac{\sin \alpha}{\varepsilon} \\
\frac{-\left(\tau+\alpha^{\prime}\right) y_{1}}{\beta_{\varepsilon}} & \frac{-\sin \alpha}{\varepsilon} & \frac{\cos \alpha}{\varepsilon}
\end{array}\right)
$$

$$
\begin{aligned}
G_{\varepsilon}(v):=\frac{1}{\varepsilon^{2}} F_{\varepsilon}(w)=\int_{0}^{L} \int_{\omega} & \left\{\frac{1}{\beta_{\varepsilon}}\left|v^{\prime}+\nabla_{y} v \cdot R y\left(\tau+\alpha^{\prime}\right)\right|^{2}+\right. \\
& \left.+\frac{\beta_{\varepsilon}}{\varepsilon^{2}}\left(\left|\nabla_{y} v\right|^{2}-\varepsilon^{2} \lambda_{\varepsilon}|v|^{2}\right)\right\} d y d s
\end{aligned}
$$

where
()$^{\prime}$ - derivative of () with respect to s,
$\nabla_{y} v$ - the derivative of v with respect to y,
R - rotation matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \Longrightarrow R y=\left\{\begin{array}{c}y_{2} \\ -y_{1}\end{array}\right\}$.

The sequence $\left\{G_{\varepsilon}\right\}$ of functionals defined in $H_{0}^{1}((0, L) \times \omega) \Gamma$-converges, to the functional G, defined by

$$
\begin{gathered}
G(v):= \begin{cases}G_{0}(w) & \text { if } v(s, y)=w(s) u_{0}(y) \\
+\infty & \text { if not }\end{cases} \\
G_{0}(w):=\int_{0}^{L}\left\{\left|w^{\prime}(s)\right|^{2}+\left[\left(\tau(s)+\alpha^{\prime}(s)\right)^{2} C(\omega)-\frac{k^{2}(s)}{4}\right]|w(s)|^{2}\right\} d s
\end{gathered}
$$

where $C(\omega):=\int_{\omega}\left|\nabla_{y} u_{0} \cdot R y\right|^{2} d y$,

$$
R \text { - rotation matrix }\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \Longrightarrow R y=\left\{\begin{array}{c}
y_{2} \\
-y_{1}
\end{array}\right\}
$$

and where u_{0} is the normalized eigenfuntion corresponding to the first eigenvalue of problem

$$
-\Delta u=\gamma u, \quad u \in H_{0}^{1}(\omega) . \quad \longrightarrow \quad\left(\lambda_{0}, u_{0}\right)
$$

Some remarks on the main result

i) The infimum for λ_{2} is always attained and it corresponds to the first eigenvalue of the following Sturm-Liouville problem :

$$
-\varphi^{\prime \prime}+q \varphi=\mu \varphi, \quad \varphi \in H_{0}^{1}(0, L), \quad q(s):=\left(\tau(s)+\alpha^{\prime}(s)\right)^{2} C(\omega)-\frac{(k(s))^{2}}{4}
$$

ii) It is possible to prove that μ_{1} coincides with the second order term $\left(\lambda_{2}\right)$ of the asymptotic expansion

$$
\varepsilon^{2} \lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\varepsilon^{2} \lambda_{2}+\cdots,
$$

where λ_{0} is the first eigenvalue of the eigenvalue problem in ω and λ_{1} is zero.
iii) It is clear that if q is constant, then $\lambda_{2}=\frac{\pi^{2}}{L^{2}}+q$ and, consequently,

$$
G_{0}(w):=\int_{0}^{L}\left(\left|w^{\prime}\right|^{2}-\frac{\pi^{2}}{L^{2}}|w|^{2}\right) d s
$$

iv) Due to the definition of $\lambda_{2}, G_{0}(w) \geq 0$ for all $w \in H_{0}^{1}(0, L)$ and the minimizers of G_{0} coincide, up to a multiplying constant, with the minimizers of λ_{2}.
i) The Euler-Lagrange equation associated $G_{0}(w)$ is of the form :

$$
-w^{\prime \prime}+\underbrace{\left[\left(\tau+\alpha^{\prime}\right)^{2} C-\frac{k^{2}}{4}\right]}_{q} w-\lambda_{2} \quad w=0
$$

As mentioned before, this is a problem of the Sturm-Liouville type and it is exactly the same problem for λ_{2}. The only difference being that the minimum for w is zero and for λ_{2} is, obviously, λ_{2}.
ii) This equation may be interpreted as a onedimensional problem for the spatial wave equation with :

$$
\frac{2 m}{\hbar^{2}}(V-E)=\left[\left(\tau+\alpha^{\prime}\right)^{2} C-\frac{k^{2}}{4}-\lambda_{2}\right]
$$

that is, although we have started from a threedimensional problem without a potential in the interior of the domain under consideration, in the limit, in a onedimensional curved waveguide, the particle sees the curvature, the torsion and the influence of the cross section as a (nonhomogeneous) potential function in an equivalent straight waveguide of the same total length.

Some remarks on the main result (cont.)
$k(s)$ - influence of the curvature,
$\tau(s)+\alpha^{\prime}(s)$ - influence of the torsion,
C - the influence of the shape of the cross section.
iii) If, from the start, we have a straight waveguide then $k \equiv 0, \tau \equiv 0, \alpha^{\prime} \equiv 0$ and one obtains the classical onedimensional result :

$$
w(x)=\varphi_{0}(x)=\sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}, \quad \frac{2 m}{\hbar^{2}} E=\left(\frac{\pi}{L}\right)^{2}
$$

iv) If k and $\tau+\alpha^{\prime}$ are constants then, once again, one obtains the classical onedimensional result.
v) For a circular cross section of radius R, the ground state $\left(u_{0}\right)$ is radial, associated with the eigenproblem $-\Delta u=\gamma u$ and of the form :

$$
u_{0}(r)=\frac{\sqrt{2}}{R J_{1}\left(\sqrt{\gamma_{0}} R\right)} J_{0}\left(\sqrt{\gamma_{0}} r\right), \quad \gamma_{0}=\left(\frac{r_{n}}{R}\right)^{2}, \quad n \in \mathbb{N},
$$

where,
r - radial direction,
J_{0} and J_{1} - first and second Bessel functions of the first kind,
r_{0} - first zero of J_{0}.
Since u_{0} is a radial function, its gradient is lso radial and, therefore, orthogonal to the direction defined by $R y=\left(y_{2},-y_{1}\right)$.

Consequentely, for the circular cross section, $C \equiv 0$.

Some ideas about the proof

$$
\begin{gathered}
-\Delta_{y} u_{0}=\lambda_{0} u_{0}, \quad u_{0} \in H_{0}^{1}(\omega) \\
-\Delta_{y} u_{1}-\lambda_{0} u_{1}=-k\left(z_{\alpha} \cdot \nabla_{y} u_{0}\right), \quad u_{1} \in H_{0}^{1}(\omega), \quad(s \text { fixed })
\end{gathered}
$$

Fredholm orthogonality condition

$$
k \int_{\omega}\left(z_{\alpha} \cdot \nabla_{y} u_{0}\right) u_{0} d y=0
$$

ensuring the existence of a solution u_{1}.
Some properties of u_{0} and u_{1}, for example :

$$
\int_{\omega}\left(\left|\nabla_{y} u_{0}\right|^{2}-\lambda_{0}\left|u_{0}\right|^{2}\right) d y=0, \quad \int_{\omega}\left(z_{\alpha} \cdot y\right)\left(\left|\nabla_{y} u_{0}\right|^{2}-\lambda_{0}\left|u_{0}\right|^{2}\right) d y=0
$$

Some ideas about the proof (cont.)

Lemma. Let

$$
\gamma_{2}:=\inf _{v \in H_{0}^{1}(\omega)} \int_{\omega}\left[\left|\nabla_{y} v\right|^{2}-\lambda_{0}|v|^{2}+2 k\left(z_{\alpha} \cdot \nabla_{y} u_{0}\right) v\right] d y .
$$

Then, the infimum is attained in u_{1} and

$$
\gamma_{2}=-\frac{k^{2}}{4} .
$$

Proof: Use the properties of u_{0}, u_{1} and integration by parts sucessively.

Some ideas about the proof (cont.)

$$
\begin{aligned}
G_{\varepsilon}(v):=\frac{1}{\varepsilon^{2}} F_{\varepsilon}(w)=\int_{0}^{L} \int_{\omega} & \left\{\frac{1}{\beta_{\varepsilon}}\left|v^{\prime}+\nabla_{y} v \cdot R y\left(\tau+\alpha^{\prime}\right)\right|^{2}+\right. \\
& \left.+\frac{\beta_{\varepsilon}}{\varepsilon^{2}}\left(\left|\nabla_{y} v\right|^{2}-\varepsilon^{2} \lambda_{\varepsilon}|v|^{2}\right)\right\} d y d s
\end{aligned}
$$

Lemma. Let γ_{ε} be given by

$$
\gamma_{\varepsilon}:=\inf _{\substack{v \in H_{0}^{1}(\omega) \\ v \neq 0}} \frac{\int_{\omega} \beta_{\varepsilon}\left|\nabla_{y} v\right|^{2} d y}{\int_{\omega}} \beta_{\varepsilon}|v|^{2} d y .
$$

Then

$$
\gamma_{2}(s)=\lim _{\varepsilon \rightarrow 0} \frac{\gamma_{\varepsilon}-\lambda_{0}}{\varepsilon^{2}}=-\frac{k^{2}(s)}{4}, \quad \text { uniformly in }[0, L]
$$

Lemma. Let λ_{ε} be the first eigenvalue of the problem under study and recall the definition of λ_{2}, introduced in the theorem, then the following convergence holds

$$
\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon^{2} \lambda_{\varepsilon}-\lambda_{0}}{\varepsilon^{2}}=\lambda_{2}
$$

0 S
 L

$\left(\tau+\alpha^{\prime}\right)^{2} C \equiv 0$
k is constant in a certain interval $[a, L] \subset[0, L]$ and zero in $[0, a[$.

Example (cont.)

$w \in H^{1}(0, L)$, such that :

$$
w(s)= \begin{cases}w_{1}(s) & \text { if } 0 \leq s \leq a \\ w_{2}(s) & \text { if } a \leq s \leq L\end{cases}
$$

solving :

$$
\begin{cases}-w_{1}^{\prime \prime}-\lambda_{2} w_{1}=0, & \text { if } 0 \leq s \leq a \tag{1.3}\\ -w_{2}^{\prime \prime}-\left(\lambda_{2}-q\right) w_{2}=0 & \text { if } a \leq s \leq L\end{cases}
$$

subjected to the boundary conditions :

$$
w_{1}(0)=0, \quad w_{2}(L)=0
$$

and to the compatibility conditions :

$$
\begin{equation*}
w_{1}(a)=w_{2}(a), \quad w_{1}^{\prime}(a)=w_{2}^{\prime}(a) \tag{1.4}
\end{equation*}
$$

Example (cont.)

Let $k_{1}=\sqrt{\lambda_{2}}$ and $k_{2}=\sqrt{\lambda_{2}-q}$, therefore :

$$
\begin{aligned}
& \left(e^{i k_{1} a}-e^{-i k_{1} a}\right)\left[e^{i k_{2}(L-a)}+e^{-i k_{2}(L-a)}\right]+ \\
& \quad+\frac{k_{1}}{k_{2}}\left(e^{i k_{1} a}+e^{-i k_{1} a}\right)\left[e^{i k_{2}(L-a)}-e^{-i k_{2}(L-a)}\right]=0 \quad \Longrightarrow \quad \lambda_{2}=\cdots
\end{aligned}
$$

In the present case, solving this equation is equivalent to solving :

$$
\begin{aligned}
& \sinh \left(\bar{k}_{1} a\right) \cos \left[k_{2}(L-a)\right]+\frac{\bar{k}_{1}}{k_{2}} \cosh \left(\bar{k}_{1} a\right) \sin \left[k_{2}(L-a)\right]=0, \\
& \bar{k}_{1}=\sqrt{-\lambda_{2}}, \quad k_{2}=\sqrt{\lambda_{2}-q}, \quad \text { if } q<\lambda_{2}<0
\end{aligned}
$$

or

$$
\begin{aligned}
& \sin \left(k_{1} a\right) \cos \left[k_{2}(L-a)\right]+\frac{k_{1}}{k_{2}} \cos \left(k_{1} a\right) \sin \left[k_{2}(L-a)\right]=0, \\
& k_{1}=\sqrt{\lambda_{2}}, \quad k_{2}=\sqrt{\lambda_{2}-q}, \quad \text { if } q<0<\lambda_{2} .
\end{aligned}
$$

Example (cont.)
$q=-6$ and $L=2$

Figure $1.3-\lambda_{n}$ vs. a / l for $q=-6$ and $L=2$.

Example (cont.)

$$
\begin{gathered}
a / L=1 \quad \Longrightarrow \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \quad n \in \mathbb{N} . \\
a / L=0 \quad \Longrightarrow \quad \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}+q, \quad n \in \mathbb{N} . \\
q=-6=-k^{2} / 4, \quad a=1, \quad L=2, \quad \Longrightarrow \quad \lambda_{2} \approx-1.363855334
\end{gathered}
$$

$$
\text { Example (cont.) } 32
$$

$P(s)=w^{*}(s) w(s)$ becomes:

Figure 1.4-Probability density function (in red) and for the classical case (in blue) ($q=-6=-k^{2} / 4, a=1$ and $L=2$)

Example (cont.)

$$
q=-80=-k^{2} / 4, \quad a=1.8, \quad L=2 .
$$

Figure 1.5 - Probability density function (in red) and for the classical case (in blue) $\left(q=-80=-k^{2} / 4, a=1.8\right.$ and $\left.L=2\right)$

Geometry of the domain (2D waveguide)

The "reference middle surface" - a surface in \mathbb{R}^{3} :

$$
\tilde{\omega}=\left\{\tilde{x}=\left(x_{1}, x_{2}, \theta\left(x_{1}, x_{2}\right)\right) \in \mathbb{R}^{3}:\left(x_{1}, x_{2}\right) \in \omega \subset \mathbb{R}^{2}, \quad \theta \in C^{3}(\bar{\omega})\right\}
$$

Geometry of the domain (2D waveguide)

The curvilinear reference system :

$$
\begin{aligned}
a_{\alpha} & =\frac{\partial \tilde{x}}{\partial x_{\alpha}}, \quad a_{1}=\left(1,0, \partial_{1} \theta\right), \quad a_{2}=\left(0,1, \partial_{2} \theta\right) \\
a_{3} & =n=\frac{a_{1} \times a_{2}}{\left|a_{1} \times a_{2}\right|}=\frac{1}{\sqrt{\alpha}}\left(-\partial_{1} \theta,-\partial_{2} \theta, 1\right), \quad \alpha=1+\left|\partial_{1} \theta\right|^{2}+\left|\partial_{2} \theta\right|^{2}
\end{aligned}
$$

Geometry of the domain (2D waveguide)

The "shell" :
$\tilde{\Omega}^{\varepsilon}=\left\{\tilde{x}^{\varepsilon}=\left(\left(x_{1}, x_{2}, \theta\left(x_{1}, x_{2}\right)\right)+x_{3}^{\varepsilon} n\left(x_{1}, x_{2}\right)\right) \in \mathbb{R}^{3}:\left(x_{1}, x_{2}\right) \in \omega \subset \mathbb{R}^{2}\right\}$

The thickness of the shell : $2 \varepsilon, \quad \varepsilon>0$
The thickness variable : $x_{3}^{\varepsilon}=\varepsilon x_{3}$

Geometry of the domain (2D waveguide)

Fundamental Forms (2D waveguide)

The first fundamental form matrix $[a]=\left(a_{\alpha \beta}\right), \quad a_{\alpha \beta}=a_{\alpha} \cdot a_{\beta}$:

$$
a_{11}=1+\left|\partial_{1} \theta\right|^{2}, \quad a_{22}=1+\left|\partial_{2} \theta\right|^{2}, \quad a_{12}=a_{21}=\partial_{1} \theta \partial_{2} \theta
$$

The second fundamental form matrix $[b]=\left(b_{\alpha \beta}\right), \quad b_{\alpha \beta}=-n \cdot a_{\alpha, \beta}$:

$$
b_{11}=-\frac{\partial_{11} \theta}{\sqrt{\alpha}}, \quad b_{22}=-\frac{\partial_{22} \theta}{\sqrt{\alpha}}, \quad b_{12}=b_{21}-\frac{\partial_{12} \theta}{\sqrt{\alpha}}
$$

Remark: $|a|=\alpha$

Curvature Functions (2D waveguide)

The Mean Curvature function H is given by :

$$
H=\frac{b_{11} a_{22}+b_{22} a_{11}-2 b_{12} a_{12}}{2|a|}
$$

The Gaussian Curvature function K is given by :

$$
K=\frac{|b|}{|a|}
$$

Remark : $\operatorname{det}[a]=\alpha$

Variational Formulation

$$
\tilde{F}_{\varepsilon}\left(\tilde{w}^{\varepsilon}\right):=\int_{\tilde{\Omega}^{\varepsilon}}\left(\left|\nabla \tilde{w}^{\varepsilon}\right|^{2}-\lambda_{\varepsilon}\left|\tilde{w}^{\varepsilon}\right|^{2}\right) d \tilde{x}^{\varepsilon} .
$$

The Limit (eigenvalue) Problem

$$
-\partial_{\beta}\left(\frac{A_{\alpha \beta}}{\sqrt{|a|}} \partial_{\alpha} w\right)+\left(K-H^{2}\right) w \sqrt{|a|}=\lambda_{2} w \sqrt{|a|} .
$$

Remarks :

$$
K=k_{1} k_{2}, \quad H=\frac{\left(k_{1}+k_{2}\right)}{2} \quad \Longrightarrow \quad K-H^{2}=-\frac{\left(k_{1}-k_{2}\right)^{2}}{4}
$$

If $k_{1} \equiv 0$ or $k_{2} \equiv 0$ then $K-H^{2}=-k^{2} / 4$ as in the 1D case !

The Limit (eigenvalue) Problem

The first term represents the Laplacian written in the curviliner coordinates. In fact from the variational formulation of this limit problem one has :

$$
\lambda_{2}=\inf \frac{\int_{\omega} \frac{A_{\alpha \beta}}{\sqrt{|a|}} \partial_{\alpha} w \partial_{\beta} w d x_{1} d x_{2}+\left(K-H^{2}\right) w \sqrt{|a|} d x_{1} d x_{2}}{\int_{\omega} w \sqrt{|a|} d x_{1} d x_{2}}
$$

but:

$$
\frac{A_{\alpha \beta}}{|a|} \partial_{\alpha} w \partial_{\beta} w=\left|\partial_{\tau} w\right|^{2} \quad \text { and } \quad \sqrt{|a|} d x_{1} d x_{2}=d s_{1} d s_{2}
$$

therefore, in curvilinear coordinates, the limit problem is :

$$
\begin{gathered}
-\partial_{\tau \tau} w+\left(K-H^{2}\right) w=\lambda_{2} w \\
K=k_{1} k_{2}, \quad H=\frac{\left(k_{1}+k_{2}\right)}{2} \Longrightarrow K-H^{2}=-\frac{\left(k_{1}-k_{2}\right)^{2}}{4}
\end{gathered}
$$

Under study

$$
\begin{gathered}
\begin{cases}-\operatorname{div}\left(a(y) \nabla u_{\varepsilon}\right)=\lambda_{\varepsilon} u_{\varepsilon}, & \Omega_{\varepsilon} \\
u_{\varepsilon}=0, & \partial \Omega_{\varepsilon}\end{cases} \\
\gamma_{\varepsilon}(s)=\gamma_{0}(s)+\varepsilon \gamma_{1}(s)+\varepsilon^{2} \gamma_{2}(s)+\cdots \\
\lambda_{\varepsilon}=\frac{1}{\varepsilon^{2}} \lambda_{0}+\frac{1}{\varepsilon} \lambda_{1}+\lambda_{2}+\cdots
\end{gathered}
$$

But now

$$
\gamma_{1}(s) \neq 0, \quad \lambda_{1} \neq 0, \quad \gamma_{2}(s) \neq-k^{2}(s) / 4, \quad \text { etc. }
$$

In fact, if :

$$
-\operatorname{div}\left(a(y) \nabla u_{0}\right)-\lambda_{0} u_{0}=0, \quad u_{0} \in H_{0}^{1}(\omega)
$$

$$
-\operatorname{div}\left(a(y) \nabla u_{1}\right)-\lambda_{0} u_{1}=k \int_{\omega} a(y)\left(z \cdot \nabla u_{0}\right) u_{0} d y-a(y)\left(z \cdot \nabla u_{0}\right), \quad u_{1} \in H_{0}^{1}(\omega)
$$

Under study (cont.)
Then :

$$
\begin{gathered}
\gamma_{0}(s)=\lambda_{0}, \\
\gamma_{1}(s)=k(s) \int_{\omega} a(y)\left(z \cdot \nabla u_{0}\right) u_{0} d y \neq 0, \\
\gamma_{2}(s)=k^{2}(s)\left[\int_{\omega} a(y)\left(z \cdot \nabla u_{1}\right) u_{0} d y-\frac{1}{2} \int_{\omega} a(y)\left|u_{0}\right|^{2} d y\right] \neq-\frac{k^{2}(s)}{4}, \\
\lambda_{1}=\inf _{\substack{\varphi \in H_{0}^{1}(0, L) \\
\|\varphi\|_{L^{2}(0, L)}=1}} \int_{0}^{L} k(s)\left[a(y)\left(z \cdot \nabla u_{0}\right) u_{0}\right]|\varphi|^{2} d s \neq 0, \quad \text { etc. }
\end{gathered}
$$

Under study (cont.)

$$
\begin{cases}-\operatorname{div}\left(A(y) \nabla u_{\varepsilon}\right)=\lambda_{\varepsilon} u_{\varepsilon}, & \Omega_{\varepsilon} \\ u_{\varepsilon}=0, & \partial \Omega_{\varepsilon}\end{cases}
$$

Neumann boundary conditions, etc.

Elasticity operator, etc.Aknowledgements45

This research was partially supported by Program PAI-PESSOA.
The research of M.L. Mascarenhas and L. Trabucho was also supported by POCI/Mat/60587/2004.

The authors acknowledge the hospitality of the Universities of Toulon (ANAM) and Lisbon (CMAF), where this work was undertaken.

