Optimal Perfectly Matched Layers for time-harmonic scattering problems

A. Bermúdez¹, L. Hervella-Nieto², A. Prieto¹, R. Rodríguez³

¹ Departamento de Matemática Aplicada, Universidade de Santiago de Compostela.

(日) (四) (종) (종)

² Departamento de Matemáticas, Universidade da Coruña.

³ Departamento de Ingeniería Matemática, Universidad de Concepción (Chile).

Outline

O Statement of the Perfectly Matched Layers

- Simulating an anechoic room
- Classical scattering problem
- Berenger PML model

Optimal PML in Cartesian coordinates

- Construction of the optimal PML
- Finite element discretization
- Numerical test

O Exact PML in radial coordinates

- Dirichlet-to-Neumann operators
- Existence and uniqueness of smooth solutions
- Analysis of the coupled fluid/PML problem

An anechoic room

Perfectly Matched Layer = Dissipative media without reflection

Classical scattering problem

Acoustic scattering problem

$$\left\{ \begin{array}{ll} \Delta p + k^2 p = 0 & \text{ in } \mathbb{R}^2 \setminus \overline{\Omega}, \\ \frac{\partial p}{\partial n} = g & \text{ on } \Gamma, \\ \lim_{r \to \infty} \sqrt{r} \left(\frac{\partial p}{\partial r} - i k p \right) = 0. \end{array} \right.$$

< 17 ►

イヨトイヨト

Computational solution

- Difficulty: solving the problem in an unbounded domain.
- Solution: surround the physical domain of interest with PML.

Berenger PML model

Associated to each coordinate, we define

$$\gamma_j(x_j) := 1 + \frac{i}{\omega} \sigma_j(x_j), \ j = 1, 2,$$

1 where

$$\sigma_j: \ (-a_j^*, a_j^*) \longrightarrow \mathbb{R}, \ j = 1, 2,$$

are the absorbing functions.

2D PML model in cartesian coordinates (Berenger, 1994)

$$\frac{1}{\gamma_1(x_1)}\frac{\partial}{\partial x_1}\left[\frac{1}{\gamma_1(x_1)}\frac{\partial p}{\partial x_1}\right] + \frac{1}{\gamma_2(x_2)}\frac{\partial}{\partial x_2}\left[\frac{1}{\gamma_2(x_2)}\frac{\partial p}{\partial x_2}\right] + k^2p = 0.$$

э

★ Ξ ► < Ξ ►</p>

Berenger PML model

•
$$\Omega_{\mathrm{F}} = (-a_1, a_1) \times (-a_2, a_2) \setminus \Omega$$
 and $p_{\mathrm{F}} = p|_{\Omega_{\mathrm{F}}}$,
• $\Omega_{\mathrm{A}} = (-a_1^*, a_1^*) \times (-a_2^*, a_2^*) \setminus \overline{\Omega}_{\mathrm{F}}$ and $p_{\mathrm{A}} = p|_{\Omega_{\mathrm{A}}}$.

Statement of the coupled fluid/PML problem

$$\begin{split} -k^2 p_{\rm F} - \operatorname{div}(\operatorname{\mathbf{grad}} p_{\rm F}) &= 0 \text{ in } \Omega_{\rm F}, \\ -k^2 \gamma_1 \gamma_2 p_{\rm A} - \frac{\partial}{\partial x_1} \left[\frac{\gamma_2}{\gamma_1} \frac{\partial p_{\rm A}}{\partial x_1} \right] - \frac{\partial}{\partial x_2} \left[\frac{\gamma_1}{\gamma_2} \frac{\partial p_{\rm A}}{\partial x_2} \right] &= 0 \text{ in } \Omega_{\rm A}, \\ \frac{\partial p_{\rm F}}{\partial \mathbf{n}} &= g \text{ on } \Gamma, \\ p_{\rm F} &= p_{\rm A} \text{ on } \Gamma_{\rm I}, \\ \frac{\nu_1}{\gamma_1} \frac{\partial p_{\rm A}}{\partial x_1} + \frac{\nu_2}{\gamma_2} \frac{\partial p_{\rm A}}{\partial x_2} &= \frac{\partial p_{\rm F}}{\partial \boldsymbol{\nu}} \text{ on } \Gamma_{\rm I}, \\ p_{\rm A} &= 0 \text{ on } \Gamma_{\rm D}. \end{split}$$

イロト 不得下 イヨト イヨト

E

Properties of absorbing function σ_i

$$\begin{cases} \sigma_j: (0, a_j^*) \longrightarrow \mathbb{R}, & \text{not decreasing,} \\ \sigma_j(x_j) = 0, & 0 < x_j < a_j, \\ \sigma_j \in \mathcal{C}\big((a_j, a_j^*), \mathbb{R}\big), \\ \sigma_j(x_j) > 0, & a_j < x_j < a_j^*. \end{cases}$$

Workshop Benasque 2007

э

글 > - < 글 >

Behavior of the theoretical error (Collino, Monk 1996)

Workshop Benasque 2007

イロト 不得 とくほと 不良 とう

æ

Behavior of the theoretical error (Collino, Monk 1996)

• $\int_{a_j}^{a_j^*} \sigma_j(s) ds$ is small: we recover the solution of a Helmholtz problem in a bounded domain.

イロン 不同と 不同と 不同とう

Behavior of the theoretical error (Collino, Monk 1996)

• $\int_{a_j}^{a_j^*} \sigma_j(s) ds$ is small: we recover the solution of a Helmholtz

problem in a bounded domain.

It is not the solution of the scattering problem!

イロン 不同と 不同と 不同とう

Behavior of the theoretical error (Collino, Monk 1996)

• $\int_{a_j}^{a_j^*} \sigma_j(s) ds$ is small: we recover the solution of a Helmholtz

problem in a bounded domain.

It is not the solution of the scattering problem!

•
$$\int_{a_j}^{a_j^*} \sigma_j(s) ds$$
 is large: we can use...

イロン 不同と 不同と 不同とう

Behavior of the theoretical error (Collino, Monk 1996)

• $\int_{a_j}^{a_j^*} \sigma_j(s) ds$ is small: we recover the solution of a Helmholtz

problem in a bounded domain.

・ロト ・得ト ・ヨト ・ヨト … ヨ

Behavior of the theoretical error (Collino, Monk 1996)

• $\int_{a_j}^{a_j^*} \sigma_j(s) ds$ is small: we recover the solution of a Helmholtz problem in a bounded domain. It is not the solution of the scattering problem!

•
$$\int_{a_j}^{a_j^*} \sigma_j(s) ds$$
 is large: we can use...

 a_i^* is large \Rightarrow Increase the computational domain

 σ_i^* is large \Rightarrow Bad behavior of discrete problem

・ロット (雪) (山) (日) (日)

Behavior of the theoretical error (Collino, Monk 1996)

• $\int_{a_j}^{a_j^*} \sigma_j(s) ds$ is small: we recover the solution of a Helmholtz problem in a bounded domain.

Consequence

The optimal σ_i^* depends on the data and on the **mesh**.

イロト 不得 とくほと 不良 とう

Our choice for σ

We propose a non-integrable function $\boldsymbol{\sigma}$

$$\sigma_j(x_j) = \frac{c}{a_j^* - x_j}, a_j < x_j < a_j^* \Rightarrow \int_{a_j}^{a_j^*} \sigma(s) ds = +\infty.$$

Numerical advantages

- We recover the exact solution.
- Robustness of the choice of σ_j (mesh independent).
- Better numerical performance than the classical ones.

イロト イポト イヨト イヨト

- $\bullet\,$ Triangular mesh in the fluid domain Ω_F ,
- $\bullet\,$ Rectangular mesh in the PML domain $\Omega_A.$

We define the discrete spaces:

 $\mathbf{V}_h(\Omega_{\mathsf{F}}) = \{ q \in \mathcal{C}(\Omega_{\mathsf{F}}) : q |_K \in P_1(K), \forall K \in \mathcal{T}_h \},\$

 $\mathbf{W}_h(\Omega_\mathsf{A}) = \{q \in \mathcal{C}(\Omega_\mathsf{A}) : q|_K \in Q_1(K), \forall K \in \mathcal{T}_h, \ q = 0 \text{ on } \Gamma_\mathsf{D} \}.$

Discrete fluid/PML problem

Find $(p_{\rm F}^h,p_{\rm A}^h)\in {\rm V}_h(\Omega_{\rm F})\times {\rm W}_h(\Omega_{\rm A})$ such that

$$\begin{split} &-\int_{\Omega_{\rm F}} k^2 p_{\rm F}^h \bar{q}_{\rm F}^h \, dV + \int_{\Omega_{\rm F}} \mathbf{grad} \, p_{\rm F}^h \cdot \mathbf{grad} \, \bar{q}_{\rm F}^h \, dV - \int_{\Omega_{\rm A}} k^2 \gamma_1 \gamma_2 p_{\rm A}^h \bar{q}_{\rm A}^h \, dV \\ &+ \int_{\Omega_{\rm A}} \frac{\gamma_2}{\gamma_1} \frac{\partial p_{\rm A}^h}{\partial x_1} \frac{\partial \bar{q}_{\rm A}^h}{\partial x_1} \, dV + \int_{\Omega_{\rm A}} \frac{\gamma_1}{\gamma_2} \frac{\partial p_{\rm A}^h}{\partial x_2} \frac{\partial \bar{q}_{\rm A}^h}{\partial x_2} \, dV = \int_{\Gamma_{\rm I}} g \frac{\partial \bar{q}_{\rm F}^h}{\partial n} \, dS, \\ \text{for all } (q_{\rm F}, q_{\rm A}) \in \mathcal{V}_h(\Omega_{\rm F}) \times \mathcal{W}_h(\Omega_{\rm A}). \end{split}$$

・ 同下 ・ ヨト・・ ヨト・・

Finite element discretization

Element matrices

Every element matrix is bounded with
$$\sigma_j(x_j) = \frac{c}{a_i^* - x_j}$$
.

- $\phi_j \in Q_1(K)$: canonical basis function associated to P_j ,
- ϕ_2 and ϕ_3 do not belong to $W_h(\Omega_A)$.

イロト 不得下 不足下 不足下

Finite element discretization

Element matrices

If
$$|b_2| < a_2^*$$
, $|b_1| < a_2^*$,

$$\begin{cases} \phi_j = O(|x_1 - a_1^*|), \\ \frac{\partial \phi_j}{\partial x_1} = O(1), \ \frac{\partial \phi_j}{\partial x_2} = O(|x_1 - a_1^*|), \\ \gamma_1 = O\left(\frac{1}{|x_1 - a_1^*|}\right), \ \gamma_2 = O(1), \end{cases}$$

for j = 1, 4 and when x_1 tends to a_1^* .

The three integrands are bounded for i, j = 1, 4:

$$\int_{K} k^{2} \gamma_{1} \gamma_{2} \phi_{i} \bar{\phi}_{j} \, dV, \quad \int_{K} \frac{\gamma_{2}}{\gamma_{1}} \frac{\partial \phi_{i}}{\partial x_{1}} \frac{\partial \bar{\phi}_{j}}{\partial x_{1}} \, dV, \quad \int_{K} \frac{\gamma_{1}}{\gamma_{2}} \frac{\partial \phi_{i}}{\partial x_{2}} \frac{\partial \bar{\phi}_{j}}{\partial x_{2}} \, dV.$$

Workshop Benasque 2007

ヘロン 人間 とくほと くほとう

Spherical waves generated by a monopole

Neumann data on the unit circumference,

$$\frac{\partial p}{\partial \boldsymbol{n}}(\boldsymbol{x}) = \frac{i}{4} \mathbf{H}_1^{(1)} \left(\frac{\omega}{c} |\boldsymbol{x} - \boldsymbol{a}| \right),$$

being $\boldsymbol{a}=(0.5,0)$, $\omega=750\,\mathrm{rad/s}$ and $c=340\,\mathrm{m/s}.$

Absorbing functions:

$$\sigma_1(x_1) := \frac{c}{a_1^* - |x_1|},$$

$$\sigma_2(x_2) := \frac{c}{a_2^* - |x_2|}.$$

イロト イ得ト イヨト イヨト

Mesh

Workshop Benasque 2007

Numerical test

Spherical waves generated by a monopole

USC

э

< ∃ >

Order 2 of convergence for $L^2\mbox{-relative error}$ in the fluid domain $\Omega_{\mbox{\rm F}}.$

∃ ⊳

Comparison between a quadratic σ and our proposal of unbounded function.

		Unbou	Unbounded		Quadratic		
$\omega(rad/s)$	d.o.f.	Error(%)	κ		σ^*	Error(%)	κ
250	464	0.763	6.7e+02		22.28c	11.644	4.7e+02
	1720	0.131	5.1e+03		29.57c	3.675	5.0e+03
	6768	0.029	4.1e+04		38.37c	1.134	4.6e+04
750	464	1.700	1.1e+02		27.67c	7.602	1.1e+02
	1720	0.447	7.0e+02		35.52c	2.291	9.4e+02
	6768	0.109	5.6e+03		43.49c	0.698	8.2e+03
1250	464	6.958	2.7e+02		27.89c	11.620	2.9e+02
	1720	1.946	1.1e+03		36.94c	3.336	1.7e+03
	6768	0.430	9.7e+03		45.70c	0.919	1.5e+03

 Remark: the optimal σ* depends on the mesh and the data of the problem.

Э

Comparison using exact and numerical integration with an unbounded function $\boldsymbol{\sigma}.$

		Gauss-L	.egendre	Exact Integration
$\omega(rad/s)$	d.o.f.	4 nodes	9 nodes	
	464	0.763689	0.770405	0.763485
250	1720	0.130572	0.130413	0.130580
	6768	0.028858	0.028755	0.028860
750	464	1.699869	1.699611	1.699889
	1720	0.446922	0.446910	0.446922
	6768	0.109444	0.109467	0.109443
1250	464	6.957597	6.958152	6.958012
	1720	1.946417	1.946320	1.946313
	6768	0.429920	0.429913	0.429912

• **Conclusion:** the quadrature rules do not perturb the accuracy of PML.

Э

Waves generated by a curved tuning fork

Geometry:

- $\bullet~$ Fork thickness $0.25~{\rm m}$
- Interior radius 1 m

Neumann data:

$$\frac{\partial p}{\partial \boldsymbol{n}}(\boldsymbol{x}) = \frac{\partial}{\partial \boldsymbol{n}}(e^{i\frac{\omega}{c}x_1})$$

with $\omega = 2\pi c \operatorname{rad/s}$, $c = 340 \operatorname{m/s}$. Absorbing functions:

$$\sigma_1(x_1) := \frac{c}{a_1^* - |x_1|},$$

$$\sigma_2(x_2) := \frac{c}{a_2^* - |x_2|}.$$

4 m 0.25 m

イロト イポト イヨト イヨト

Mesh

Workshop Benasque 2007

Statement of the Perfectly Matched Layers

Numerical test

Relative difference in $L^2\text{-norm}{:}~0.233\%$

Statement of the Perfectly Matched Layers

Numerical test

Relative difference in $L^2\text{-norm}{:}~0.233\%$

э

- ∢ ≣ ▶

Conclusions

- We propose a new construction of the PML using a singular absorbing function σ .
- The method can be implemented in practice since the integrals of the discrete variational problem are bounded for a standard choice of FEM spaces.
- We have implemented this method in a computer code obtaining a better performance than the classical PML techniques.

 A. BERMÚDEZ, L. HERVELLA-NIETO, A. PRIETO, R. RODRÍGUEZ. Optimal perfectly matched layers with unbounded decay functions for time-harmonic acoustic scattering problems. Journal of Computational Physics 223 (2007) 469-488.

- 不得下 不良下 不良下

Statement of the scattering problem

$$\begin{split} & \overrightarrow{\operatorname{Given}} \ f \in \operatorname{H}^{\frac{1}{2}}(\Gamma), \ \text{find} \ p \in \operatorname{H}^{1}_{\operatorname{loc}}(\mathbb{R}^{2} \setminus \overline{\Omega}) \\ & \overrightarrow{\Omega}) \ \text{such that} \\ & \begin{cases} \Delta p + k^{2}p = 0 & \text{ in } \mathbb{R}^{2} \setminus \overline{\Omega}, \\ & p = f & \text{ on } \Gamma, \\ & \lim_{r \to \infty} \sqrt{r} \left(\frac{\partial p}{\partial r} - ikp \right) = 0. \end{cases} \end{split}$$

• Difficulty: solving the problem in an unbounded domain.

• Solution: use the Dirichlet-to-Neumann (DtN) operator.

- E - E

Scattering problem with the DtN operator

Given
$$f \in \mathrm{H}^{\frac{1}{2}}(\Gamma)$$
, find $p \in \mathrm{H}^{1}(B_{R} \setminus \overline{\Omega})$ such that

$$\begin{cases} \Delta p + k^{2}p = 0 & \text{in } B_{R} \setminus \overline{\Omega}, \\ p = f & \text{on } \Gamma, \\ \frac{\partial p}{\partial \mu} = Gp & \text{on } S_{R}. \end{cases}$$
where

G is the **DtN operator** given by a problem stated in $\mathbb{R}^2 \setminus \overline{B_R}$. If $q \in \mathrm{H}^{\frac{1}{2}}(S_R)$

$$Gg = \sum_{n=-\infty}^{\infty} g_n k \frac{[H_n^{(1)}]'(kR)}{H_n^{(1)}(kR)} e^{in\theta}, \ g_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} g(\theta) e^{-in\theta} d\theta.$$

 $\overline{\partial \nu}$

э

★ Ξ ► < Ξ ►</p>

< 🗇 🕨

DtN operator

$$\begin{array}{cccc} G: & \mathrm{H}^{\frac{1}{2}}(S_{R}) & \longrightarrow & \mathrm{H}^{-\frac{1}{2}}(S_{R}) \\ & g & \longmapsto & \left. \frac{\partial \tilde{p}}{\partial \boldsymbol{\nu}} \right|_{S_{R}} \end{array}$$

where $\tilde{p} \in \mathrm{H}^1_{\mathrm{loc}}(\mathbb{R}^2 \setminus \overline{B_R})$ is the unique solution of

$$\begin{cases} \Delta \tilde{p} + k^2 \tilde{p} = 0 & \text{in } \mathbb{R}^2 \setminus \overline{B_R}, \\ \tilde{p} = g & \text{on } S_R, \\ \lim_{r \to \infty} \sqrt{r} \left(\frac{\partial \tilde{p}}{\partial r} - ik \tilde{p} \right) = 0. \end{cases}$$

- Drawback: this problem is stated in an unbounded domain.
- Solution: use the Perfectly Matched Layer (PML) technique.

→ Ξ > < Ξ >

$$\begin{array}{ccc} \hat{G}: & \mathrm{H}^{\frac{1}{2}}(S_{R}) & \longrightarrow & \mathrm{H}^{-\frac{1}{2}}(S_{R}) \\ g & \longmapsto & \frac{1}{\gamma(R)} \frac{\partial \hat{p}}{\partial \nu} \Big|_{S_{R}} \end{array}$$

where \hat{p} is the solution of

$$\left\{ \begin{array}{l} \frac{\partial}{\partial r} \left[\frac{\hat{\gamma}}{\gamma} \frac{\partial \hat{p}}{\partial r} \right] + \frac{\gamma}{\hat{\gamma}} \frac{\partial^2 \hat{p}}{\partial \theta^2} + k^2 \gamma \hat{\gamma} \hat{p} = 0, \\ \hat{p} = g \quad \text{ on } S_R, \end{array} \right.$$

イロト イポト イヨト イヨト

where
$$\hat{r}(r) = r\hat{\gamma}(r) = r + \frac{i}{\omega}\int_{R}^{r}\sigma(s)\,ds$$
 and $\gamma(r) = \frac{d\hat{r}}{dr}(r)$.

Questions

- Choice of absorbing function σ .
- Relation between G and \hat{G} .

Existence and uniqueness of smooth solutions

Let us define the weighted Sobolev space

$$\begin{aligned} \mathbf{V} &:= \left\{ v \in \mathbf{H}_{loc}^{1}(\mathbf{D}) : \left\| q \right\|_{\mathbf{V}}^{2} := \int_{R}^{R^{*}} \int_{-\pi}^{\pi} \left| \frac{\hat{\gamma}(r)r}{\gamma(r)} \right| \left| \frac{\partial q}{\partial r} \right|^{2} \, d\theta \, dr \\ &+ \int_{R}^{R^{*}} \int_{-\pi}^{\pi} \left| \frac{\gamma(r)}{\hat{\gamma}(r)r} \right| \left| \frac{\partial q}{\partial \theta} \right|^{2} \, d\theta \, dr + \int_{R}^{R^{*}} \int_{-\pi}^{\pi} \left| \hat{\gamma}(r)\gamma(r)r \right| \left| q \right|^{2} \, d\theta \, dr < +\infty \right\}. \end{aligned}$$

Existence and uniqueness of smooth solutions

If $g \in H^s(S_R)$ with s > 3/2, then there exists an unique solution $\hat{p} \in \mathcal{V} \cap \mathcal{C}^1(B_{R^\star} \setminus B_R) \cap \mathcal{C}^2(B_{R^\star} \setminus \overline{B_R})$ satisfying

$$\begin{cases} \frac{\partial}{\partial r} \left[\frac{\hat{\gamma}}{\gamma} \frac{\partial \hat{p}}{\partial r} \right] + \frac{\gamma}{\hat{\gamma}} \frac{\partial^2 \hat{p}}{\partial \theta^2} + k^2 \gamma \hat{\gamma} \hat{p} = 0 \quad \text{in } B_{R^\star} \setminus \overline{B_R}, \\ \hat{p} = g \quad \text{on } S_R. \end{cases}$$

э

(* E) * E *

Series representation of PML solution

If $g \in \mathrm{H}^s(S_R)$ with s > 3/2, then the unique solution of PML problem $\hat{p} \in \mathrm{V} \cap \mathcal{C}^1(B_{R^\star} \setminus B_R) \cap \mathcal{C}^2(B_{R^\star} \setminus \overline{B_R})$ satisfying

$$\left\{ \begin{array}{ll} \frac{\partial}{\partial r} \left[\frac{\hat{\gamma}(r)}{\gamma(r)} \frac{\partial \hat{p}}{\partial r} \right] + \frac{\gamma(r)}{\hat{\gamma}(r)} \frac{\partial^2 \hat{p}}{\partial \theta^2} + k^2 \gamma(r) \hat{\gamma}(r) \hat{p} = 0 & \quad \text{in } B_{R^\star} \setminus \overline{B_R}, \\ \hat{p} = g & \quad \text{on } S_R, \end{array} \right.$$

is represented by the series

$$\hat{p}(\boldsymbol{x}) = \sum_{n=-\infty}^{\infty} \frac{g_n}{H_n^{(1)}(kR)} H_n^{(1)}\left(k\hat{r}_{\boldsymbol{x}}\right) \mathrm{e}^{in\theta_{\boldsymbol{x}}},$$

where g_n is the *n*-th Fourier coefficient of g.

・同・ ・ヨ・ ・ヨ・

Proof

Sketch of the proof:

 (i) The outgoing fundamental solution of the PML problem is

$$\Phi(\boldsymbol{x}, \boldsymbol{y}) = \frac{i}{4} H_0^{(1)}(k d(\boldsymbol{x}, \boldsymbol{y})),$$

where $d(x, y) = \sqrt{\hat{r}_x^2 + \hat{r}_y^2 - 2\hat{r}_x\hat{r}_y\cos(\theta_y - \theta_x)}$ is a complex 'distance' which plays the role of |x - y|.

(ii) Two *"trace results"*: if $\hat{p} \in V \cap C^1(B_{R^\star} \setminus B_R) \cap C^2(B_{R^\star} \setminus \overline{B_R})$ is a solution of PML equation and $q \in V$, then

$$\lim_{\tilde{R}\to R^*} \int_{S_{\tilde{R}}} \left| \hat{\gamma} \right| \left| q \right|^2 \, dS = 0, \qquad \lim_{\tilde{R}\to R^*} \int_{S_{\tilde{R}}} \frac{\hat{\gamma}}{\gamma} \frac{\partial \hat{p}}{\partial r} q \, dS = 0.$$

Workshop Benasque 2007

イロト イポト イヨト イヨト

Proof

Sketch of the proof:

(iii) Using (i) and (ii), we obtain the Green's formula for the PML problem

$$\hat{p}(\boldsymbol{x}) = \frac{1}{\gamma(R)} \int_{S_R} \left\{ \frac{\partial \Phi(\boldsymbol{x}, \boldsymbol{y})}{\partial r_{\boldsymbol{y}}} \hat{p}(\boldsymbol{y}) - \frac{\partial \hat{p}}{\partial r_{\boldsymbol{y}}}(\boldsymbol{y}) \Phi(\boldsymbol{x}, \boldsymbol{y}) \right\} \, dS_{\boldsymbol{y}}.$$

(iv) Using (iii), the addition theorem shows a series representation of Φ :

$$\Phi(\boldsymbol{x}, \boldsymbol{y}) = \frac{i}{4} \sum_{n = -\infty}^{\infty} H_n^{(1)}(k \hat{r}_{\boldsymbol{x}}) J_n(k \hat{r}_{\boldsymbol{y}}) e^{in(\theta_{\boldsymbol{x}} - \theta_{\boldsymbol{y}})}$$

(v) We conclude the result using (i), (iii) and (iv).

イロト イポト イヨト イヨト

Coupled fluid/PML problem

For $f \in H^{\frac{1}{2}}(\Gamma)$, there exists a unique solution $(p, \hat{p}) \in H^{1}(B_{R} \setminus \overline{\Omega}) \times V$ of the following problem:

$$\begin{split} -\Delta p - k^2 p &= 0 & \text{in } B_R \setminus \overline{\Omega}, \\ -\operatorname{div}(\boldsymbol{A} \operatorname{\mathbf{grad}} \hat{p}) - \gamma \hat{\gamma} k^2 \hat{p} &= 0 & \text{in } B_{R^*} \setminus \overline{B_R}, \\ p &= f & \text{on } \Gamma, \\ \frac{\partial p}{\partial \boldsymbol{\nu}} &= \boldsymbol{A} \operatorname{\mathbf{grad}} \hat{p} \cdot \boldsymbol{\nu} & \text{in } \operatorname{H}^{-\frac{1}{2}}(S_R), \\ p &= \hat{p} & \text{on } S_R, \end{split}$$

where $\boldsymbol{A} = (\hat{\gamma}/\gamma)\boldsymbol{e}_r\otimes \boldsymbol{e}_r + (\gamma/\hat{\gamma})\boldsymbol{e}_\theta\otimes \boldsymbol{e}_\theta.$

Moreover, p coincides with the solution of the scattering problem.

(4 回) (4 回) (4 回) (4

Sketch of the proof

• Existence:

 $p = \text{Restriction to } B_R \setminus \overline{\Omega} \text{ of the classical scattering solution},$

$$\hat{p} = \sum_{n=-\infty}^{\infty} \frac{(p|_{S_R})_n}{H_n^{(1)}(kR)} H_n^{(1)}(k\hat{r}_{\boldsymbol{x}}) e^{in\theta_{\boldsymbol{x}}}.$$

• Uniqueness:

Using local regularity results (McLean 2000): the unique solution is the **smooth** one.

• Recovering the classical scattering solution:

The classical DtN (denoted by G) is equal to the PML-DtN operator \hat{G} :

$$\hat{G}g = \frac{1}{\gamma} \frac{\partial \hat{p}}{\partial r} = \frac{\partial p}{\partial r} = Gg.$$

イロト イポト イヨト イヨト

Conclusions

- We propose a new construction of the radial PML using a singular absorbing function σ .
- With this choice, we prove that the exact solution of the scattering problem is recovered by the PML technique.

- A. BERMÚDEZ, L. HERVELLA-NIETO, A. PRIETO, R. RODRÍGUEZ. An exact bounded PML for the Helmholtz equation. Comptes Rendus de l'Acadmie des Sciences - Series I - Mathematics. C. R. Math. Acad. Sci. Paris 339 (2004), n. 11, 803-808.
- A. BERMÚDEZ, L. HERVELLA-NIETO, A. PRIETO, R. RODRÍGUEZ. An exact bounded perfectly matched layer for time-harmonic scattering problems. To appear in SIAM Journal of Scientific Computing.

4 E K 4 E K