Maxwell's equations and

elastic waves with a pressure term:

Simultaneous controllability

by

G. Perla Menzala

National Laboratory of Scientific Computation (LNCC/MCT) and Federal University of Rio de Janeiro, Brasil

1. Introduction

- In a bounded region $\Omega \subseteq \mathbb{R}^{3}$ with smooth boundary $\partial \Omega$ we consider two different hyperbolic models. One of them is the system of Maxwell equations and the second one is a vector wave equation with a pressure term.
- Under suitable geometric conditions on Ω we obtain for each one of the above models a boundary observability inequality
- Our main result says that we can collect the above information together with some new identities and suitable relation on the parameters of the models to obtain "simultaneous" exact boundary control for both systems.
- "Simultaneous" exact control for wave equations, Maxwell equations and other hyperbolic systems of second order started with the pioneer work of D. Russell and J.L. Lions in the middle 80 's.
- In the absence of dissipations, almost all authors considered two models which differed only on the boundary conditions in order to get "simultaneous" exact controllability.

- B. Kapitonov

Two systems of elastic waves (Siberian Math. J., 1994).
Two systems of Maxwell equations (Comp. Appl. Math., 1996)

- B. Kapitonov + G. Perla Menzala

Two quasi-electrostatic piezoelectric systems (Acta Appl. Mathematicae, 2006).

- B. Kapitonov + M.A. Raupp

Two piezoelectric systems in multilayered media (Comp. Appl. Math., 2003).

- There are several articles considering some dissipative effects on the above models or coupled systems obtaining exact controllability through Russell's "controlability via stabilizability" principle.

Description of the problem

Let $u=u(x, t)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ be the displacement vector

$$
p=p(x, t) \text { scalar function, pressure }
$$

$$
E=E(x, t)=\left(E_{1}(x, t), E_{2}(x, t), E_{3}(x, t)\right) \text { be the elec- }
$$

tric field

$$
\left.H=H(x, t)=\left(H_{1}(x, t), H_{2}(x, t)\right), H_{3}(x, t)\right) \text { be the }
$$ magnetic field

$\mathcal{E}_{0}, \mu_{0}, \rho$ and α are strictly positive constants which represent the permittivity, permeability, scalar density and elastic property of the material respectively.

Maxwell equations

$$
\left\{\begin{array}{l}
\mathcal{E}_{0} E_{t}=\operatorname{curl} H \tag{1}\\
\mu_{0} H_{t}=-\operatorname{curl} E \\
\operatorname{div} E=0 \quad \quad \text { in } \Omega \times(0, T) \\
\operatorname{div} H=0 \\
\eta \times E=R(x, t) \text { on } \partial \Omega \times(0, T) \\
E(x, 0)=E_{0}(x), H(x, 0)=H_{0}(x) \text { in } \Omega
\end{array}\right.
$$

Vector wave equation

$$
\left\{\begin{array}{l}
\rho u_{t t}-\alpha \Delta u+\operatorname{grad} p=0 \tag{2}\\
\operatorname{div} u=0 \quad \text { in } \Omega \times(0, T) \\
u=S(x, t) \text { on } \partial \Omega \times(0, T) \\
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x) \text { in } \Omega
\end{array}\right.
$$

Remark 1
Instead of model (2) we can also treat

$$
\rho u_{t t}-\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial u}{\partial x_{i}}\right)+\operatorname{grad} p=0
$$

where $A_{i j}$ are 3×3 matrices given by $A_{i j}=\left[C_{k h}^{i j}\right]_{3 \times 3}$ where

$$
C_{k h}^{i j}=\left(1-\delta_{i h} \delta_{j k}\right) a_{i k j h}+\delta_{i k} \delta_{j h} a_{i h j k}
$$

with the symmetry

$$
a_{i j k h}=a_{j i k h}=a_{k h i j} .
$$

The isotropic case will be if

$$
a_{i j k h}=\lambda \delta_{i j} \delta_{k h}+\alpha\left(\delta_{j k} \delta_{j h}+\delta_{i h} \delta_{j k}\right)
$$

where λ and α are Lame's constants. In this case the term

$$
\sum_{i, j=1}^{3} \frac{\partial}{\partial x_{j}}\left(A_{i j} \frac{\partial u}{\partial x_{j}}\right)
$$

reduces to $\alpha \Delta u+(\lambda+\alpha) \operatorname{grad}(\operatorname{div} u)$. In order to simplify calculations we chose $\lambda+\alpha=\mathbf{0}$ to obtain (2).

The problem

Given initial states $\left(E_{0}, H_{0}\right),\left(u_{0}, u_{1}\right)$, a time $T>0$ and desired terminal states $\left(\varphi_{0}, \varphi_{1}\right),\left(\psi_{0}, \psi_{1}\right)$ we want to find a vector valued function $S=S(x, t)$ such that the solution $\left\{E, H, u, u_{t}\right\}$ of (1), (2) satisfies

$$
\left.(E, H)\right|_{t=T}=\left(\varphi_{0}, \varphi_{1}\right),\left.\quad\left(u, u_{t}\right)\right|_{t=T}=\left(\psi_{0}, \psi_{1}\right)
$$

S serving as a control function for (2) while the function $R=\mu_{0} \eta \times\left(\eta \times S_{t}\right)$ is a control function for (1).

As we describe below the answer is YES as long as we assume a geometric condition on Ω and a suitable relation between $\mathcal{E}_{0}, \mu_{0}, \rho$ and α.

Remark 2.

1) The techniques we use may allow us to consider variable coeffcients $\mathcal{E}_{0}(x), \mu_{0}(x), \rho(x)$ and $\alpha(x)$ smooth and bounded below by strictly positive constants.
2) We do not want to reduce the Maxwell equations (1) to a second order vector wave equation (which is usually done
in the isotropic case) because we want eventually to extend our discussion to the "anisotropic" Maxwell equations. In this case $\mathcal{E}_{0}(x)$ and $\mu_{0}(x)$ are 3×3 symmetric matrices, positive defined. It is well known that the above reduction can not be done in the anisotropic case.

Function spaces

Consider Maxwell's equations (1) with $R \equiv 0$. Let

$$
\begin{gathered}
\mathcal{H}=\left[L^{2}(\Omega)\right]^{3} \times\left[L^{2}(\Omega)\right]^{3} \\
H(\operatorname{curl}, \Omega)=\left\{w \in\left[L^{2}(\Omega)\right]^{3} ; \operatorname{curl} w \in\left[L^{2}(\Omega)\right]^{3}\right\}
\end{gathered}
$$

with inner products

$$
\begin{aligned}
& \qquad\langle v, w\rangle_{\mathcal{H}}=\int_{\Omega}\left\{\mathcal{E}_{0} v_{1} \cdot w_{1}+\mu_{0} v_{2} \cdot w_{2}\right\} d x \\
& \forall v\left(v_{1}, v_{2}\right), w=\left(w_{1}, w_{2}\right) \in \mathcal{H} \\
& \text { and } \\
& \left\langle v_{1}, v_{2}\right\rangle_{H(\operatorname{curl}, \Omega)}=\int_{\Omega}\left\{v_{1} \cdot v_{2}+\operatorname{curl} v_{1} \cdot \operatorname{curl} v_{2}\right\} d x
\end{aligned}
$$

Finally

$$
\mathcal{H}_{0}=H(\operatorname{curl}, \Omega) \times H(\operatorname{curl}, \Omega)
$$

with

$$
\begin{gathered}
\langle v, w\rangle_{\mathcal{H}_{0}}=\int_{\Omega}\left\{\mathcal{E}_{0} v_{1} \cdot w_{1}+\mu_{0} v_{2} \cdot w_{2}+\operatorname{curl} v_{1} \cdot \operatorname{curl} w_{1}\right. \\
\left.+\operatorname{curl} v_{2} \cdot \operatorname{curl} w_{2}\right\} d x
\end{gathered}
$$

Consider the closed subspace

$$
\mathcal{H}_{1}=\left\{w=\left(w_{1}, w_{2}\right) \in \mathcal{H}_{0} ; \eta \times w_{1}=0 \text { on } \partial \Omega\right\}
$$

Define

$$
\mathcal{A}: \mathcal{D}(\mathcal{A})=\mathcal{H}_{1} \mapsto \mathcal{H}
$$

Then, \mathcal{A} is skew-selfadjoint. By Stone's theorem \mathcal{A} generates a one parameter group of unitary operators $\{U(t)\}_{t \in \mathbb{R}}$ on \mathcal{H}. Remains to Prove that the components of $U(t) f$ are divergente free. Here $U(t) f=\left(w_{1}, w_{2}\right)=(E, H)$.

Observe that the condition

$$
\operatorname{div} w_{1}=0 \quad \operatorname{div} w_{2}=0
$$

(in the sense of distributions) means to say that $w=$ $\left(w_{1}, w_{2}\right) \in M_{1}=M^{\perp}$ where
$M=\left\{\left(\operatorname{grad} \varphi_{1}, \operatorname{grad} \varphi_{2}\right) \quad\right.$ with $\left.\quad \varphi_{1}, \varphi_{2} \in C_{0}^{\infty}(\Omega)\right\}$.

We can prove that $U(t)$ takes $M_{1} \cap \mathcal{D}(\mathcal{A})$ into itself. Therefore, problem (1) (with $R \equiv 0$) is globally well posed for any initial data in $M_{1} \cap \mathcal{D}(\mathcal{A})$.

Remark 3. We can check that any element $v=\left(v_{1}, v_{2}\right) \in$ $M_{1} \cap \mathcal{D}(\mathcal{A})$ satisfies

$$
\eta \cdot v_{2}=0 \quad \text { on } \quad \partial \Omega
$$

(in the sense of distributions).
Concerning problem (2) (with $S \equiv 0$) we can use Galerkin method to find u and p (defined up to a constant). This is well known by choosing
$V=\left\{\varphi \in\left[C_{0}^{\infty}(\Omega)\right]^{3}, \operatorname{div} \varphi=0\right\}$
$V=$ the closure of V with respect to the norm of $\left[H_{0}^{1}(\Omega)\right]^{3}$ and

$$
W=V \cap\left[H^{2}(\Omega)\right]^{3}
$$

Considering $u_{0} \in W, u_{1} \in V$ we obtain a unique solution $\{u, p\}$ of problem (2) with p unique up to an additive constant.

An alternative would be to use R. Farwing + J. Sohr

(J. Math. Soc. Japan 46, 1994, 607-643) and write

$$
\begin{gathered}
{\left[L^{2}(\Omega)\right]^{3}=\overline{\left\{v \in\left[C_{0}^{\infty}(\Omega)\right]^{3}, \operatorname{div} v=0 \text { in } \Omega\right\}} \oplus} \\
\left\{\operatorname{grad} p \in\left[L^{2}(\Omega)\right]^{3} \quad \text { with } p \in L^{2}(\Omega)\right\} \\
=\stackrel{\circ}{Y}(\Omega) \oplus G(\Omega)
\end{gathered}
$$

the closure is in the norm of $\left[L^{2}(\Omega)\right]^{3}$.
Let \mathbb{P} the continuous projection from $\left[L^{2}(\Omega)\right]^{3}$ to $\stackrel{\circ}{Y}(\Omega)$ and the Stokes operator $\mathbb{A}=-\mathbb{P} \Delta$ with domain

$$
\mathcal{D}(\mathbb{A})=\left\{w \in \stackrel{\circ}{Y}(\Omega) \cap\left[H^{2}(\Omega)\right]^{3} ;\left.w\right|_{\partial \Omega}=0\right\}
$$

Let
$\mathcal{H}=\left\{u=\left(u_{1}, u_{2}\right), u_{1} \in\left[H^{1}(\Omega)\right]^{3}, \operatorname{div} u_{1}=0, u_{2} \in \stackrel{\circ}{Y}(\Omega)\right\}$
with inner product
$\langle u, w\rangle_{\mathcal{H}}=\int_{\Omega}\left\{\rho u_{2} \cdot w_{2}+\alpha \sum_{j=1}^{3} \frac{\partial u_{1}}{\partial x_{j}} \cdot \frac{\partial w_{1}}{\partial x_{j}}\right\} d x$
whenever $u=\left(u_{1}, u_{2}\right), w=\left(w_{1}, w_{2}\right) \in \mathcal{H}$. In \mathcal{H} we define the operator \widetilde{A}

$$
\widetilde{A} u=\widetilde{A}\left(u_{1}, u_{2}\right)=\left(u_{2},-\rho^{-1} \alpha \mathbb{A} u_{1}\right)
$$

with domain

$$
\begin{gathered}
\mathcal{D}(\widetilde{A})=\left\{u=\left(u_{1}, u_{2}\right) \in \mathcal{H}, u_{1} \in\left[H^{2}(\Omega)\right]^{3} \cap \stackrel{\circ}{Y}(\Omega)\right. \\
\left.u_{1}=0 \text { on } \partial \Omega, u_{2} \in \stackrel{\circ}{Y}(\Omega)\right\}
\end{gathered}
$$

Using results in the above article we deduce that \widetilde{A} generates a one-parameter group of unitary operators $\{U(t)\}_{t \in \mathbb{R}}$ on \mathcal{H}.

Observation. In the standard way we could obtain more regular solutions of either problem (1) or (2).

Boundary observability

Let $h=h(x)$ smooth scalar function on $\bar{\Omega}$

$$
\begin{aligned}
& M_{1}=M_{1}(E, H)=t E+\mu_{0} \nabla h \times H \\
& M_{2}=M_{2}(E, H)=t H-\mathcal{E}_{0} \nabla h \times E .
\end{aligned}
$$

If $\{E, H\}$ regular solution of problem (1) (with $R \equiv 0$). Then

$$
\begin{aligned}
0= & 2 M_{1} \cdot\left\{\mathcal{E}_{0} E_{t}-\operatorname{curl} H\right\}+2 M_{2} \cdot\left\{\mu_{0} H_{t}+\operatorname{curl} E\right\} \\
& +2 \mathcal{E}_{0}(\nabla h \cdot E) \operatorname{div} E+2 \mu_{0}(\nabla h \cdot H) \operatorname{div} H .
\end{aligned}
$$

Rearranging terms in the identity to obtain

$$
\begin{equation*}
\frac{\partial A}{\partial t}=\operatorname{div} \vec{B}+D \tag{3}
\end{equation*}
$$

(Fundamental Identity)
where

$$
A=t\left(\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right)+2 \mathcal{E}_{0} \mu_{0} \nabla h \cdot(H \times E)
$$

$$
\begin{aligned}
\vec{B}= & 2 t H \times E+\nabla h\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right\} \\
& -2 \mathcal{E}_{0} E(E \cdot \nabla h)-2 \mu_{0} H(H \cdot \nabla h)
\end{aligned}
$$

and

$$
\begin{aligned}
D= & 2 \sum_{i, j=1}^{3} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}}\left\{\mathcal{E}_{0} E_{i} E_{j}+\mu_{0} H_{i} H_{j}\right\} \\
& -(\Delta h-1)\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right\}
\end{aligned}
$$

Similarly, let $\{u, p\}$ regular solution of problem (2) (with
$S \equiv 0)$ and consider

$$
\begin{aligned}
& M_{3}=M_{3}(u)=t u_{t}+(\nabla h \cdot \nabla) u+u \\
& M_{4}=M_{4}(p)=\operatorname{tp} \frac{\partial}{\partial t}+p(\nabla h \cdot \nabla)+p
\end{aligned}
$$

then

$$
0=2 M_{3} \cdot\left\{\rho u_{t t}-\alpha \Delta u+\nabla p\right\}+2 M_{4}(p) \operatorname{div} u
$$

Rearranging terms in the above identity we obtain

$$
\begin{equation*}
\frac{\partial A_{1}}{\partial t}=\operatorname{div} \vec{G}+D_{1} \tag{4}
\end{equation*}
$$

(Fundamental Identity)
where

$$
\begin{aligned}
& A_{1}=t\left\{\rho\left|u_{t}\right|^{2}+\alpha \sum_{i=1}^{3}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right\}+2 \rho u_{t} \cdot[(\nabla h \cdot \nabla) u+u] \\
& \vec{G}=\left(G_{1}, G_{2}, G_{3}\right)+\left(-2 \rho\left[t u_{t}+(\nabla h \cdot \nabla) u+u\right]\right) \\
& G_{i}= 2\left[t u_{t}+(\nabla h \cdot \nabla) u+u\right] \cdot \alpha \frac{\partial u}{\partial x_{i}} \\
&+\frac{\partial h}{\partial x_{i}}\left(\rho\left|u_{t}\right|^{2}-\alpha \sum_{k=1}^{3}\left|\frac{\partial u}{\partial x_{k}}\right|^{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{1}= & (3-\Delta h) \rho\left|u_{t}\right|^{2}+(\Delta h-1) \alpha \sum_{k=1}^{3}\left|\frac{\partial u}{\partial x_{k}}\right|^{2} \\
& -2 \alpha \sum_{i, q=1}^{3} \frac{\partial^{2} h}{\partial x_{q} \partial x_{i}}\left(\frac{\partial u}{\partial x_{i}} \cdot \frac{\partial u}{\partial x_{q}}\right)+2 p \sum_{i, k=1}^{3} \frac{\partial^{2} h}{\partial x_{k} \partial x_{i}} \frac{\partial u_{k}}{\partial x_{i}}
\end{aligned}
$$

Integration over $\Omega \times(0, T)$ of identity (3) give us

$$
\begin{align*}
& T \int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right\} d x+\left.2 \mathcal{E}_{0} \mu_{0} \int_{\Omega} \nabla h \cdot(H \times E) d x\right|_{t=0} ^{t=T} \\
& =\int_{0}^{T} \int_{\partial \Omega} J(E, H, h) d \Gamma d t \mid \int_{0}^{T} \int_{\Omega} D d x d t \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
J= & 2 t \eta \cdot(H \times E)+\frac{\partial h}{\partial \eta}\left(\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right) \\
& -2 \mathcal{E}_{0}(E \cdot \eta)(E \cdot \nabla h)-2 \mu_{0}(H \cdot \eta)(H \cdot \nabla h)
\end{aligned}
$$

We use the boundary condition of problem (1) (with $R \equiv 0)$ i.e. $\eta \times E=0$ on $\partial \Omega \times(0, T)$ and obtain

$$
J=\frac{\partial h}{\partial \eta}\left\{\mu_{0}|H \times \eta|^{2}-\mathcal{E}_{0}(E \cdot \eta)^{2}\right\}
$$

Next, we want to find appropiate bounds for $\int_{0}^{T} \int_{\Omega} D d x d t$.

Consider the problem

$$
\left\{\begin{array}{l}
\Delta \Phi=1 \text { in } \Omega \\
\frac{\partial \Phi}{\partial \eta}=\frac{\operatorname{Vol}(\Omega)}{\operatorname{Area}(\partial \Omega)} \text { on } \partial \Omega
\end{array}\right.
$$

which admits solution $\Phi \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$.
Let $0<\delta<1$ and define

$$
h(x)=\delta \Phi(x)+\frac{1}{2}\left|x-x_{0}\right|^{2}
$$

for some $x_{0} \in \mathbb{R}^{3}$.
Direct calculations proves that

$$
\begin{aligned}
& D=2 \delta \sum_{i, j=1}^{3} \frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{j}}\left(\mathcal{E}_{0} E_{i} E_{j}+\mu_{0} H_{i} H_{j}\right)-\delta\left(\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right) \\
& \text { Let } C=C(\Phi) \text { be } \\
& \qquad C(\Phi)=\max _{\substack{x \in \bar{\Omega} \\
i, j=1,2,3}}\left|\frac{\partial^{2} \Phi(x)}{\partial x_{i} \partial x_{j}}\right|
\end{aligned}
$$

We can verify that $C(\Phi) \geq \frac{1}{3}$ and obtain the bound

$$
|D| \leq \delta\{6 C(\Phi)-1\}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right\}
$$

which give us the estimate
$\int_{0}^{T} \int_{\Omega} D d x d t \leq \delta(6 C(\Phi)-1) T \int_{\Omega}\left(\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right) d x$.

Finally we want to get bounds for the term

$$
\left.2 \mathcal{E}_{0} \mu_{0} \int_{\Omega} \nabla h \cdot(H \times E) d x\right|_{t=0} ^{t=T}
$$

in (5). Let

$$
C_{1}(\Phi)=\max _{x \in \bar{\Omega}}\left\{|\nabla \Phi|+\left|x-x_{0}\right|\right\}
$$

Then we can verify that

$$
\begin{align*}
& 2 \int_{\Omega} \mathcal{E}_{0} \mu_{0} \nabla h \cdot(H \times E) d x \\
& \quad \leq 4 \sqrt{\mathcal{E}_{0} \mu_{0}} C_{1}(\Phi) \int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right\} \tag{7}
\end{align*}
$$

Hence, we obtain the estimate

$$
\begin{align*}
& {[1-}\delta(6 C(\Phi)-1)]\left(T-T_{0}\right) \int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right\} d x \\
& \quad \leq \int_{0}^{T} \int_{\partial \Omega} \frac{\partial h}{\partial \eta}\left\{\mu_{0}|H \times \eta|^{2}-\mathcal{E}_{0}(E \cdot \eta)^{2}\right\} d \Gamma \tag{8}
\end{align*}
$$

where

$$
T_{0}=\frac{4 \sqrt{\mathcal{E}_{0} \mu_{0}} C_{1}(\Phi)}{1-\delta(6 C(\Phi)-1)}
$$

In the same line of ideas, using identity using (4), we find that the solution of problem (2) (with $S \equiv 0$) satisfies

$$
\begin{align*}
& {\left[1-\delta \tilde{c}_{1}\right]\left(T-\tilde{T}_{0}\right) \int_{\Omega}\left\{\rho\left|u_{t}\right|^{2}+\alpha \sum_{i=1}^{3}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right\} d x} \tag{9}\\
& \quad \leq \int_{0}^{T} \int_{\partial \Omega} \frac{\partial h}{\partial \eta} \alpha\left|\eta \times \frac{\partial u}{\partial \eta}\right|^{2} d \Gamma d t
\end{align*}
$$

for some $\tilde{c}_{1}>0, \tilde{T}_{0}>0$ and $T>\tilde{T}_{0}$.
To use conveniently inequalities (8) and (9) we will choose $\delta=\delta_{1}>0$ such that

$$
1-\delta_{1}(6 C(\Phi)-1)>0, \quad 1-\delta_{1} \tilde{c}_{1}>0
$$

and a geometric condition on Ω :

Hipothesis

There exists $x_{0} \in \Omega$ such that $\delta_{1} \frac{\operatorname{Vol}(\Omega)}{\operatorname{Area}(\partial \Omega)}+\left(x-x_{0}\right) \cdot \eta>0 \quad$ for all $x \in \partial \Omega$.

Observe that since $h(x)=\delta_{1} \Phi(x)+\frac{1}{2}\left|x-x_{0}\right|^{2}$ then $\frac{\partial h}{\partial \eta}(x)=\delta_{1} \frac{\partial \Phi}{\partial \eta}+\left(x-x_{0}\right) \cdot \eta=\delta_{1} \frac{\operatorname{Vol}(\Omega)}{\operatorname{Area}(\partial \Omega)}+\left(x-x_{0}\right) \cdot \eta$
for any $x \in \partial \Omega$.
From (8) and (9) we deduce

$$
\begin{aligned}
& \left(1-\delta_{1} c_{2}\left(T-T_{1}\right) \int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}\right.\right. \\
& \left.\quad+\rho\left|u_{t}\right|^{2}+\alpha \sum_{i=1}^{3}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right\} d x \\
& \leq \int_{0}^{T} \int_{\partial \Omega} \frac{\partial h}{\partial \eta}\left\{\alpha\left|\eta \times \frac{\partial u}{\partial \eta}\right|^{2}+\mu_{0}|H \times \eta|^{2}-\mathcal{E}_{0}(E \cdot \eta)^{2}\right\} d \Gamma
\end{aligned}
$$

where $c_{2}=\max \left\{6 c(\Phi)-1, \tilde{c}_{1}\right\}$ and $T_{1}=\max \left\{T_{0}, \tilde{T}_{0}\right\}$ We need additional identities:

Let $\left\{E, H, u, u_{t}\right\}$ solution of (1), (2). We have

$$
\begin{align*}
& \mu_{0} H \cdot\left\{\rho u_{t t}-\alpha \Delta u+\operatorname{grad} p\right\} \\
& \quad+\rho \mathcal{E}_{0}^{-1} \operatorname{curl} u \cdot\left\{\mathcal{E}_{0} E_{t}-\operatorname{curl} H\right\} \\
& \quad+\rho u_{t} \cdot\left\{\mu_{0} H_{t}+\operatorname{curl} E\right\}+\left(\mu_{0} p-\alpha \mu_{0} \operatorname{div} u\right) \operatorname{div} H \\
& \quad+\left(\rho \mathcal{E}_{0}^{-1}-\alpha \mu_{0}\right) \operatorname{curl} u \cdot \operatorname{curl} H \tag{11}\\
& = \\
& \frac{\partial}{\partial t}\left[\rho u_{t} \cdot \mathcal{E}_{0} H+\rho \operatorname{curl} u \cdot E\right] \\
& \quad-\operatorname{div}\left[\rho u_{t} \times E+\alpha \mu_{0}(\operatorname{div} u) H\right. \\
& \left.\quad \quad+\alpha \mu_{0} H \times \operatorname{curl} u-\mu_{0} p H\right]
\end{align*}
$$

Observe that identity (11) represents a conservation law
for the Maxwell system and the hyperbolic system with pressure term if $\rho \mathcal{E}_{0}^{-1}=\alpha \mu_{0}$.
Assume $\rho \mathcal{E}_{0}^{-1}=\alpha \mu_{0}$. Integration of identity (11) in $\Omega \times(0, T)$ give us

$$
\begin{align*}
& \left.\int_{\Omega}\left\{\rho u_{t} \cdot \mathcal{E}_{0} H+\rho \operatorname{curl} u \cdot E\right\} d x\right|_{t=0} ^{t=T} \\
& =\int_{0}^{T} \int_{\partial \Omega}\left[\rho\left(u_{t} \times E\right) \cdot \eta\right. \tag{12}\\
& \left.\quad \quad+\alpha \mu_{0}(H \times \operatorname{curl} u) \cdot \eta-\mu_{0} p H \cdot \eta\right] d \Gamma d t \\
& =-\alpha \mu_{0} \int_{0}^{T} \int_{\partial \Omega}(H \times \eta) \cdot \operatorname{curl} u d \Gamma d t
\end{align*}
$$

due to the boundary condition $\eta \times E=0$ and the fact that $H \cdot \eta=0$ on $\partial \Omega \times(0, T)$ as we saw in the function space framework.
We use the identity

$$
\begin{gathered}
\left|\mu_{0}(H \times \eta)-\alpha \operatorname{curl} u\right|^{2} \\
=\mu_{0}^{2}|H \times \eta|^{2}-2 \alpha \mu_{0}(H \times \eta) \cdot \operatorname{curl} u+\alpha^{2}|\operatorname{curl} u|^{2}
\end{gathered}
$$

in (12) to obtain

$$
\begin{align*}
& \left.\int_{\Omega}\left\{\rho u_{t} \cdot \mathcal{E}_{0} H+\rho \operatorname{curl} u \cdot E\right\} d x\right|_{t=0} ^{t=T} \\
& =\int_{0}^{T} \int_{\partial \Omega}\left\{\frac{1}{2}\left|\mu_{0}(H \times \eta)-\alpha \operatorname{curl} u\right|^{2}-\frac{1}{2} \mu_{0}^{2}|H \times \eta|^{2}\right. \\
& \left.\quad-\frac{\alpha^{2}}{2}\left|\eta \times \frac{\partial u}{\partial \eta}\right|^{2}\right\} d \Gamma d t \tag{13}
\end{align*}
$$

because $\left.u\right|_{\partial \Omega \times(0, T)}=0$ tell us that

$$
\frac{\partial u_{i}}{\partial x_{j}}=\eta_{j} \frac{\partial u_{i}}{\partial \eta}, \quad \text { curl } u=\eta \times \frac{\partial u}{\partial \eta} \text { on } \partial \Omega \times(0, T)
$$

We multiply identity (13) by a convenient positive constant C_{3} and add te resulting identity with (10) to obtain

$$
\begin{align*}
& \left(1-\delta_{1} C_{2}\right)\left(T-T_{1}\right) \int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}+\rho\left|u_{t}\right|^{2}\right. \\
& \left.+\alpha \sum_{i=1}^{3}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right\} d x \\
& +\left.C_{3} \int_{\Omega}\left\{\rho u_{t} \cdot \mathcal{E}_{0} H+\rho \operatorname{curl} u \cdot E\right\} d x\right|_{t=0} ^{t=T} \tag{14}\\
& \leq \int_{0}^{T} \int_{\partial \Omega}\left\{\frac{1}{2} C_{3}\left|\mu_{0}(H \times \eta)-\alpha \operatorname{curl} u\right|^{2}\right. \\
& \left.\quad-\frac{\partial h}{\partial \eta} \mathcal{E}_{0}(E \cdot \eta)^{2}\right\} d \Gamma d t
\end{align*}
$$

We obtain a lower bound for the left hand side of (14) to write

$$
\begin{align*}
&\left(1-\delta_{1} C_{2}\right)\left(T-T_{2}\right) \int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}+\rho\left|u_{t}\right|^{2}\right. \\
&\left.+\alpha \sum_{i=1}^{3}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right\} d x \tag{15}\\
& \leq \int_{0}^{T} \int_{\partial \Omega}\left\{C_{4} \mid \mu_{0}(H \times \eta)-\alpha \text { curl }\left.u\right|^{2}\right. \\
&\left.-\frac{\partial h}{\partial \eta} \mathcal{E}_{0}(E \cdot \eta)^{2}\right\} d \Gamma d t
\end{align*}
$$

for some $T_{2}>0$ and $T>T_{2}$. We can choose $T_{2}=$ $T_{1}+c_{3} c_{4}\left(1-\delta_{1} c_{2}\right)^{-1}$ where $c_{4}=\max \left\{\mu_{0} \sqrt{\alpha \mathcal{E}_{0}}, \frac{\mathcal{E}_{0}}{2} \sqrt{\alpha \mathcal{E}_{0}}\right\}$.

We claim that the term $\mid \mu_{0}(H \times \eta)-\alpha$ curl $u \mid$ on the right hand side of (15) equals to

$$
\left|\alpha \frac{\partial u}{\partial \eta}+\mu_{0} H\right| \quad \text { for any } \quad(x, t) \in \partial \Omega \times(0, T)
$$

In fact, using the boundary conditions we konw that curl $u=\eta \times \frac{\partial u}{\partial \eta}=-\frac{\partial u}{\partial \eta} \times \eta$. Thus

$$
\left|\mu_{0} H \times \eta-\alpha \operatorname{curl} u\right|=\left|\mu_{0} H \times \eta+\alpha\left(\frac{\partial u}{\partial \eta} \times \eta\right)\right|
$$

Since $H \cdot \eta=0$ and $\frac{\partial u}{\partial \eta} \cdot \eta=0$ on $\partial \Omega \times(0, T)$ we have that $\left|\left(\mu_{0} H+\alpha \frac{\partial u}{\partial \eta}\right) \times \eta\right|^{2}+\left.\left(\mu_{0} H+\alpha \frac{\partial u}{\partial \eta}\right) \cdot \eta\right|^{2}=\left|\alpha \frac{\partial u}{\partial \eta}+\mu_{0} H\right|^{2}$ where we used the identity $|v \times \eta|^{2}+(v \cdot \eta)^{2}=|v|^{2}$. This proves our claim. Therefore (15) can be written as

$$
\begin{gather*}
\left(1-\delta_{1} C_{2}\right)\left(T-T_{2}\right) \int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}+\rho\left|u_{t}\right|^{2}\right. \\
\left.+\alpha \sum_{i=1}^{3}\left|\frac{\partial u}{\partial x_{i}}\right|^{2}\right\} d x \tag{16}\\
\leq \int_{0}^{T} \int_{\partial \Omega}\left\{\frac{1}{2} C_{3}\left|\mu_{0} H+\alpha \frac{\partial u}{\partial \eta}\right|^{2}-\frac{\partial h}{\partial \eta} \mathcal{E}_{0}(E \cdot \eta)^{2}\right\} d \Gamma d t
\end{gather*}
$$

We have proved the following
Theorem. Let $\left\{E, H, u, u_{t}\right\}$ be the solution of problems (1) and (2) with zero boundary conditions. Assume the geometric condition on Ω given above and $\rho=\mathcal{E}_{0} \mu_{0} \alpha$. If the condition

$$
\mu_{0} H+\alpha \frac{\partial u}{\partial \eta}=0 \quad \text { on } \quad \partial \Omega \times(0, T)
$$

holds, then, for any $T>T_{2}$ we will have

$$
E \equiv H \equiv u \equiv 0 \quad \text { in } \quad \Omega \times(0, T)
$$

It follows by the above theorem that for $T>T_{2}$ the expression

$$
\begin{equation*}
\|(f, g)\|_{\mathcal{F}}=\left(\int_{0}^{T} \int_{\partial \Omega}\left|\mu_{0} H+\alpha \frac{\partial u}{\partial \eta}\right|^{2} d \Gamma d t\right)^{1 / 2} \tag{17}
\end{equation*}
$$

defines a norm on the set of initial data $f=\left(\varphi_{0}, \varphi_{1}\right)$ and $g=\left(\psi_{0}, \psi_{1}\right)$ of problems (1) and (2) with zero boundary conditins. We denote by \mathcal{F} the Hilbert space obtained by completing $M_{1} \cap \mathcal{D}(\mathcal{A}) \times \mathcal{D}(\widetilde{\mathcal{A}})$ with respect to the norm (17). If we denote by
$\int_{\Omega}\left\{\mathcal{E}_{0}|E|^{2}+\mu_{0}|H|^{2}+\rho\left|u_{t}\right|^{2}+\alpha \sum_{j=1}^{3}\left|\frac{\partial u}{\partial x_{j}}\right|^{2}\right\} d x=\|(f, g)\|_{Y}^{2}$.
Then, we have

$$
\mathcal{F} \subseteq Y \quad \text { and } \quad\|(f, g)\|_{Y}^{2} \leq C\|(f, g)\|_{\mathcal{F}}^{2}
$$

Let us denote by \mathcal{F}^{\prime} the dual space of \mathcal{F} with respect to Y.
We consider $P(x, t) \in\left[L^{2}(\partial \Omega \times(0, T))\right]^{3} \quad$ and $(f, g) \in \mathcal{F}^{\prime}$.
Let $\{E, H\}$ be the solution of problem (1) with boundary
condition

$$
\begin{equation*}
\eta \times E=\mu_{0} \eta \times(\eta \times P) \quad \text { on } \partial \Omega \times(0, T) \tag{18}
\end{equation*}
$$

and $\left\{u, u_{t}\right\}$ be the solution of problem (2) with boundary condition

$$
\begin{equation*}
u_{t}=P \quad \text { on } \partial \Omega \times(0, T) \tag{19}
\end{equation*}
$$

Definition. We say that

$$
\left(E(\cdot, t), H(\cdot, t), u(\cdot, t), u_{t}(\cdot, t)\right) \in L^{\infty}\left(0, T ; \mathcal{F}^{\prime}\right)
$$

is a solution of problems (1) and (2) with boundary conditons (18) and (19) respectively if the identity

$$
\begin{align*}
& \left\langle\left(E(t), H(t), u(t), u_{t}(t)\right),\left(\tilde{E}(t), \tilde{H}(t), \tilde{u}(t), \tilde{u}_{t}(t)\right)\right\rangle_{Y} \\
& \quad=\left\langle\left(\varphi_{0}, \varphi_{1}, \psi_{0}, \psi_{1}\right),\left(\tilde{\varphi}_{0}, \tilde{\varphi}_{1}, \tilde{\psi}_{0}, \tilde{\psi}_{1}\right)\right\rangle_{Y} \tag{20}\\
& \quad+\int_{0}^{t} \int_{\partial \Omega} P \cdot\left(\mu_{0} \tilde{H}+\alpha \frac{\partial \tilde{u}}{\partial \eta}-\tilde{p} \eta\right) d \Gamma d \tau
\end{align*}
$$

holds for any $(\tilde{f}, \tilde{g}) \in \mathcal{F}$ and $t \in(0, T)$.
In (20),

$$
\begin{gathered}
\left\langle\left(\varphi_{0}, \varphi_{1}, \psi_{0}, \psi_{1}\right),\left(\tilde{\varphi}_{0}, \tilde{\varphi}_{1}, \tilde{\psi}_{0}, \tilde{\psi}_{1}\right)\right\rangle_{Y} \\
\int_{\Omega}\left\{\mathcal{E}_{0} \varphi_{0} \cdot \tilde{\varphi}_{0}+\mu_{0} \varphi_{1} \cdot \tilde{\varphi}_{0}+\alpha \sum_{i=1}^{3} \frac{\partial \psi_{0}}{\partial x_{i}} \cdot \frac{\partial \tilde{\psi}_{0}}{\partial x_{i}}+\rho \psi_{1} \cdot \tilde{\psi}_{1}\right\} d x
\end{gathered}
$$

and $\left(\tilde{E}, \tilde{H}, \tilde{u}, \tilde{u}_{t}\right)$ is the solution of problems (1) and (2) with zero boundary conditions. Also, \tilde{p} denotes the pressure term for the solution \tilde{u} (of problem (2)) with zero boundary conditions

Definition. We say that

$$
\left(E(t), H(t), u(t), u_{t}(t)\right) \in L^{\infty}\left(0, T ; \mathcal{F}^{\prime}\right)
$$

is a solution of problem (1) and (2) with boundary conditions (18) and (19) respectively with zero initial data at $\quad t=T \quad$ if

$$
\begin{align*}
& \left\langle\left(E(t), H(t), u(t), u_{t}(t)\right),\left(\tilde{E}(t), \tilde{H}(t), \tilde{u}(t), \tilde{u}_{t}(t)\right)\right\rangle_{Y} \\
& \quad=-\int_{t}^{T} \int_{\partial \Omega} P \cdot\left(\mu_{0} \tilde{H}+\alpha \frac{\partial \tilde{u}}{\partial \eta}-\tilde{p} \eta\right) d \Gamma d \tau \tag{21}
\end{align*}
$$

for any $(\tilde{f}, \tilde{g}) \in \mathcal{F}$ and $t \in(0, T)$.
Theorem. Assume the geometric assumption on the geometry of Ω and the relation $\rho=\mathcal{E}_{0} \mu_{0} \alpha$. If $T>T_{2}$ (with T_{2} as above), then for any initial data $(f, g) \in \mathcal{F}^{\prime}$ of problems (1) and (2) there exists a control $P=P(x, t) \in$ $\left.H^{1}\left(0, T ;\left[L^{2}(\Omega)\right)\right]^{3}\right)$ such that the corresponding solution of
problem (2) satisfies

$$
\left.\left(u, u_{t}\right)\right|_{t=T}=(0,0)
$$

while the vector-valued function

$$
Q=\mu_{0} \eta \times\left(\eta \times P_{t}\right)
$$

drives system (1) to the state of rest at the same time T

$$
\left.(E, H)\right|_{t=T}=(0,0)
$$

Idea of Proof. We use HUM.

Let $(h, q)=\left(h_{1}, h_{2}, q_{1}, q_{2}\right)$ be an (arbitrary) element of \mathcal{F} and $\left(\varphi, \psi, v, v_{t}\right)$ the solution of problems (1) and (2) with zero boundary conditions and initial data at $t=0$ equal to

$$
\begin{align*}
& \left.(\varphi, \psi)\right|_{t=0}=\left(h_{1}, h_{2}\right) \tag{22}\\
& \left.\left(v, v_{t}\right)\right|_{t=0}=\left(q_{1}, q_{2}\right)
\end{align*}
$$

Let $\left(E, H, u, u_{t}\right)$ be the solution of problems (1) and (2) with boundary conditions (18) and (19) with zero initial data at $t=T>T_{2}$ where P is chosen to be

$$
\begin{equation*}
-P=\mu_{0} \psi+\alpha \frac{\partial v}{\partial \eta} \quad \text { on } \quad \partial \Omega \times(0, T) \tag{23}
\end{equation*}
$$

We consider the map

$$
\Lambda: \mathcal{F} \longmapsto \mathcal{F}^{\prime}
$$

given by

$$
\Lambda(h, q)=\Lambda\left(h_{1}, h_{2}, q_{1}, q_{2}\right)=\left.\left(E, H, u, u_{t}\right)\right|_{t=0}
$$

Claim: Λ is an isomorphism from \mathcal{F} onto \mathcal{F}^{\prime}. From (21) (with $t=0$) and (23) it follows

$$
\begin{aligned}
& \left\langle\Lambda\left(h_{1}, h_{2}, q_{1}, q_{2}\right),\left(\tilde{h}_{1}, \tilde{h}_{2}, \tilde{q}_{1}, \tilde{q}_{2}\right)\right\rangle_{Y} \\
& \quad=\int_{0}^{T} \int_{\partial \Omega}-P \cdot\left(\alpha \frac{\partial \tilde{u}}{\partial \eta}+\mu_{0} \tilde{H}-\tilde{p} \eta\right) d \Gamma d \tau \\
& \quad=\int_{0}^{T} \int_{\partial \Omega}\left(\mu_{0} \psi+\alpha \frac{\partial v}{\partial \eta}\right) \cdot\left(\alpha \frac{\partial \tilde{u}}{\partial \eta}+\mu_{0} \tilde{H}-\tilde{p} \eta\right) d \Gamma d \tau .
\end{aligned}
$$

Observe that $\left(\mu_{0} \psi+\alpha \frac{\partial v}{\partial \eta}\right) \cdot \tilde{p} \eta=0$ on $\partial \Omega \times(0, T)$. In fact using the boundary conditions, we know that

$$
\psi \cdot \eta=0 \quad \text { and } \quad \frac{\partial v}{\partial \eta} \cdot \eta=0 \quad \text { on } \partial \Omega \times(0, T)
$$

Hence, (24) can be written as

$$
\begin{aligned}
& \left\langle\Lambda\left(h_{1}, h_{2}, q_{1}, q_{2}\right),\left(\tilde{h}_{1}, \tilde{h}_{2}, \tilde{q}_{1}, \tilde{q}_{2}\right)\right\rangle_{Y} \\
& \quad \int_{0}^{T} \int_{\partial \Omega}\left(\mu_{0} \psi+\alpha \frac{\partial v}{\partial \eta}\right) \cdot\left(\alpha \frac{\partial \tilde{u}}{\partial \eta}+\mu_{0} \tilde{H}\right) d \Gamma d \tau \\
& =\left\langle\left(h_{1}, h_{2}, q_{1}, q_{2}\right),\left(\tilde{h}_{1}, \tilde{h}_{2}, \tilde{q}_{1}, \tilde{q}_{2}\right)\right\rangle_{\mathcal{F}}
\end{aligned}
$$

for any $(h, q)=\left(h_{1}, h_{2}, q_{1}, q_{2}\right) \in \mathcal{F}$.
Clearly (25) implies that Λ is an isomorphism from \mathcal{F} onto the whole \mathcal{F}^{\prime}. Now, we return to problems (1) and (2) with boundary conditions (18) and (19) respectively.

Suppose that the initial data (f, g) belongs to \mathcal{F}^{\prime}. Here $f=\left(f_{1}, f_{2}\right)=\left(E_{0}, H_{0}\right)$ and $g=\left(g_{1}, g_{2}\right)=\left(u_{0}, u_{1}\right)$. We set

$$
(h, q)=\Lambda^{-1}(f, g)
$$

and

$$
P=-\left(\mu_{0} \psi+\alpha \frac{\partial v}{\partial \eta}\right)
$$

where $\left(\varphi, \psi, v, v_{t}\right)$ is a solution of (1)-(2) with zero boundary conditions and initial conditions at $t=0$ as in (22). Using identity (21) with $t=T>T_{2}$ we obtain

$$
\begin{gathered}
\left\langle\left(E(T), H(T), u_{t}(T), u_{t}(T)\right),\left(\tilde{E}(T), \tilde{H}(T), \tilde{u}(T), \tilde{u}_{t}(T)\right)\right\rangle_{Y} \\
\left.=\langle\Lambda(h, q),(\tilde{f}, \tilde{g})\rangle_{Y}-\langle(h, q), \tilde{f}, \tilde{g})\right\rangle_{\mathcal{F}}
\end{gathered}
$$

for any $(\tilde{f}, \tilde{g}) \in \mathcal{F}$. Using (25) we conclude that the right hand side of the above identity equals to zero. This means that $\left(E(T), H(T), u(T), u_{t}(T)\right)$ generates the zero functional em \mathcal{F}. Now that conclusion of the Theorem follows because we construct P as in (23) and set

$$
S(x, t)=\int_{0}^{t} P(x, \tau) d \tau+g_{1}(x)
$$

consequently, $u=S$ and $\eta \times E=\mu_{0} \eta \times\left(\eta \times S_{t}\right)=R$ on $\partial \Omega \times(0, T)$. In view of the linearity it suffices to consider controls that reduces both systems to the state of rest.

