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Here is the result of Y. Capdeboscq & Michael Vogelius (2003) on a representation
formula for u, — u on dQ) where

—div(y.Vu,) =0 in Q —div(yVu) =0 in Q
Ju, u

Yeso V3n = 0 on JdQ.
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Polarization Tensor

Here is the result of Y. Capdeboscq & Michael Vogelius (2003) on a representation
formula for u, — u on dQ) where

—div(y.Vu,) =0 in Q —div(yVu) =0 in Q
du. u
Vs =0 on JQ yan—O on JQ.

The small domain w(x) centered at x € Q) is perturbed into
w,(x) with a volume

lwe| = (1 + 37_15r)|a)|.
We assume that locally y(x) is constant and that
Ye(x) = y(@)ve(x) = y(x)v(x),

with a known coefficient v(x) = lim._,q |w(x)|/|w(x)|.



Polarization Tensor A

One has |w,['1,, — 1 in M(Q), and for y € 9Q let N(x, y)
be the Green function

~div(y(x)V.N(x, y)) = 0 in Q
0

Y(@)5—N(o,y) = =6, + 0QI""  on 9Q

on,




Polarization Tensor A

One has |w,['1,, — 1 in M(Q), and for y € 9Q let N(x, y)
be the Green function

{ ~div(y(x)V.N(x, y)) = 0 in Q

J _
G NOY) = =8, +10Q on 00

(o)

Theorem. Assume that y.(x) = y(x) + [y(x) — y(x)] 1,,(x). Then there exists a
positive definite M € (L*(Q2, du))N*N such that for y € Q we have

ue(y) — u(y) = |l L (y(x0) = y ()M (x)Vu(x) - Valx, y)du(x) + ofjwel).




Polarization Tensor

As a matter of fact (Y. Capdeboscq & M. Vogelius, 2007), the polarization
tensor M may be be characterized by the following identity: for all & € RN
and v € C(Q)

— 1
f (y = y)M(x)E - Ev(x)dx = min f Ve
Q |CU&| weH! Q

per
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2
Vw + v(x) dx

+ 7 —7) %v(x) dx + o(1)



Polarization Tensor

As a matter of fact (Y. Capdeboscq & M. Vogelius, 2007), the polarization
tensor M may be be characterized by the following identity: for all & € RN
and v € C(Q)

77_

2
Vw + ~y1wsé v(x) dx

— 1
f (y = y)M(x)E - Ev(x)dx = min f Ve
0 lwel wer! . Jo

per

7 -7) %v(x) dx + o(1)

For some simple geometries such as disks, M is well known: if w, is a disk of
radius ¢ centered at z € Q

f (ue — u)p(o)do = f y(x )vgx; — 1 Vu(x) - Vu(x)dx + O(lwg)™)

~ ViR (@) f Y= + Offod*)
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H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Fink & M. Tanter (2006): use
another information obtained through elastic deformation of tissues. An ul-
trasonic beam is focalized around a point x € Q,
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H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Fink & M. Tanter (2006): use
another information obtained through elastic deformation of tissues. An ul-
trasonic beam is focalized around a point x € Q,

This implies a contraction and a dilation of a small area B := B(x, ¢) around x,
inducing a change in the conductivity y + y. (with a known factor v )

Ve(x) =1+ (v —1)1p)y(x)
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» So one has an asymptotic formula for the perturbed electrical potential u,

(1 =)o = B1 [ (7 = P)MaVu- Vs + o( )
Q

2Q
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So one has an asymptotic formula for the perturbed electrical potential u,
f (ue — u)pdo = |B| f()/g — y)MgVu - Vudx + o(|B|)
90 0

Here Mp is the polarization tensor which depends only on the geomtery of
B. In the case where B is a ball one has

1 v-1

MB:@V+1

1p1d
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So one has an asymptotic formula for the perturbed electrical potential u,
f (ue — u)pdo = |B| f()/g — y)MgVu - Vudx + o(|B|)
90 0

Here Mp is the polarization tensor which depends only on the geomtery of
B. In the case where B is a ball one has

1 v-1

Mg = —
5T Blv+1

1p1d

Finally for w, a ball centered at z € Q we obtain y(z)|Vu(z)|* which is the local
electrical energy density

-1
y(z>|w<z>|2z( f zgilidx) fa = o
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So one has an asymptotic formula for the perturbed electrical potential u,
[ =g =181 [ 7= yMaVu- Vit + oi5)
0 ®

Here Mp is the polarization tensor which depends only on the geomtery of
B. In the case where B is a ball one has

_iv—l
Blv+1

Mp 151d

Finally for w, a ball centered at z € Q we obtain y(z)|Vu(z)|* which is the local
electrical energy density

-1
v(2)|Vuz)* = (f Eg; ; 1 dx) faQ(ug — u)pdo.

Hence for each current density ¢ on dQ we know S(x) := y(x)|Vu(x)?, the
corresponding local electrical energy density.
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» One can now study the nonlinear equation

) Vu \
—div (S(x)IVuIZ) =0

S du _

2.1)

A\

VuPon ¢
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» One can now study the nonlinear equation

, v
—div (S(x)lez) =0

S ou
IVul2 on ¢

2.1)

A\

» If the solution to (2.1) exists and is unique, then y(x) = S(x)/|Vu(x)*. ..
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One can now study the nonlinear equation

, Vu
—div (S(x) |Vu|2) =0

S_Ju_
Vi on 7

2.1) <

If the solution to (2.1) exists and is unique, then y(x) = S(x)/|Vu(x)*. ..

Indeed several difficulties arise: we need a current ¢ on the boundary to
ensure that [Vu| # 0,
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One can now study the nonlinear equation

, Vu
—div (S(x) |Vu|2) =0

S_Ju_
Vi on 7

2.1) <

If the solution to (2.1) exists and is unique, then y(x) = S(x)/|Vu(x)*. ..

Indeed several difficulties arise: we need a current ¢ on the boundary to
ensure that [Vu| # 0,

solving (2.1) is not easy since its solutions correspond to critical points of

J(u) := fQS(x) log(IVu(x)lz)dx -2 fm p(o)do.
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» One may check that | is neither bounded below, nor above (even on an ap-
propriate functional space. . .)
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One may check that | is neither bounded below, nor above (even on an ap-
propriate functional space.. .)

In dimension 2, under some technical (and unfortunately inelegant) condi-
tions, we can show that the solution of (2.1) is unique.
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One may check that | is neither bounded below, nor above (even on an ap-
propriate functional space.. .)

In dimension 2, under some technical (and unfortunately inelegant) condi-
tions, we can show that the solution of (2.1) is unique.

Another approach is to set v := e and y := ¢’ and one finds that v satisfies
(here we may assume that u is also known on th eboundary)

—div ("™ Vo(x)) + S(x)v = 0 in Q
v=1 on 0Q.



Elastography + EIT
One may check that | is neither bounded below, nor above (even on an ap-
propriate functional space.. .)

In dimension 2, under some technical (and unfortunately inelegant) condi-
tions, we can show that the solution of (2.1) is unique.

Another approach is to set v := e and y := ¢’ and one finds that v satisfies
(here we may assume that u is also known on th eboundary)

—div ("™ Vo(x)) + S(x)v = 0 in Q
v=1 on JQ).

Then one seeks a € L*(Q)) such that

e Vo> = S|v*.
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» LetK:={y eL®(Q); y > ey > 0} and consider the functional
F: K — LYQ), F(y) := y|Vul?

where u satisfies

—div(yVu) =0

(2.2) u _
yan =@
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Let K :={y € L*(Q) ; y > € > 0} and consider the functional
F:K— LY(Q), F(y) := yIVul?

where u satisfies

(2.2) ou

{ ~div(yVu) =0
Yon = ¢

y + F(y) is an analytic operator. and one checks easily that

F'(1)6 = 6|Vul* + 2yVu - Vo,

where v satisfies

(2.3) v

{ ~div(yVo) = div(6Vu) in Q
Vg =

0 on JQ.
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» An observed data Fps := Sobs being given, we try to find y* such that F(y*) =
Fobs, by minimizing a cost functional depending on F()*) — Fops.
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Multigrid approach

2
Ji(y) = Z (f F()/)dx—f Sobs(x)dx)

1<k<m
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An observed data Fgps := Sops being given, we try to find y* such that F(y*) =
Fobs, by minimizing a cost functional depending on F()*) — Fops.

Several cost functionals have been considered:

Multigrid approach

2
Ji(y) = Z (f F()/)dx—f Sobs(x)dx)

1<k<m

A classical quadratic functional such as
R0 = [ )0 = Sl

has been considered.
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» Also we have considered a slightly different functional (with y = )

(@) = f V()] — Sapu() dx
Q

gives quite robust results,
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Also we have considered a slightly different functional (with y = ef)
@ = [ [0 - S0
0
gives quite robust results,

and one can show that if Sy,s = 7*|Vu*|* for some admissible y*, then the
functionals J; and J; are strictly convex in a neighbourhood of y*.
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Also we have considered a slightly different functional (with y = ef)
@ = [ [0 - S0
0

gives quite robust results,

and one can show that if Sy,s = 7*|Vu*|* for some admissible y*, then the
functionals J; and J; are strictly convex in a neighbourhood of y*.

If one assumes that Sgps is known only in a subdomain €y cc €, then the
functionals i, J», J3 may be defined only on )y and numerically one obtains
quite good results.
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Test case : background at 0.5, triangle at 2, ellipse at 0.75, and “L" at 2.55.

(] &% {
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Computation with two currents

001

le-04

le-05

le-06

0 50 100 150 200 250

The four directions correspond to two currents, z/|z| and y/|y|.
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Reconstruction test

Coarse mesh: few measurement points (50 bdy points).
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Reconstruction test

Finer mesh (100 bdy points).
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05

Optimal Control in 3-D

Reconstructed conductivity
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Optimal Control for a small zone




