

Otared Kavian

Département de Mathématiques
Université de Versailles
45, avenue des Etats Unis
78035 Versailles cedex (France)
kavian@math.uvsq.fr
Benasque, España, September 7, 2007

Report on joint work with

- Yves Capdeboscq (Université de Versailles Saint-Quentin \& Oxford University)
- Jérôme Fehrenbach (Université de Versailles Saint-Quentin \& Université de Toulouse)
- Frédéric de Gournay (Université de Versailles Saint-Quentin)

Today's Talk

Polarization Tensor
Elastography + EIT

Polarization Tensor

Polarization Tensor

Here is the result of Y. Capdeboscq \& Michael Vogelius (2003) on a representation formula for $u_{\varepsilon}-u$ on $\partial \Omega$ where

$$
\left\{\begin{array} { r l r }
{ - \operatorname { d i v } (\gamma _ { \varepsilon } \nabla u _ { \varepsilon }) = 0 } & { } & { \text { in } \Omega } \\
{ \gamma _ { \varepsilon } \frac { \partial u _ { \varepsilon } } { \partial \mathbf { n } } = 0 } & { } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{rl}
-\operatorname{div}(\gamma \nabla u)=0 & \\
\text { in } \Omega \\
\gamma \frac{\partial u}{\partial \mathbf{n}}=0 & \\
\text { on } \partial \Omega .
\end{array}\right.\right.
$$

Polarization Tensor

Here is the result of Y. Capdeboscq \& Michael Vogelius (2003) on a representation formula for $u_{\varepsilon}-u$ on $\partial \Omega$ where

$$
\left\{\begin{array} { r l r l }
{ - \operatorname { d i v } (\gamma _ { \varepsilon } \nabla u _ { \varepsilon }) = 0 } & { } & { \text { in } \Omega } \\
{ \gamma _ { \varepsilon } \frac { \partial u _ { \varepsilon } } { \partial \mathbf { n } } } & { = 0 } & { } & { \text { on } \partial \Omega }
\end{array} \quad \left\{\begin{array}{rl}
-\operatorname{div}(\gamma \nabla u)=0 & \\
\text { in } \Omega \\
\gamma \frac{\partial u}{\partial \mathbf{n}}=0 & \\
\text { on } \partial \Omega
\end{array}\right.\right.
$$

The small domain $\omega(x)$ centered at $x \in \Omega$ is perturbed into $\omega_{\varepsilon}(x)$ with a volume

$$
\left|\omega_{\varepsilon}\right| \approx\left(1+3 r^{-1} \delta r\right)|\omega|
$$

We assume that locally $\gamma(x)$ is constant and that

$$
\gamma_{\varepsilon}(x)=\gamma(x) v_{\varepsilon}(x) \approx \gamma(x) v(x)
$$

with a known coefficient $v(x)=\lim _{\varepsilon \rightarrow 0}\left|\omega_{\varepsilon}(x)\right| /|\omega(x)|$.

Polarization Tensor

One has $\left|\omega_{\varepsilon}\right|^{-1} 1_{\omega_{\varepsilon}} \rightharpoonup \mu$ in $M(\bar{\Omega})$, and for $y \in \partial \Omega$ let $N(x, y)$ be the Green function

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\gamma(x) \nabla_{x} N(x, y)\right) & =0 & & \text { in } \Omega \\
\gamma(\sigma) \frac{\partial}{\partial \mathbf{n}_{x}} N(\sigma, y) & =-\delta_{y}+|\partial \Omega|^{-1} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Polarization Tensor

One has $\left|\omega_{\varepsilon}\right|^{-1} 1_{\omega_{\varepsilon}} \rightharpoonup \mu$ in $M(\bar{\Omega})$, and for $y \in \partial \Omega$ let $N(x, y)$ be the Green function

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\gamma(x) \nabla_{x} N(x, y)\right) & =0 & & \text { in } \Omega \\
\gamma(\sigma) \frac{\partial}{\partial \mathbf{n}_{x}} N(\sigma, y) & =-\delta_{y}+|\partial \Omega|^{-1} & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Theorem. Assume that $\gamma_{\varepsilon}(x)=\gamma(x)+[\widetilde{\gamma}(x)-\gamma(x)] 1_{\omega_{\varepsilon}}(x)$. Then there exists a positive definite $M \in\left(L^{2}(\Omega, d \mu)\right)^{N \times N}$ such that for $y \in \Omega$ we have

$$
u_{\varepsilon}(y)-u(y)=\left|\omega_{\varepsilon}\right| \int_{\Omega}(\widetilde{\gamma}(x)-\gamma(x)) M(x) \nabla u(x) \cdot \nabla_{x}(x, y) d \mu(x)+o\left(\left|\omega_{\varepsilon}\right|\right)
$$

Polarization Tensor

- As a matter of fact (Y. Capdeboscq \& M. Vogelius, 2007), the polarization tensor M may be be characterized by the following identity: for all $\xi \in \mathbb{R}^{N}$ and $v \in C(\bar{\Omega})$

$$
\begin{aligned}
\int_{\Omega}(\tilde{\gamma}-\gamma) M(x) \xi \cdot \xi v(x) d x & =\frac{1}{\left|\omega_{\varepsilon}\right|} \min _{w \in H_{\mathrm{per}}^{1}} \int_{\Omega} \gamma_{\varepsilon}\left|\nabla w+\frac{\tilde{\gamma}-\gamma}{\widetilde{\gamma}} 1_{\omega_{\varepsilon}} \xi\right|^{2} v(x) d x \\
& +\frac{|\xi|^{2}}{\left|\omega_{\varepsilon}\right|} \int_{\omega_{\varepsilon}}(\tilde{\gamma}-\gamma) \frac{\gamma}{\bar{\gamma}} v(x) d x+o(1)
\end{aligned}
$$

Polarization Tensor

- As a matter of fact (Y. Capdeboscq \& M. Vogelius, 2007), the polarization tensor M may be be characterized by the following identity: for all $\xi \in \mathbb{R}^{N}$ and $v \in C(\bar{\Omega})$

$$
\begin{aligned}
\int_{\Omega}(\widetilde{\gamma}-\gamma) M(x) \xi \cdot \xi v(x) d x & =\frac{1}{\left|\omega_{\varepsilon}\right|} \min _{w \in H_{\mathrm{per}}^{1}} \int_{\Omega} \gamma_{\varepsilon}\left|\nabla w+\frac{\tilde{\gamma}-\gamma}{\widetilde{\gamma}} 1_{\omega_{\varepsilon}} \xi\right|^{2} v(x) d x \\
& +\frac{|\xi|^{2}}{\left|\omega_{\varepsilon}\right|} \int_{\omega_{\varepsilon}}(\tilde{\gamma}-\gamma) \frac{\gamma}{\bar{\gamma}} v(x) d x+o(1)
\end{aligned}
$$

- For some simple geometries such as disks, M is well known: if ω_{ε} is a disk of radius ε centered at $z \in \Omega$

$$
\begin{aligned}
\int_{\partial \Omega}\left(u_{\varepsilon}-u\right) \varphi(\sigma) d \sigma & =\int_{\omega_{\varepsilon}} \gamma(x) \frac{v(x)-1}{v(x)+1} \nabla u(x) \cdot \nabla u(x) d x+O\left(\left|\omega_{\varepsilon}\right|^{1+\alpha}\right) \\
& \approx|\nabla u(z)|^{2} \gamma(z) \int_{\omega_{\varepsilon}} \frac{v(x)-1}{v(x)+1} d x+O\left(\left|\omega_{\varepsilon}\right|^{1+\alpha}\right)
\end{aligned}
$$

Elastography + EIT

Elastography + EIT

- H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Fink \& M. Tanter (2006): use another information obtained through elastic deformation of tissues. An ultrasonic beam is focalized around a point $x \in \Omega$,

Elastography + EIT

- H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Fink \& M. Tanter (2006): use another information obtained through elastic deformation of tissues. An ultrasonic beam is focalized around a point $x \in \Omega$,

Elastography + EIT

- H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Fink \& M. Tanter (2006): use another information obtained through elastic deformation of tissues. An ultrasonic beam is focalized around a point $x \in \Omega$,

- This implies a contraction and a dilation of a small area $B:=B(x, \varepsilon)$ around x, inducing a change in the conductivity $\gamma \mapsto \gamma_{\varepsilon}$ (with a known factor v)

$$
\gamma_{\varepsilon}(x):=\left(1+(v-1) 1_{B}\right) \gamma(x)
$$

Elastography + EIT

- So one has an asymptotic formula for the perturbed electrical potential u_{ε}

$$
\int_{\partial \Omega}\left(u_{\varepsilon}-u\right) \varphi d \sigma=|B| \int_{\Omega}\left(\gamma_{\varepsilon}-\gamma\right) M_{B} \nabla u \cdot \nabla u d x+o(|B|)
$$

Elastography + EIT

- So one has an asymptotic formula for the perturbed electrical potential u_{ε}

$$
\int_{\partial \Omega}\left(u_{\varepsilon}-u\right) \varphi d \sigma=|B| \int_{\Omega}\left(\gamma_{\varepsilon}-\gamma\right) M_{B} \nabla u \cdot \nabla u d x+o(|B|)
$$

- Here M_{B} is the polarization tensor which depends only on the geomtery of B. In the case where B is a ball one has

$$
M_{B}=\frac{1}{|B|} \frac{v-1}{v+1} 1_{B} I d
$$

Elastography + EIT

- So one has an asymptotic formula for the perturbed electrical potential u_{ε}

$$
\int_{\partial \Omega}\left(u_{\varepsilon}-u\right) \varphi d \sigma=|B| \int_{\Omega}\left(\gamma_{\varepsilon}-\gamma\right) M_{B} \nabla u \cdot \nabla u d x+o(|B|)
$$

- Here M_{B} is the polarization tensor which depends only on the geomtery of B. In the case where B is a ball one has

$$
M_{B}=\frac{1}{|B|} \frac{v-1}{v+1} 1_{B} I d
$$

- Finally for ω_{ε} a ball centered at $z \in \Omega$ we obtain $\gamma(z)|\nabla u(z)|^{2}$ which is the local electrical energy density

$$
\gamma(z)|\nabla u(z)|^{2} \approx\left(\int_{\omega_{\varepsilon}} \frac{v(x)-1}{v(x)+1} d x\right)^{-1} \int_{\partial \Omega}\left(u_{\varepsilon}-u\right) \varphi d \sigma
$$

Elastography + EIT

- So one has an asymptotic formula for the perturbed electrical potential u_{ε}

$$
\int_{\partial \Omega}\left(u_{\varepsilon}-u\right) \varphi d \sigma=|B| \int_{\Omega}\left(\gamma_{\varepsilon}-\gamma\right) M_{B} \nabla u \cdot \nabla u d x+o(|B|)
$$

- Here M_{B} is the polarization tensor which depends only on the geomtery of B. In the case where B is a ball one has

$$
M_{B}=\frac{1}{|B|} \frac{v-1}{v+1} 1_{B} I d
$$

- Finally for ω_{ε} a ball centered at $z \in \Omega$ we obtain $\gamma(z)|\nabla u(z)|^{2}$ which is the local electrical energy density

$$
\gamma(z)|\nabla u(z)|^{2} \approx\left(\int_{\omega_{\varepsilon}} \frac{v(x)-1}{v(x)+1} d x\right)^{-1} \int_{\partial \Omega}\left(u_{\varepsilon}-u\right) \varphi d \sigma .
$$

- Hence for each current density φ on $\partial \Omega$ we know $S(x):=\gamma(x)|\nabla u(x)|^{2}$, the corresponding local electrical energy density.

Elastography + EIT

- One can now study the nonlinear equation

$$
\left\{\begin{align*}
-\operatorname{div}\left(S(x) \frac{\nabla u}{|\nabla u|^{2}}\right) & =0 \tag{2.1}\\
\frac{S}{|\nabla u|^{2}} \frac{\partial u}{\partial \mathbf{n}} & =\varphi
\end{align*}\right.
$$

Elastography + EIT

- One can now study the nonlinear equation

$$
\left\{\begin{align*}
-\operatorname{div}\left(S(x) \frac{\nabla u}{|\nabla u|^{2}}\right) & =0 \tag{2.1}\\
\frac{S}{|\nabla u|^{2}} \frac{\partial u}{\partial \mathbf{n}} & =\varphi
\end{align*}\right.
$$

- If the solution to (2.1) exists and is unique, then $\gamma(x)=S(x) /|\nabla u(x)|^{2} \ldots$

Elastography + EIT

- One can now study the nonlinear equation

$$
\left\{\begin{align*}
-\operatorname{div}\left(S(x) \frac{\nabla u}{|\nabla u|^{2}}\right) & =0 \tag{2.1}\\
\frac{S}{|\nabla u|^{2}} \frac{\partial u}{\partial \mathbf{n}} & =\varphi
\end{align*}\right.
$$

- If the solution to (2.1) exists and is unique, then $\gamma(x)=S(x) /|\nabla u(x)|^{2} \ldots$
- Indeed several difficulties arise: we need a current φ on the boundary to ensure that $|\nabla u| \neq 0$,

Elastography + EIT

- One can now study the nonlinear equation

$$
\left\{\begin{align*}
-\operatorname{div}\left(S(x) \frac{\nabla u}{|\nabla u|^{2}}\right) & =0 \tag{2.1}\\
\frac{S}{|\nabla u|^{2}} \frac{\partial u}{\partial \mathbf{n}} & =\varphi
\end{align*}\right.
$$

- If the solution to (2.1) exists and is unique, then $\gamma(x)=S(x) /|\nabla u(x)|^{2} \ldots$
- Indeed several difficulties arise: we need a current φ on the boundary to ensure that $|\nabla u| \neq 0$,
- solving (2.1) is not easy since its solutions correspond to critical points of

$$
J(u):=\int_{\Omega} S(x) \log \left(|\nabla u(x)|^{2}\right) d x-2 \int_{\partial \Omega} \varphi(\sigma) d \sigma
$$

Elastography + EIT

- One may check that J is neither bounded below, nor above (even on an appropriate functional space...)

Elastography + EIT

- One may check that J is neither bounded below, nor above (even on an appropriate functional space...)
- In dimension 2, under some technical (and unfortunately inelegant) conditions, we can show that the solution of (2.1) is unique.

Elastography + EIT

- One may check that J is neither bounded below, nor above (even on an appropriate functional space...)
- In dimension 2, under some technical (and unfortunately inelegant) conditions, we can show that the solution of (2.1) is unique.
- Another approach is to set $v:=\mathrm{e}^{u}$ and $\gamma:=\mathrm{e}^{a}$ and one finds that v satisfies (here we may assume that u is also known on th eboundary)

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\mathrm{e}^{a(x)} \nabla v(x)\right)+S(x) v & =0 & & \text { in } \Omega \\
v & =\psi & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Elastography + EIT

- One may check that J is neither bounded below, nor above (even on an appropriate functional space...)
- In dimension 2, under some technical (and unfortunately inelegant) conditions, we can show that the solution of (2.1) is unique.
- Another approach is to set $v:=\mathrm{e}^{u}$ and $\gamma:=\mathrm{e}^{a}$ and one finds that v satisfies (here we may assume that u is also known on th eboundary)

$$
\left\{\begin{aligned}
-\operatorname{div}\left(\mathrm{e}^{a(x)} \nabla v(x)\right)+S(x) v & =0 & & \text { in } \Omega \\
v & =\psi & & \text { on } \partial \Omega
\end{aligned}\right.
$$

- Then one seeks $a \in L^{\infty}(\Omega)$ such that

$$
\mathrm{e}^{a}|\nabla v|^{2}=S|v|^{2}
$$

Elastography + EIT

- Let $K:=\left\{\gamma \in L^{\infty}(\Omega) ; \gamma \geq \varepsilon_{0}>0\right\}$ and consider the functional

$$
F: K \longrightarrow L^{1}(\Omega), \quad F(\gamma):=\gamma|\nabla u|^{2}
$$

where u satisfies

$$
\left\{\begin{align*}
-\operatorname{div}(\gamma \nabla u) & =0 \tag{2.2}\\
\gamma \frac{\partial u}{\partial \mathbf{n}} & =\varphi
\end{align*}\right.
$$

Elastography + EIT

- Let $K:=\left\{\gamma \in L^{\infty}(\Omega) ; \gamma \geq \varepsilon_{0}>0\right\}$ and consider the functional

$$
F: K \longrightarrow L^{1}(\Omega), \quad F(\gamma):=\gamma|\nabla u|^{2}
$$

where u satisfies

$$
\left\{\begin{align*}
-\operatorname{div}(\gamma \nabla u) & =0 \tag{2.2}\\
\gamma \frac{\partial u}{\partial \mathbf{n}} & =\varphi
\end{align*}\right.
$$

- $\gamma \mapsto F(\gamma)$ is an analytic operator. and one checks easily that

$$
F^{\prime}(\gamma) \delta=\delta|\nabla u|^{2}+2 \gamma \nabla u \cdot \nabla v,
$$

where v satisfies

$$
\left\{\begin{align*}
-\operatorname{div}(\gamma \nabla v) & =\operatorname{div}(\delta \nabla \mathrm{u}) & & \text { in } \Omega \tag{2.3}\\
\gamma \frac{\partial v}{\partial \mathbf{n}} & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

Elastography + EIT

- An observed data $F_{\text {obs }}:=S_{\text {obs }}$ being given, we try to find γ^{*} such that $F\left(\gamma^{*}\right)=$ $F_{\text {obs }}$, by minimizing a cost functional depending on $F\left(\gamma^{*}\right)-F_{\text {obs }}$.

Elastography + EIT

- An observed data $F_{\text {obs }}:=S_{\text {obs }}$ being given, we try to find γ^{*} such that $F\left(\gamma^{*}\right)=$ $F_{\text {obs }}$, by minimizing a cost functional depending on $F\left(\gamma^{*}\right)-F_{\text {obs }}$.
- Several cost functionals have been considered:

Elastography + EIT

- An observed data $F_{\text {obs }}:=S_{\text {obs }}$ being given, we try to find γ^{*} such that $F\left(\gamma^{*}\right)=$ $F_{\text {obs }}$, by minimizing a cost functional depending on $F\left(\gamma^{*}\right)-F_{\text {obs }}$.
- Several cost functionals have been considered:
- Multigrid approach

$$
J_{1}(\gamma):=\sum_{1 \leq k \leq m}\left(\int_{\omega_{k}} F(\gamma) d x-\int_{\omega_{k}} S_{\mathrm{obs}}(x) d x\right)^{2}
$$

Elastography + EIT

- An observed data $F_{\text {obs }}:=S_{\text {obs }}$ being given, we try to find γ^{*} such that $F\left(\gamma^{*}\right)=$ $F_{\text {obs }}$, by minimizing a cost functional depending on $F\left(\gamma^{*}\right)-F_{\text {obs }}$.
- Several cost functionals have been considered:
- Multigrid approach

$$
J_{1}(\gamma):=\sum_{1 \leq k \leq m}\left(\int_{\omega_{k}} F(\gamma) d x-\int_{\omega_{k}} S_{\mathrm{obs}}(x) d x\right)^{2}
$$

- A classical quadratic functional such as

$$
J_{2}(\gamma):=\int_{\Omega}\left(F(\gamma)(x)-S_{\mathrm{obs}}(x)\right)^{2} d x
$$

has been considered.

Elastography + EIT

- Also we have considered a slightly different functional (with $\gamma=\mathrm{e}^{a}$)

$$
J_{3}(a):=\int_{\Omega}\left|\mathrm{e}^{a(x) / 2}\right| \nabla u(x)\left|-S_{\mathrm{obs}}(x)^{1 / 2}\right|^{2} d x
$$

gives quite robust results,

Elastography + EIT

- Also we have considered a slightly different functional (with $\gamma=\mathrm{e}^{a}$)

$$
J_{3}(a):=\int_{\Omega}\left|\mathrm{e}^{a(x) / 2}\right| \nabla u(x)\left|-S_{\mathrm{obs}}(x)^{1 / 2}\right|^{2} d x
$$

gives quite robust results,

- and one can show that if $S_{\text {obs }}=\gamma^{*}\left|\nabla u^{*}\right|^{2}$ for some admissible γ^{*}, then the functionals J_{2} and J_{3} are strictly convex in a neighbourhood of γ^{*}.

Elastography + EIT

- Also we have considered a slightly different functional (with $\gamma=\mathrm{e}^{a}$)

$$
J_{3}(a):=\int_{\Omega}\left|\mathrm{e}^{a(x) / 2}\right| \nabla u(x)\left|-S_{\mathrm{obs}}(x)^{1 / 2}\right|^{2} d x
$$

gives quite robust results,

- and one can show that if $S_{\text {obs }}=\gamma^{*}\left|\nabla u^{*}\right|^{2}$ for some admissible γ^{*}, then the functionals J_{2} and J_{3} are strictly convex in a neighbourhood of γ^{*}.
- If one assumes that $S_{\text {obs }}$ is known only in a subdomain $\Omega_{0} \subset \subset \Omega$, then the functionals J_{1}, J_{2}, J_{3} may be defined only on Ω_{0} and numerically one obtains quite good results.

Elastography + EIT

Test case : background at 0.5 , triangle at 2 , ellipse at 0.75 , and " L " at 2.55 .

Elastography + EIT

Computation with two currents

The four directions correspond to two currents, $x /|x|$ and $y /|y|$.

Elastography + EIT

Reconstruction test

Coarse mesh: few measurement points (50 bdy points).

\mathfrak{i}

Elastography + EIT

Reconstruction test

Finer mesh (100 bdy points).

1」

Finer mesh (200 bdy points).

Elastography + EIT

Elastography + EIT

Optimal Control for a small zone

