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Here is the result of Y. Capdeboscq & Michael Vogelius (2003) on a representation
formula for uε − u on ∂Ωwhere
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ω

˙

The small domain ω(x) centered at x ∈ Ω is perturbed into
ωε(x) with a volume

|ωε| ≈ (1 + 3r−1δr)|ω|.

We assume that locally γ(x) is constant and that

γε(x) = γ(x)νε(x) ≈ γ(x)ν(x),

with a known coefficient ν(x) = limε→0 |ωε(x)|/|ω(x)|.
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One has |ωε|−11ωε ⇀ µ in M(Ω), and for y ∈ ∂Ω let N(x, y)
be the Green function
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−1
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Theorem. Assume that γε(x) = γ(x) + [γ̃(x) − γ(x)] 1ωε(x). Then there exists a
positive definite M ∈ (L2(Ω, dµ))N×N such that for y ∈ Ωwe have

uε(y) − u(y) = |ωε|
∫
Ω

(γ̃(x) − γ(x))M(x)∇u(x) · ∇x(x, y)dµ(x) + o(|ωε|).
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I As a matter of fact (Y. Capdeboscq & M. Vogelius, 2007), the polarization
tensor M may be be characterized by the following identity: for all ξ ∈ RN

and v ∈ C(Ω)∫
Ω

(γ̃ − γ)M(x)ξ · ξ v(x)dx =
1
|ωε|

min
w∈H1

per

∫
Ω

γε

∣∣∣∣∣∣∇w +
γ̃ − γ

γ̃
1ωεξ

∣∣∣∣∣∣2 v(x) dx
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|ωε|
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(γ̃ − γ)
γ

γ̃
v(x) dx + o(1)
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I For some simple geometries such as disks, M is well known: if ωε is a disk of
radius ε centered at z ∈ Ω∫

∂Ω
(uε − u)ϕ(σ)dσ =

∫
ωε

γ(x)
ν(x) − 1
ν(x) + 1

∇u(x) · ∇u(x)dx +O(|ωε|1+α)

≈ |∇u(z)|2 γ(z)
∫
ωε

ν(x) − 1
ν(x) + 1

dx +O(|ωε|1+α)
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another information obtained through elastic deformation of tissues. An ul-
trasonic beam is focalized around a point x ∈ Ω,
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I H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Fink & M. Tanter (2006): use
another information obtained through elastic deformation of tissues. An ul-
trasonic beam is focalized around a point x ∈ Ω,

I This implies a contraction and a dilation of a small area B := B(x, ε) around x,
inducing a change in the conductivity γ 7→ γε (with a known factor ν )

γε(x) := (1 + (ν − 1)1B)γ(x)
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∂Ω

(uε − u)ϕdσ = |B|
∫
Ω

(γε − γ)MB∇u · ∇udx + o(|B|)

I Here MB is the polarization tensor which depends only on the geomtery of
B. In the case where B is a ball one has

MB =
1
|B|
ν − 1
ν + 1

1B Id

I Finally for ωε a ball centered at z ∈ Ωwe obtain γ(z)|∇u(z)|2 which is the local
electrical energy density

γ(z)|∇u(z)|2 ≈
(∫

ωε

ν(x) − 1
ν(x) + 1

dx
)−1 ∫

∂Ω
(uε − u)ϕdσ.

I Hence for each current density ϕ on ∂Ω we know S(x) := γ(x)|∇u(x)|2, the
corresponding local electrical energy density.
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I One can now study the nonlinear equation

(2.1)


−div

(
S(x)

∇u
|∇u|2

)
= 0

S
|∇u|2

∂u
∂n
= ϕ
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I If the solution to (2.1) exists and is unique, then γ(x) = S(x)/|∇u(x)|2. . .

I Indeed several difficulties arise: we need a current ϕ on the boundary to
ensure that |∇u| 6= 0,

I solving (2.1) is not easy since its solutions correspond to critical points of

J(u) :=
∫
Ω

S(x) log(|∇u(x)|2)dx − 2
∫
∂Ω
ϕ(σ)dσ.
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I In dimension 2, under some technical (and unfortunately inelegant) condi-
tions, we can show that the solution of (2.1) is unique.

I Another approach is to set v := eu and γ := ea and one finds that v satisfies
(here we may assume that u is also known on th eboundary) −div

(
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)
+ S(x)v = 0

v = ψ
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I Then one seeks a ∈ L∞(Ω) such that

ea
|∇v|2 = S|v|2.
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I γ 7→ F(γ) is an analytic operator. and one checks easily that

F′(γ)δ = δ|∇u|2 + 2γ∇u · ∇v,

where v satisfies

(2.3)


−div(γ∇v) = div(δ∇u)

γ
∂v
∂n
= 0

in Ω

on ∂Ω.
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I An observed data Fobs := Sobs being given, we try to find γ∗ such that F(γ∗) =
Fobs, by minimizing a cost functional depending on F(γ∗) − Fobs.

I Several cost functionals have been considered:

I Multigrid approach

J1(γ) :=
∑

1≤k≤m

(∫
ωk

F(γ)dx −
∫
ωk

Sobs(x)dx
)2

I A classical quadratic functional such as

J2(γ) :=
∫
Ω

(
F(γ)(x) − Sobs(x)

)2 dx

has been considered.
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∣∣∣2 dx

gives quite robust results,
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I Also we have considered a slightly different functional (with γ = ea)

J3(a) :=
∫
Ω

∣∣∣ea(x)/2
|∇u(x)| − Sobs(x)1/2

∣∣∣2 dx

gives quite robust results,

I and one can show that if Sobs = γ∗|∇u∗|2 for some admissible γ∗, then the
functionals J2 and J3 are strictly convex in a neighbourhood of γ∗.

I If one assumes that Sobs is known only in a subdomain Ω0 ⊂⊂ Ω, then the
functionals J1, J2, J3 may be defined only on Ω0 and numerically one obtains
quite good results.
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