Uniqueness of the Cheeger set of a convex body
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Abstract

We prove that if C C RY is of class C? and uniformly convex, then the Cheeger set
of C is unique. The Cheeger set of C' is the set which minimizes, inside C, the ratio
perimeter over volume.

1 Introduction

Given an nonempty open bounded subset Q of RY, we call Cheeger constant of € the
quantity

P(K)

ho = . 1

o = min (1)

Here |K| denotes de N-dimensional volume of K and P(K) denotes the perimeter of K.

The minimum in (1) is taken over all nonempty sets of finite perimeter contained in Q. A

Cheeger set of Q is any set G C © which minimizes (1). If Q minimizes (1), we say that it is
Cheeger in itself. We observe that the minimum in (1) is attained at a subset G of Q such
that 0G intersects 0€2: otherwise we would diminish the quotient P(G)/|G| by dilating G.
For any set of finite perimeter K in RV | let us denote
P(K)
AK = .
K]
Notice that for any Cheeger set G of 2, A¢ = hg. Observe also that G is a Cheeger set of

Q if and only if G minimizes

;(nglgP(K) — AclK]. (2)

We say that a set Q C RV is calibrable if Q minimizes the problem

in P(K) — \o|K].
min (K) — AalK| (3)

In particular, if G is a Cheeger set of €2, then G is calibrable. Thus, €2 is a Cheeger set of
itself if and only if it is calibrable.
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Finding the Cheeger sets of a given 2 is a difficult task. This task is simplified if Q is a
convex set and N = 2. In that case, the Cheeger set in  is unique and is identified with
the set Qf @ B(0, R) where QF := {x € Q : dist(z,0) > R} is such that |QF| = 7R? and
A®B:={a+b:ac A be B}, A,B CR?[2,19]. We see in particular that it is convex.
Moreover, a convex set 8 C R? is Cheeger in itself if and only if maxzesn ka(z) < A
where kqo(x) denotes the curvature of 92 at the the point xz. This has been proved in
[14, 9, 19, 2, 20|, though it was stated in terms of calibrability in [9, 2]. The proof in [14]
had also a complement result: if 2 is Cheeger in itself then € is strictly calibrable, that is,
for any set K C €2, K # €, then

0= P(Q) - Xl < P(K) - AalK],

and this implies that the capillary problem in absence of gravity (with vertical contact angle
at the boundary)

Law [ P Yoo, wmo
V14 |Du|?
Du

1+ |Dul? .

has a solution. Indeed, both problems are equivalent [14, 18].

=1 in 00

Our purpose in this paper is to extend the above result to RV, that is, to prove the
uniqueness and convexity of the Cheeger set contained in a convex set @ C RV. We
have to assume, in addition, that © is uniformly convex and of class C2. This regularity
assumption is probably too strong, and its removal is the subject of current research [1].
The characterization of a convex set @ C RV of class C! which is Cheeger in itself (also
called calibrable) in terms of the mean curvature of its boundary was proved in [3]. The
precise result states that such a set Q is Cheeger in itself if and only if ko(z) < Aq for any
x € 0%, where ko (z) denotes the sum of the principal curvatures of the boundary of €2, i.e.
(N — 1) times the mean curvature of 92 at x. Moreover, in [3], the authors also proved
that for any convex set  C RV there exists a maximal Cheeger set contained in € which is
convex. These results were extended to convex sets ) satisfying a regularity condition and
anisotropic norms in RY (including the crystalline case) in [12].

In particular, we obtain that Q C RY is the unique Cheeger set of itself, whenever Q
is a C?, uniformly convex calibrable set. We point out that, by Theorems 1.1 and 4.2 in
[14], this uniqueness result is equivalent to the existence of a solution u € VVI%)’COO(Q) of the
capillary problem (4).

Let us explain the plan of the paper. In Section 2 we collect some definitions and recall
some results about the mean curvature operator in (4) and the subdifferential of the total
variation. In Section 3 we state and prove the uniqueness result.



2 Preliminaries

2.1 BV functions

Let © be an open subset of RY. A function u € L'(Q2) whose gradient Du in the sense of
distributions is a (vector valued) Radon measure with finite total variation in 2 is called a
function of bounded variation. The class of such functions will be denoted by BV (€2). The
total variation of Du on 2 turns out to be

sup {/ u divz de: z € CP(Q;RY), 2|l oo () := esssup|z(z)| < 1} , (5)
Q zeN
(where for a vector v = (vi,...,vy) € RV we set |v]? := Zf\il v?) and will be denoted by

|Du|(R2) or by [, |Du|. The map u — [Du|(Q) is Li..(Q)-lower semicontinuous. BV () is a

Banach space when endowed with the norm [, |u| dz + |Du|(€2). We recall that BV(RY) C
LN/(Nfl) (RN)

A measurable set E C RY is said to be of finite perimeter in RY if (5) is finite when
u is substituted with the characteristic function Xz of E and © = RY. The perimeter of
E is defined as P(E) := |Dxg|(RY). For a complete monograph on functions of bounded
variation we refer to [5].

Finally, let us denote by H¥~! the (N — 1)-dimensional Hausdorff measure. We recall
that when F is a finite-perimeter set with regular boundary (for instance, Lipschitz), its
perimeter P(E) also coincides with the more standard definition H¥~1(0E).

2.2 A generalized Green’s formula
Let Q be an open subset of RY . Following [7], let
X5(Q) :={z € L®(Q;RY) : div z € L*(Q)}.

If 2 € X2(Q) and w € L2(Q) N BV(Q) we define the functional (2 - Dw) : C§°(2) — R by
the formula

< (z-Dw),¢ >:=—/

w p div zdm—/wz-Vgpdm.
Q

Q
Then (z - Dw) is a Radon measure in €,

/(z - Dw) = / z-Vwdr  VYwe L*(Q) nwhHi(Q).
Q Q

Recall that the outer unit normal to a point = € 89 is denoted by v*(z). We recall the
following result proved in [7].

Theorem 1. Let Q C RN be a bounded open set with Lipschitz boundary. Let z € Xo(f2).
Then there erists a function [z - v?] € L®(9Q) satisfying ||[z - VY| (a0) < [[2]] oo (mY),
and such that for any u € BV (2) N L2(Q) we have

/ u divz d:v—l—/(z-Du) :/ [z - vu dHN
Q Q 89
Moreover, if ¢ € CH(Q) then [(¢z) - v = ¢[z - V1.



This result is complemented with the following result proved by Anzellotti in [8].

Theorem 2. Let Q C RN be a bounded open set with a boundary of class C'. Let z €
C(;RYN) with div z € L?(2). Then

[z-v9Y(z) = 2(z) - v(x) HN~! a.e. on 09,

2.3 Some auxiliary results

Let © be an open bounded subset of RY with Lipschitz boundary, and let ¢ € L'(9). For
all € >0, we let ¥, : L?(2) — (—o00,+00] be the functional defined by

/ 62—|—|Du\2—|—/ =gl i ue Q)N BV(Q)
_ Q 0N

\I!fp(u) =

(6)
+00 if uweL?()\BV(Q).

As it is proved in [15], if f € W1%°(Q), then the minimum u € BV (Q) of the functional

W)+ [ fule) = f(o) da (7
belongs to u € C?T%(Q), for every a < 1. The mimimum u of (7) is a solution of
1 Du
u—cdiv—"% = fz) mQ
A \/e2+ |Dul? ) (8)
U = @ on 01}

where the boundary condition is taken in a generalized sense |21], i.e.,

Du

Ve? + |Dul? .

Observe that (8) can be written as

I/Q] € sign(p — u) HN=! a.e. on 0.

1

u—l—)\

oV (u) > f. (9)

We are particularly interested in the case where ¢ = 0. As we shall show below (see also

[3]) in the case of interest to us we have u > 0 on 99 and, thus, [¢ . UQ] = -1

e+ Dul?
HN=! ae. on 00. Tt follows that u is a solution of the first equation in (8) with vertical

contact angle at the boundary.
As € — 0T, the solution of (8) converges to the solution of

1 .
u+ X(‘)\If(p(u) = f(z) nQ (10)
U = @ on 0.



where ¥ : L2(Q) — (—oo, +00] is given by

/ | Dul —I—/ lu — o if uweL?(Q)NBV(Q)
R¥ o0

Uy (u) := (11)

+00 if ue L2(Q)\BV(Q).

In this case 0¥, represents the operator —div (Du/|Du|) with the boundary condition u = ¢
in 09, and this connection is precisely given by the following Lemma (see [6]).

Lemma 2.1. The following assertions are equivalent:
(a) v € OV, (u);
(b) ue L2(Q)NBV(Q), v € L2(), and there exists z € X2(Q) with ||zl < 1, such that
v=—divz in D'(Q),
(z - Du) = |Dul,

and
[z - %] € sign(p — u) HN=! ae. on 0.

Notice that the solution u € L?(£2) of (10) minimizes the problem

. N- A 2
min A|Du| + /aQ lu(z) — p(z)| dHN " (z) + §/Q|u(m) — f(2)|* dx, (12)

ueBV(Q)

and the two problems are equivalent.

3 The uniqueness theorem

We now state our main result.

Theorem 3. Let C be a convex body in RY. Assume that C is uniformly convez, with
boundary of class C?. Then the Cheeger set of C is conver and unique.

We do not believe that the regularity and the uniform convexity of C is essential for this
result (see [1]).
Let us recall the following result proved in [3] (Theorems 6 and 8 and Proposition 4):

Theorem 4. Let C be a convez body in RN with boundary of class C1''. For any A, e > 0,

there is a unique solution u. of the equation:

1 D
U — —div$2 =1 inC

A /2 + |Du.| (13)
ue = 0 on 0C,



such that 0 < u; < 1. Moreover, there exist Ay and gy, depending only on 0C, such that if
A > X and € < gg, then u. is a concave function such that ue > « > 0 on 9C for some
a > 0. Hence, u. satisfies

Du¢
V€ + |Du|?

As e — 0, the functions u. converge to the concave function u which minimizes the problem

I/c] =sign(0 —u®) = -1 on JC. (14)

. N—-1 )\ 2
min /C|Du| +/ ()| dHY (@) + §/C|u(:1:)—l\ do (15)

u€BV(C) acC

or, equivalently, if u is extended with zero out of C, u minimizes

A
/ \Dul + 5/ - xc? da.
RN RN

The function u satisfies 0 < u < 1. Moreover, the superlevel set {u > t}, t € (0,1], is
contained in C and minimizes the problem

in P(F) — A(1—1t)|F|. 16

min P(F) — A(1— )| (16)

It was proved in [3] (see also [12]) that the set C* = {u = maxcu} is the maximal
Cheeger set contained in C, that is, the maximal set that solves (1). Moreover, one has
u:1—hc/>\>0in C* and hg = A¢~.

If we want to consider what happens inside C* and, in particular, if there are other
Cheeger sets, we have to analyze the level sets of u, before passing to the limit as e — 0.
In order to do this, let us introduce the following rescaling of w,:

ve = LT Me o,
€

where m. = max¢ue — 1 —hg /X as € — 0. The function v, is a generalized solution of the

equation:
1 D,
ey — —div——ee—e-— = 1-m, inC
C N 1+ [DuP? © (17)
Ve = —m/e on OC.

We let ze = Duc/+/€? + |Duc|?> = Dv./+/1+ |Dv:|?. Notice that z. is a vector field in
L>(C), with uniformly bounded divergence, such that |z.| < 1 a.e. in C and, by (14),
[2¢ - vc] = —1 on OC.

Let us study the limit of v, and 2. as € — 0. Let us observe that, by concavity of v,
for each € > 0 small enough and each s € (0, |C|), there exists a (convex) superlevel set CS
of v, such that |C| = s. We also observe that {v, = 0} is a null set. Otherwise, since v,
is concave, it would be a convex set of positive measure, hence with nonempty interior. We
would then have that v, = divze = 0, hence 1 —m, = 0 in the interior of {v. = 0}. This is
a contradiction with Theorem 4 for ¢ > 0 small enough. Hence we may take C§ := {v. = 0}



and Cf := C. The boundaries 9C¢ N C' define in C' a foliation, in the sense that for all
x € C, there exists a unique value of s € [0, |C|] such that z € dCE¢.

We observe that a sequence of uniformly bounded convex sets is compact both for the
L' and Hausdorff topologies. Hence, up to a subsequence, we may assume that C¢ converge
to convex sets Cjs, each of volume s, first for any s € QN (0,|C|) and then by continuity
for any s. Possibly extracting a further subsequence, we may assume that there exists
sx« € [0,]|C|] such that v, goes to a concave function v in Cs for any s < s, and to —oo
outside C, := Cs,. We may also assume that z. — z weakly* in L*°(C), for some vector

field z, satisfying |z| <1 a.e. in C. From (13) we have in the limit
—divz = A(1—u) in D'(C). (18)

Moreover, by the results recalled in Section 2, it holds —divz € 0¥o(u). We see from (18)
that
—divz = he in C*, (19)

while —divz > h¢ a.e. on C'\ C*. We let s* := |C*|, so that C* = Cs«. By Theorem 4, for
s > s*, the set Cs is a minimizer of the variational problem

in P(E) — 1, E 2
min (E) — ps| B, (20)

for some ps > he (us is equal to the constant value of —divz = A(1 — u) on 0Cs N C, see
eq. (16)). Notice that ps is bounded from above by P(C)/(|C| — s): indeed, for € > 0, one
has

| Du|

— = < P(C
acenc \/1+ |Duc? — ©

(since the inner normal to C% at z € 9C N C is Dug(z)/|Due(z)]). On the other hand,

- / divz (¢)dz = / ML= ue(@))de > uS(C) —s),
C\Cs C\Cs

- / div z.(z)dz = HN 18O\ 8CE) —
C\Cs

where p§ is the constant value of A(1—wu,) on the level set 0CSNC, and goes to us as € — 0.
A more careful analysis would show, in fact, that pus < (P(C) — P(Cs))/(|C| — s).

For s > s*, we have yus > he and the set Cs is the unique minimizer of the variational
problem (20). As a consequence (see [3, 12]) for any s > s* the set Cs is also the unique
minimizer of P(E) among all E C C of volume s.

Lemma 3.1. We have s, > 0 and the sets Cs are Cheeger sets in C for any s € [s, s*].
Proof. Let s, < s <|C|. If x € 0CS \ 0C, then
0—ve(z) < Dv(x)- (T — )

where ve(Ze) = maxc ve. Hence, lim,_,q infyce\ac |[Dve| = +00. Since [z - v¢]=—1o0n 0C
and P(C%) — P(Cs), we deduce

- / (22 () - v (2)] MV (2)
acs

_ / Doe@)l _ ggyN-1(0) 4 5¥~1(005 0 0C) — P(Cy)
9cs\oC /1 + [Dvg(z)|?



as € — 0T. Hence,
[z . I/CS] dHN"T = divz = lim div 2,
aC, Cs =0 Jce

= lim [ [z ve]dHY T = — P(Cy).
e—=0 ace s

Since |z| <1 a.e. in C, we deduce that [2-v%] = —1 on 0C, for any s > s, (in particular,
we have |z| =1 a.e. in C'\ C,). Using this and (19), for all s, < s < s* we have

P(Cs)
|Cs

= he. (21)

This has two consequences. First, from the isoperimetric inequality, we obtain

if s € (s4,s*], so that s, > 0. Moreover, C; is a Cheeger set for any s € (s, s*], and by
continuity C is also a Cheeger set. O

We point out that, since the sets Cs are convex minimizers of P(E) — us|E| among all
E C C, for s > s,, their boundary is of class C1! [10, 22], with curvature less than or equal
to us, and equal to ps in the interior of C (note that ps = he for s € [sy, s¥]).

Remark 3.2. Observe that we have either s, = s* and therefore C, = C*, or s, < s*, and
we have C" = e,
sum of the principal curvatures) on dC* is equal to he. Indeed, if it were not the case, by
considering C' C int(C*), with curvature strictly below h¢, and the smallest set Cs, with
$ > S., which contains C’, we would have k¢ (z) > k¢, (z) = he at all z € 9C' N AC, a
contradiction. In particular, if the supremum of k¢ on 9C is strictly less than P(C)/|C|
(which implies C' = C* by [3]) then C = C,.

) Cs. In the latter case, the supremum of k¢« (which denotes the

From the strong convergence of Dv. to Dv (in L?(C;) for any s < s,), we deduce that

z=—2L% _in C,. It follows that v satisfies the equation

14+|Dv|?

D
—div——"C = he inC,. (22)

1+ |Dvl|?

Integrating both terms of (22) in C,, we deduce that

Dv
1+ |Dvl|?

Lemma 3.3. The set C, is the minimal Cheeger set of C, i.e., any other Cheeger set of C

VC*] = -1 on 0C,.

must contain C,.



Proof. Let K C C* be a Cheeger set in C. We have

he|K| = —/ dive = — , [z-vE]aHN ! = P(K)
K K

so that [z - %] = —1 a.e. on OK. Let v and v be the vector fields of unit normals to the
sets C¢ and Cy, s € [0,|C|], respectively. Observe that, by the Hausdorff convergence of C¢
to Cs as € — 0% for any s € [0, |C]], we have that ¢ — v a.e. in C. On the other hand,

|ze + v¢| — 0 locally uniformly in C'\ C,: indeed, we have in C

7ot v =

Du, Dv. | | Dve| .
V1+[Dv. 2 |Dv| V/1+ |Dv|?

Since (see the first lines of the proof of Lemma 3.1) |Dve| — oo uniformly in any subset of

C' at positive distance from C, it shows the uniform convergence of |z, + v¢| to 0 in such

subsets.
These two facts imply that 2 = —v a.e. on C\ C,. By modifying z in a set of null
measure, we may assume that z = —v on C' \ C,. We recall that the sets Cs, s > s, are

minimizers of variational problems of the form mingcc P(K) — p|K|, for some values of p
(with 4 = h¢ aslong as s < s* and u = ps > he continuously increasing with s > s*). Since
these sets are convex, with boundary (locally) uniformly of class C*-!, and the map s — Cj
is continuous in the Hausdorff topology, we obtain that the normal v(x) is a continuous
function in C'\ int(C,).

Since |z| < 1 inside Cy and [z -v¥] = —1 a.e. on 0K, by [7, Theorem 1]) we have that
the boundary of K must be outside the interior of C,, hence either K O Cy, or KN C, = ()
(modulo a null set). Let us prove that the last situation is impossible. Indeed, assume
that K NC, = 0 (modulo a null set). Since K is of class C' out of a closed set of zero
HN~Lmeasure (see [16]) and z is continuous in C'\ int(Cy), by Theorem 2 we have

2(x) - vE(x) = -1 HN~1_ae. on OK. (23)

Now, since KNC, = () (modulo a null set), then there is some s > s, and some z € dC;NOK
such that v%(z) 4+ v(z) = 0. Fix 0 < € < 2. By a slight perturbation, if necessary, we may
assume that © € 0Cs; N 0K with s > s,, (23) holds at x and

WX (z) +v(z)] < e (24)
Since by (23) we have v(r) = —z(z) = v¥(x) we obtain a contradiction with (24). We
deduce that K O C,. O

Therefore, in order to prove uniqueness of the Cheeger sets of C, it is enough to show
that
C,=C". (25)
Recall that the boundary of both C, and C* is of class C"!, and the sum of its principal
curvatures is less than or equal h¢, and constantly equal to h¢ in the interior of C. We now
show that if C, # C* and under additional assumptions, the sum of the principal curvatures
of the boundary of C* (or of any C; for s € (s, s*]) must be he out of Cs.



Lemma 3.4. Assume that C has C? boundary. Let s € (s4,5*] and x € 9C; \ 0C,. If the
sum of the principal curvatures of 0Cs at x is strictly below ho, then the Gaussian curvature
of 0C at x is 0.

Proof. Let x € 9C; \ 0C, and assume the sum of the principal curvatures of 0Cs at z is
strictly below h¢o (assuming x is a Lebesgue point for the curvature on 0Cs). Necessarily,
this implies that x € dC. Assume then that the Gauss curvature of 9C at x is positive:
by continuity, in a neigborhood of x, C' is uniformly convex and the sum of the principal
curvatures is less than hc. We may assume that near x, 0C' is the graph of a non-negative,
C? and convex function f : B — R where B is an (N — 1)-dimensional ball centered at x.
We may as well assume that dC; is the graph of fs : B — R, which is C™! [10, 22], and also
nonnegative and convex. In B, we have f; > f >0, and

D?f > ol and divi = h

V1+|Df|?
with h € C°(B), h < he, a > 0, while

: Dfs
div ————= = hxq=sa2 +h
/1 ¥ |Dfs|2 X{f=fs} CX{fs>f}

(where x{y—y,} has positive density at z).
We let g = fs — f > 0. Introducing now the Lagrangian ¥ : R¥~! — [0, +00) given by
U(p) = v/1+ |p|?, we have that for a.e. y € B

(hc — MY))xgg>01(y) = div (DY (Dfs(y)) — DY(Df(y)))

= aw ([ P91 +101,0) - @) Dyt

so that, letting A(y) := fol D2V (Df(y)+tDg(y)) dt (which is a positive definite matrix and
Lipschitz continuous inside B), we see that ¢ is the minimizer of the functional

we [ (A@Dw() - Do) + (he - Hw)w()) dy

under the constraint w > 0 and with boundary condition w = fs — f on 0B. Adapting the
results in [11] we get that {f = fs} = {g = 0} is the closure of a nonempty open set with
boundary of zero H¥ ~!-measure.

We therefore have found an open subset D C 9C N 9C, disjoint from 0C,, on which C
is uniformly convex, with curvature less than h¢. Let ¢ be a smooth, nonnegative function
with compact support in D. One easily shows that if € > 0 is small enough, 0Cs — epr*s
is the boundary of a set C which is still convex, with P(C)/|C!| > P(Cs)/|Cs| = hc (just
differentiate the map e — P(C!)/|C!|), and the sum of its principal curvatures is less than
he. This implies that for € > 0 small enough, the set C! := C! is calibrable [3], which in
turn implies that ming ¢ P(K)/|K| = P(C')/|C'|. But this contradicts C, C C’, which is
true for € small enough. O

10



Proof of Theorem 3. Assume that C' is C? and uniformly convex. Let us prove that its
Cheeger set is unique. Assume by contradiction that C* # C,. From Lemma 3.4 we have
that the sum of the principal curvatures of dC* is h¢ outside of C,.

Let now Z € 90C* N 0C, be such that 0C* N B,(Z) # 0C, N B,(z) for all p > 0
(0C* N 9C, # ( since otherwise both C* and C, would be balls, which is impossible).
Letting T be the tangent hyperplane to dC* at Z, we can write dC* and JC, as the graph
of two positive convex functions v* and v,, respectively, over T' N B,(Z) for p > 0 small
enough. Identifying T N B,(z) with B, C RV~ we have that v, v* : B, — R both solve

the equation
D
—div——— = 7§, (26)
1+ |Dv|?

for some function f € L*°(B,). Moreover, it holds v, > v*, v,(0) = v*(0) and v«(y) > v*(y)
for some y € B,. Notice that f = A¢ in the (open) set where v, > v*, in particular both
functions are smooth in this set. Let D be an open ball such that D C B,, v, > v* on D and
v«(y) = v*(y) for some y € OD. Notice that, since both v* and v, belong to C*°(D)NC' (D),
the fact that v,(y) = v*(y) also implies that Dv,(y) = Dv*(y). In D, both functions solve
(26) with f = A¢. Letting now w = v, — v*, we have that w(y) = 0 and Dw(y) = 0, while
w > 0 inside D. Recalling the function ¥(p) = y/1 + |p|?, we have that for any z € D

0 = div (D¥(Dvs(z)) — DU (Dv*(z)))
— div (( /0 1D2\II(DU*(3;) + t(Dv.(z) — Dv*(2))) dt) Dw(a:))

so that w solves a linear, uniformly elliptic equation with smooth coefficients. Then Hopf’s
lemma [13] implies that Dw(y) - vp(y) < 0, a contradiction. Hence C, = C*. O

Remark 3.5. Notice that, as a consequence of Theorem 3 and the results of Giusti [14],
we get that if C is of class C2 and uniformly convex, equation (22) has a solution on the
whole of C, if and only if C is a Cheeger set of itself, i.e. if and only if the the sum of the
principal curvatures of 9C' is less than or equal to P(C)/|C]|.

Remark 3.6. The results of this paper can be easily extended to the anisotropic setting
(see [12]) provided the anisotropy is smooth and uniformly elliptic.
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