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Abstract

We prove that if C ⊂ IRN is a an open bounded convex set, then there is only

one Cheeger set inside C and it is convex. The Cheeger set of C is the set which

minimizes for sets inside C the ratio perimeter over volume.

1 Introduction

Given an nonempty open bounded subset Ω of IRN , we call Cheeger constant of Ω the
quantity

hΩ = min
F⊆Ω

P (F )
|F |

. (1)

Here |F | denotes de N -dimensional volume of F and P (F ) denotes the perimeter of F .
The minimum in (1) is taken over all nonempty sets of �nite perimeter contained in Ω.
A Cheeger set of Ω is any set G ⊆ Ω which minimizes (1). If Ω minimizes (1), we say
that it is Cheeger in itself. We observe that the minimum in (1) is attained at a subset
G of Ω such that ∂G intersects ∂Ω: otherwise we would diminish the quotient P (G)/|G|
by dilating G.

For any set of �nite perimeter F in IRN , let us denote

λF :=
P (F )
|F |

.
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Notice that for any Cheeger set G of Ω, λG = hG. Observe also that G is a Cheeger set
of Ω if and only if G minimizes

min
F⊆Ω

P (F )− λG|F |. (2)

We say that a set Ω ⊂ IRN is calibrable if Ω minimizes the problem

min
F⊆Ω

P (F )− λΩ|F |. (3)

In particular, if G is a Cheeger set of Ω, then G is calibrable. Thus, Ω is a Cheeger set
of itself if and only if it is calibrable.

Finding the Cheeger sets of a given Ω is a di�cult task. This task is simpli�ed if
Ω is a convex set and N = 2. In that case, the Cheeger set in Ω is unique and is
identi�ed with the set ΩR ⊕ B(0, R) where ΩR := {x ∈ Ω : dist(x, ∂Ω) > R} is such
that |ΩR| = πR2 and X ⊕ Y := {x + y : x ∈ X, y ∈ Y }, X, Y ⊂ IR2 [2, 22]. We see in
particular that it is convex. Moreover, a convex set Ω ⊆ IR2 is Cheeger in itself if and
only if maxx∈∂Ω κΩ(x) ≤ λΩ where κΩ(x) denotes the curvature of ∂Ω at the the point x.
This has been proved in [12, 5, 22, 2, 23], though it was stated in terms of calibrability
in [5, 2]. The proof in [12] had also a complement result: if Ω is convex and Cheeger in
itself, then Ω is strictly calibrable, that is, for any set F ⊂ Ω, F 6= Ω, then

0 = P (Ω)− λΩ|Ω| < P (F )− λΩ|F |,

i.e., there is no other Cheeger set inside Ω, and this implies that the capillary problem
in absence of gravity (with vertical contact angle at the boundary)

−div

(
Du√

1 + |Du|2

)
= λΩ in Ω

− Du√
1 + |Du|2

· νΩ = 1 in ∂Ω

(4)

has a solution. Indeed, both problems are equivalent [12, 21].

Assuming that C ⊂ IRN is an open uniformly convex set of class C2, in [7], the
authors proved the uniqueness and convexity of the Cheeger set contained in C. As
a consequence, this implies the extension of Giusti's results on existence of solutions
of problem (4) when Ω ⊆ IR2 is convex and calibrable [12] to the case where Ω is the
Cheeger set in an open uniformly convex set C ⊂ IRN of class C2. Our purpose in this
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paper is to remove these regularity assumptions proving that the uniqueness result of
the Cheeger set holds inside any non-trivial convex body of IRN .

Recall that a convex body of IRN is a compact convex subset of IRN . We say that a
convex body is non-trivial if it has nonempty interior.

Theorem 1. There is a unique Cheeger set inside any non-trivial convex body of IRN .

The Cheeger set is convex and of class C1,1.

Moreover, the characterization of a calibrable (i.e. Cheeger in itself) non-trivial
convex body Ω ⊂ IRN of class C1,1 in terms of the mean curvature of its boundary was
proved in [1]. The precise result states that such a set Ω is calibrable if and only if

(N − 1)HΩ(x) ≤ λΩ for any x ∈ ∂Ω, (5)

where HΩ(x) is the mean curvature of ∂Ω at x (so that (N − 1)HΩ(x) denotes the sum
of the principal curvatures of the boundary of Ω at x). We observe that this result can
be slightly strengthened to say that a non-trivial convex body of Ω ⊂ IRN is calibrable
if and only if is of class C1,1 and (5) holds.

Collecting these results we obtain the full extension of Giusti's results to IRN (N ≥ 2),
that is, we obtain that Ω ⊂ IRN is the unique Cheeger set of itself, whenever Ω is a non-
trivial calibrable convex body and those sets are characterized by the bound on the mean
curvature (5). We point out that, by Theorems 1.1 and 4.2 in [12], this uniqueness result
is equivalent to the existence of a solution u ∈ W 1,∞

loc (Ω) of the capillary problem (4).
Let us explain the plan of the paper. In Section 2 we reduce the proof of Theorem 1

to the case of non-trivial C1,1 convex bodies. For that we prove the existence of a C1,1

maximal Cheeger set inside any non-trivial convex body of IRN . The rest of the paper is
devoted to the proof of Theorem 1 for non-trivial convex bodies of class C1,1. We start
in Section 3 by proving some basic linear algebra inequalities to be used in Section 4 to
prove the behavior of the mean curvature of the boundary of the convex combination of
two smooth strictly convex sets. In Section 5 we prove an auxiliar property, namely that
the free boundary of an isoperimetric region inside a convex body of class C1 is strictly
convex. Finally, in Section 6 we prove the uniqueness of Cheeger sets inside non-trivial
convex bodies of class C1,1.
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2 Nontrivial convex bodies contain a maximal C1,1 Cheeger

set

The purpose of this Section is to prove the existence of a C1,1 maximal Cheeger set inside
any non-trivial convex body of IRN . This reduces the proof of Theorem 1 to the class of
C1,1 calibrable sets. Let us recall some results proved in [1].

Lemma 2.1. ([1]) Let C be a bounded convex subset of IRN . For any µ > 0, the problem
the problem

(P )µ : min
F⊆C

P (F )− µ|F |. (6)

has always a minimizer. The following properties hold:

(i) Let Cλ, Cµ be minimizers of (P )λ, and (P )µ respectively. If λ < µ, then Cλ ⊆ Cµ.

(ii) Let λn ↑ λ. Then C∪
λ :=

⋃
n Cλn is a minimizer of (P )λ. Moreover P (Cλn) →

P (C∪
λ ). Similarly, if λn ↓ λ, then C∩

λ :=
⋂

n Cλn is a minimizer of (P )λ, and

P (Cλn) → P (C∩
λ ).

(iii) Assume that C has bounded mean curvature. Let Λ := (N − 1)‖HC‖∞. Then C is

a solution of (P )λ for any λ ≥ NΛ.

If C ⊆ IRN is be a non-trivial convex body of class C1,1, we denote by HC the
(HN−1-almost everywhere de�ned) mean curvature of ∂C, nonnegative for convex sets.
If C is of class C2, then HC is de�ned everywhere on ∂C.

Theorem 2. ([1]) Let C ⊆ IRN be a non-trivial convex body of class C1,1. Then there

is a convex calibrable set K ⊆ C which is the maximal Cheeger set contained in C.

Therefore K minimizes

min
F⊆C

P (F )− λK |F | where λK := P (K)
|K| . (7)

For any µ > λK , there is a unique minimizer Cµ of (P )µ, the function µ → Cµ is

increasing and continuous and Cµ → K as µ → λK+. Moreover, we have Cµ = C if

and only if µ ≥ max(λC , (N − 1)‖HC‖∞).

As a consequence of Theorem 1 (or Theorem 6) we will be able to say that K is the
Cheeger set of C and λK = hC . Let us re�ne a result proved in [1].
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Proposition 2.2. Let C be a non-trivial convex body of IRN . Let u ∈ BV (IRN )∩L2(IRN )
be the (unique) solution of the variational problem

(Q)λ,C : min
u∈BV (IRN )∩L2(IRN )

{∫
IRN

|Du|+ λ

2

∫
IRN

(u− χC)2 dx

}
. (8)

Then 0 ≤ u ≤ 1. Let Es := [u ≥ s], s ∈ (0, 1]. Then Es ⊆ C, and, for any s ∈ (0, 1], Es

is a minimum of (P )µ for µ = λ(1 − s). Moreover, each level set Es is convex and the

function u restricted to [u > 0] is concave.

Proof. The facts that 0 ≤ u ≤ 1 and Es is a solution of (6) with µ = λ(1− s) coincides
with Proposition 4 in [1]. The rest of assertions were proved assuming that C is C1,1 and
for λ ≥ 2N(N − 1)‖HC‖∞. Let us observe how can they be extended to any convex set
and any λ > 0. First we assume that C is C1,1 and λ > 0. We follow the construction in
[1]. Let K be the calibrable set contained in C de�ned in Theorem 2. For each µ ∈ (0,∞)
let Cµ be the solution of (P )µ. We take Cµ = ∅ for any µ < λK , and, by Theorem 2 we
have that Cµ = C for any µ ≥ max(λC , (N − 1)‖HC‖∞). Following the approach in [1]
(see also [4, 14]), using the monotonicity of Cµ and |C \ ∪{Cµ : µ > 0}| = 0, we may
de�ne

HC(x) =


− inf{µ : x ∈ Cµ} if x ∈ C

0 if IRN \ C.

(9)

Observe that HC(x) = −λK for any x ∈ K. Then as it was proved in [1] uλ(x) :=
(1 + λHC(x))+ χC is the solution of (Q)λ,C for any λ > 0. Moreover for λ ≥ 2N(N −
1)‖HC‖∞ we have that uλ > 0 and is concave in C. This amounts to say that HC(x) is
also a concave function. Now, this implies that for any s ∈ (0, 1] the level set [uλ ≥ s] is
convex and uλ restricted to [uλ > 0] is concave.

Assume that C is any bounded convex set in IRN and λ > 0. Let Cn be bounded
convex subsets of IRN of class C1,1 such that C ⊆ Cn and Cn → C in the Hausdor�
distance (such sets exist, see for instance, [26], pp. 158-160, [3, Proposition 1.9], or
Lemma 4.3 below). Let un,λ, uλ be the solutions of (Q)λ,C and (Q)λ,Cn

, respectively.
We know that 0 ≤ uλ ≤ un,λ ≤ 1, un,λ = 0 outside Cn, uλ = 0 outside C, and un,λ → uλ

in L2(IRN ). Since the level sets [un,λ ≥ s], ∀s ∈ (0, 1], are convex and un,λ restricted to
[un,λ > 0] is concave, we deduce that for almost any s ∈ (0, 1] the level sets [uλ ≥ s] are
convex and uλ restricted to [uλ > 0] is concave. Hence uλ is continuous in [uλ > 0] and
the level sets [uλ ≥ s] are convex for any s ∈ (0, 1].

Remark 2.3. Notice that, as proved in [1, Lemma 3], we have that uλ 6= χC for any
λ > 0 and uλ → χC in L2(IRN ) as λ →∞.
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Theorem 3. Let C ⊆ IRN be a non-trivial convex body. For any µ > hC , there is a

unique solution Cµ of (P )µ which is convex. The set K = ∩µ>hC
Cµ is a solution of

(P )hC
which is convex and a maximal Cheeger set. The function µ ∈ [hC ,∞) → Cµ is

increasing, continuous and Cµ → C as µ →∞.

Proof. Notice that the isoperimetric inequality implies that hC > 0 and any Cheeger
set has positive measure. Let K ′ be a Cheeger set of C. Let µ > hC . Let λ > 0 be large
enough and s ∈ (0, 1] be such that µ = λ(1 − s). We observe that, using Remark 2.3,
by taking λ > 0 large enough we may assume that s < ‖uλ‖∞. If uλ is the solution of
(Q)λ,C , then [uλ ≥ s] is a solution of (P )µ and, by Lemma 2.1.(i), [uλ ≥ s] ⊇ K ′. Thus,
[uλ ≥ s] is a nonempty convex solution of (P )µ. Now, if G is any other solution of (P )µ,
then by Lemma (2.1).(i) we have

[uλ > s] = ∪ε>0[uλ ≥ s + ε] ⊆ G ⊆ ∩ε>0[uλ ≥ s− ε] = [uλ ≥ s]. (10)

Since uλ is concave in [uλ > 0], we have that G = [uλ > s] = [uλ ≥ s] modulo a null set.
Thus, the solution of (P )µ is unique and convex.

By Lemma 2.1.(ii), the set K = ∩µ>hC
Cµ is a convex solution of (P )hC

. Notice that
P (K)−hC |K| ≤ P (K ′)−hC |K ′| = 0. Hence K is a Cheeger set. Notice that, by Lemma
2.1.(i), any Cheeger set is contained in K.

The construction of K, together with the argument in (10) proves that the map
µ ∈ [hC ,∞) → Cµ is continuous. By Remark 2.3 (Lemma 3 in [1]), we know that
uλ → χC as λ →∞, and this implies that Cµ → C as µ →∞.

Remark 2.4. Thanks to Proposition 3 , we may repeat the construction of HC(x) in
the proof of Proposition 2.2 to conclude that uλ(x) = (1 + λHC(x))+ χC is the solution
of (Q)λ,C for any λ > 0. Moreover, the set [uλ = ‖uλ‖∞] = K.

Remark 2.5. As in [1], we can prove that for any V ∈ [|K|, |C|] there is a unique
solution of the isoperimetric problem with �xed volume

min
F⊆C,|F |=V

P (F ). (11)

Moreover, this solution is convex.

Proposition 2.6. The maximal Cheeger set K is C1,1.

Proof. Since K is a solution of (P )hC
, classical computations (see, for instance, [29])

it follows that 0 ≤ HK ≤ hC . Since K is convex, it follows that K is C1,1 (see, for
instance, [3, Proposition 1.3] for a more general statement).
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Remark 2.7. As we proved in [1], as a consequence of Theorem 2, if C ⊆ IRN is non-
trivial convex body of class C1,1, then C is calibrable if and only if (N − 1)HC ≤ λC .
Notice that the proof of Proposition 2.6 implies that if C is non-trivial convex body of
IRN , then C is calibrable if and only if C is of class C1,1 and (N − 1)HC ≤ λC .

3 Some linear algebra inequalities

We begin with some classical inequalities inside the cone of symmetric positive de�nite
matrices.

Proposition 3.1. The inversion A 7→ A−1 is strictly convex in S++
N (IR), the set of real

symmetric positive de�nite matrices, i.e. ∀A,B ∈ S++
N (IR), A 6= B, ∀λ ∈ (0, 1), we have

(λA + (1− λ)B)−1 − λA−1 − (1− λ)B−1 ∈ S++
N (IR). (12)

Proof. From a classical result on the simultaneous diagonalization of two quadratic
forms [11], we know that there exists an invertible matrix P and a diagonal matrix
D = diag(di)i∈{1,...,N} such that A = tPP and B = tPDP , where tP denotes the
tranpose of P . Using this, we can write

(λA + (1− λ)B)−1 − λA−1 − (1− λ)B−1

= P−1
(
(λIN + (1− λ)D)−1 − λIN − (1− λ)D−1

)
(tP )−1

where IN denotes the N ×N identity matrix. Now, the result follows by observing that,
since x 7→ 1

x is strictly convex for x > 0, each diagonal element of (λIN + (1− λ)D)−1 −
λIN − (1− λ)D−1 is non-negative.

Since Tr(A) > 0 for any A ∈ S++
N (IR), we get the following useful consequence.

Corollary 3.2. A 7→ Tr(A−1) is strictly convex in S++
N (IR).

Proposition 3.3. Let A and B ∈ S++
N (IR). Then

1
Tr((A + B)−1)

≥ 1
Tr(A−1)

+
1

Tr(B−1)
. (13)

Moreover, the equality holds if and only i� A and B are homothetic, i.e. it exists λ > 0
with A = λB.
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Proof. Observe that we can rewrite the inequality (13) as

Tr((A + B)−1)Tr(A−1 + B−1)− Tr(A−1)Tr(B−1) ≤ 0. (14)

Let P and D be as in the proof of Proposition 3.1. We may write

Tr((A + B)−1) = Tr((tP (IN + D)P )−1) = Tr((IN + D)−1(tP )−1P−1)

Tr(A−1) = Tr(P−1(tP )−1) = Tr((tP )−1P−1)

Tr(B−1) = Tr(P−1D−1(tP )−1) = Tr(D−1(tP )−1P−1).

Let us write C̃ = (cij)
N
i,j=1 := (tP )−1P−1 ∈ S++

N (IR). Using the above identities, proving
(14) is equivalent to prove that

Tr((In + D)−1C̃)Tr(C + D−1C̃)− Tr(C̃)Tr(D−1C̃) ≤ 0.

Since cii > 0 for all i = 1, . . . , N , the result follows from next elementary computations

Tr((IN + D)−1C̃)Tr(C̃ + D−1C̃)− Tr(C̃)Tr(D−1C̃)

=
N∑

i=1

cii

1 + di

N∑
j=1

cjj(1 +
1
dj

)−
N∑

i=1

cii

N∑
j=1

cjj

di

=
N∑

i=1

N∑
j=1

ciicjj
di(dj + 1)− dj(di + 1)

didj(1 + di)
=

N∑
i=1

N∑
j=1

ciicjj
di − dj

didj(1 + di)

=
∑

1≤i<j≤N

ciicjj

(
di − dj

didj(1 + di)
+

dj − di

didj(1 + dj)

)

=
∑

1≤i<j≤N

ciicjj
(di − dj)(1 + dj) + (dj − di)(1 + di)

didj(1 + di)(1 + dj)

=
∑

1≤i<j≤N

ciicjj
−(di − dj)2

didj(1 + di)(1 + dj)
≤ 0

the last inequality being an equality if and only if D = d1IN , that is, when A and B are
homothetic.

4 Some convexity properties of the mean curvature

In this section, we apply the inequalities proved in last Section to study the behavior of
the mean curvature of the boundary of the convex combination of two smooth convex
and strictly convex sets.
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We denote by X ⊕ Y the Minkowski's addition of two convex sets X, Y ⊆ IRN , .e.,
X ⊕ Y := {x + y : x ∈ X, y ∈ Y }.

In this Section K and L will be two non-empty open bounded convex sets in IRN .
For all t ∈ [0, 1], let

Kt := (1− t)K ⊕ tL = {(1− t)x + ty : (x, y) ∈ K × L}.

Notice that Kt is also an open bounded convex set.

Lemma 4.1. Assume that ν ∈ SN−1 is a normal to ∂K at x and to ∂L at y, and let

xt = (1− t)x + ty. Then xt ∈ ∂Kt and ν is normal to ∂Kt at xt.

Proof. Recall that ν is normal to ∂Kt at xt if Kt ⊂ H−
xt,ν := {z ∈ IRN : 〈z, ν〉 < 〈xt, ν〉}

with xt ∈ Kt. Observe that, since x ∈ K and y ∈ K, by continuity of the addition we
have xt ∈ Kt. Now, as ν is normal to ∂K at x and to ∂L at y, we have that K ⊂ H−

x,ν

and L ⊂ H−
y,ν . It follows that Kt = (1− t)K ⊕ tL ⊂ (1− t)H−

x,ν ⊕H−
y,ν = H−

xt,ν .

When K is of class C1, we denote by νK(x) the outer unit normal to x ∈ ∂K, so
that νK : ∂K → SN−1 is the spherical image map. We say that K is C2 and strictly
convex near x ∈ ∂K if ∂K is C2 and νK is a di�eomorphism in a neighborhood of x.

The following result is an application of the linear algebra inequalities of the previous
section.

Theorem 4. Suppose that K and L are C2 and strictly convex near x and y, respectively,

and ν ∈ SN−1 is normal to ∂K at x and to ∂L at y. Let xt = (1 − t)x + ty. Then Kt

is C2 and strictly convex near xt and the functions t ∈ [0, 1] → HKt(xt) ∈ (0,∞) and

t ∈ [0, 1] → 1
HKt (xt)

are convex and concave in t, respectively.

Proof. Recall that the support function of a convex body B ⊂ IRN is de�ned by
hB(u) = sup

x∈B
〈x, u〉, ∀u ∈ IRN . It is a sublinear function in u and is additive with respect

to the Minkowski sum (in particular, we have hKt = (1 − t)hK + thL). It is also well-
known that if the convex body B is smooth, the eigenvalues of its Hessian matrix at
νB(x) are 0 (with eigenvector νB(x)) and the principal radii of curvature r1, . . . , rN−1

of ∂B at x [26, Corollary 2.5.2, p. 109].
First, we observe that our assumptions imply that Kt remains C2 and strictly convex

near xt because this property is equivalent to have a C2 support function with bounded
positive radii of curvature locally around xt.
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Let ν = νK(x) and let (e1, ..., eN−1, ν) be an orthonormal basis of IRN . Let A,B be
the Hessian matrices of hK and hL restricted to ν⊥, i.e.,

A =
(

∂2hK(ν)
∂xi∂xj

)
1≤i,j≤N−1

and B =
(

∂2hL(ν)
∂xi∂xj

)
1≤i,j≤N−1

.

Then A,B ∈ S++
N−1(IR) because all radii of curvature are positive. The mean-curvature

HKt(xt) is given by

HKt(xt) =
Tr(((1− t)A + tB)−1)

N − 1
.

Now, Corollary 3.2 shows that t 7→ HKt(xt) is convex, with strict convexity if A 6= B,
and Proposition 3.3 shows that

1
HKt(xt)

≥ 1− t

HK(x)
+

t

HL(y)
. (15)

This proves the concavity of the function t 7→ HKt(xt)−1.

Corollary 4.2. Let K, L be two nonempty open bounded convex sets in IRN of class C1,1.

Then Kt is C1,1 and, if H(t) = ess sup
x∈∂Kt

HKt(x), then the functions t ∈ [0, 1] 7→ H(t)

and t ∈ [0, 1] 7→ 1
H(t) are convex and concave, respectively.

Proof. If K and L are C2
+ (i.e. C2 and strictly convex), this is a straightforward

consequence of the previous theorem as the supremum of convex functions is convex,
and the in�mum of concave functions is also concave.

The general case is a consequence of the previous case and the following convergence
and approximation result concerning C1,1 convex sets.

Lemma 4.3. (i) Convergence: If (Kn)n∈IN a sequence of C1,1 convex bodies in IRN with

ess sup
x∈∂Kn

HKn(x) ≤ H for all n ∈ IN, and Kn → K in the Hausdor� sense, then K is

C1,1 and ess sup
x∈∂K

HK(x) ≤ H.

(ii) Approximation: Let K be a C1,1 convex body in IRN with ess sup
x∈∂K

HK(x) ≤ H.

Then there exists a sequence Kn ∈ C2
+ with Kn → K in the Hausdor� sense and

max
x∈∂Kn

HKn(x) ≤ Hn with Hn → H.
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Proof. (i) It is a straightforward application of the Blaschke's Rolling Theorem [26,
Theorem 3.2.9] extended in [3, Corollary 1.13] for C1,1 convex sets (see also [6] where
such extension is also derived in the general context of smooth anisotropic norms).

Almost everywhere in ∂Kn, the principal curvatures are bounded by (N − 1)H,
because ess sup

x∈∂Kn

HKn(x) ≤ H. Using [3, Corollary 1.13], we deduce that a ball B(r) of

radius r = 1
(N−1)H > 0 �rolls freely� inside Kn, i.e. there exists a convex body K ′

n such
that Kn = K ′

n ⊕B(r). In particular, we have hKn = hK′
n

+ hB(r).
As hKn converge uniformly to hK , hK′

n
= hKn −hB(r) are sublinear convex functions

uniformly convergent to hK − hB(r). We deduce that hK − hB(r) is a sublinear convex
function, so there exists a convex body K ′ in IRN such that hK′ = hK − hB(r) and
K = K ′ ⊕B(r). Hence, K is a C1,1 convex body.

The fact that the mean curvature remains bounded above by H is a consequence
of the well-known property that the curvature measures of Kn weakly converge to the
curvature measures of K [26].

(ii) We approximate K by K(t) where K(t) is the motion by mean curvature of K at
time t > 0. By the results in [9, 10], for any initial convex set, and in particular for K,
there is a generalized motion by mean curvature K(t) such that K(t) → K as t → 0+

in the Hausdor� sense, K(t) is smooth (C∞) for any t ∈ (0, T ], for some T > 0, and
satis�es

Xt = −HK(t)ν
K(t)

where X is a parameterization of K(t) and νK(t) the outer unit normal to K(t).
Now, the results in [6] for smooth anisotropies prove that if K is C1,1, then the

generalized motion is also C1,1 with a uniform bound for mean curvature for some time,
say again for t ∈ [0, T ], T > 0. Notice that, in the present case, the uniform bound in
the curvature can be characterized by a uniform norm in the Laplacian of the signed
distance function to K(t). Using these results and passing to the limit in formula (59)
in [6], we obtain that ‖HK(t)‖∞ ≤ ‖HK‖∞eCt for some constant C > 0, and this proves
that ‖HK(t)‖∞ → ‖HK‖∞ as t → 0+. Now, by the result is [18, 8], the sets K(t) are
C2

+.

Remark 4.4. We have derived the approximation Lemma 4.3.(ii) as a consequence of
the estimates in [6] though it could also be derived with some additional work from the
estimates in [18]. At this point, let us �rst proceed formally to explain the argument.
Using the formulas in [18], HK(t) satis�es the PDE

∂HK(t)

∂t
= ∆HK(t) + |A(t)|2HK(t) (16)
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where A(t) = (hij(t)) is the second fundamental form of ∂K(t), gij(t) is the inverse of
the metric gij(t) of ∂K(t), and |A(t)|2 = gij(t)gkl(t)hik(t)hjl(t). Notice that HK(t) is a
weak solution of (16). Since |A(t)|2 ≤ (HK(t))2, HK(t) is a subsolution of

Qt = ∆Q + Q3

with initial condition
Q(0) = ‖HK‖∞.

If HK(t) is bounded in L∞, then after some standard computations we obtain that

d

dt

∫
((HK(t) −Q(t))+)2 ≤ C

∫
((HK(t) −Q(t))+)2,

for some constant C > 0, and this implies that

‖HK(t)‖∞ ≤
(

‖HK‖2
∞

1− 2‖HK‖2
∞t

)1/2

, (17)

if we know that ∫
K(t)

((HK(t) −Q(t))+)2 dHN−1 → 0 (18)

as t → 0. Notice then that (17) implies that ‖HK(t)‖∞ → ‖HK‖∞ as t → 0+.
At this point, we only know that as K(t) → K as t → 0+ in the Hausdor� sense, we

have that HK(t) → HK weakly∗ as measures, but this is not enough. To prove (18), as
in [10], we observe that we may write locally the evolving convex sets as the graph of a
function u(t, x) satisfying

ut = ∆u− D2u(Du, Du)
1 + |Du|2

. (19)

Then, by convexity, we have a uniform bound on Du (the bound is also proved in [10]).
Then, by standard local estimates for uniformly parabolic equations [25], Ch. IV, Thm
9.1 and Ch. VI, Thm. 1.1, we have that u(t, x) is uniformly bounded in W 2,p

loc for any
p ∈ [1,∞). After some computations and using the results in [25] one can prove that
HK(t) ∈ C([0, T ], L2) and the comparison argument leading to (17) can be justi�ed.

In the statement of next theorem we use the notation of Theorem 4.

Theorem 5. Let Ω ⊂ ∂K, Ω′ ⊂ ∂L be open and connected subsets where K and L are

C2 and strictly convex, respectively, and suppose that Ω′ = ν−1
L ◦ νK(Ω). If HK(x) =

HL(ν−1
L ◦νK(x)), ∀x ∈ Ω, and the convexity (resp. concavity) in t of the mean curvature

(resp. inverse mean curvature) function HKt(xt) is not strict, then Ω′ is a translate of

Ω, i.e. there exists z ∈ IRN with Ω′ = z + Ω.

12



Proof. Let x ∈ Ω and y = ν−1
L ◦ νK(x). We use the same notation as in the proof of

Theorem 4. From Corollary 3.2 and Proposition 3.3, the equality in (15) arises if and
only if there is λ > 0 such that A = λB. Since Tr(A−1) = HK(x) = HL(y) = Tr(B−1),
the equality in (15) arises if and only if A = B.

Thus, we have that d2hK(ν) = d2hL(ν), ∀ν ∈ νK(Ω) = νL(Ω′). As hK and hL are
positively homogeneous (of degree 1), this equation extends to a neighborhood U ⊂ IRN

of νK(Ω) which can be chosen connected because νK(Ω) is connected. This shows that
there exist z ∈ IRN and α ∈ IR such that

hL(u) = hK(u) + 〈z, u〉+ α, ∀u ∈ U.

Since hK(0) = hL(0) = 0, we deduce that α = 0. As the support function describes the
convex set locally, we get that Ω′ = z + Ω.

5 Strict convexity of the free boundary of an isoperimetric

region

In order to prove Proposition 5.2 we state without proof the following known result about
convex sets.

Lemma 5.1. Let K ⊆ IRN be a convex set. Let x, y ∈ ∂K and ν ∈ SN−1 be such that ν

is normal to ∂K at x, y. Then the segment [x, y] ⊆ ∂K and ν is also normal to ∂K at

the points of [x, y].

Proposition 5.2. Let K a non-trivial convex body of class C1, and C ⊂ K an isoperi-

metric region inside K which is convex, then ∂C\∂K is C∞ and strictly convex.

Recall that we say that C ⊂ K an isoperimetric region inside K if C minimizes
perimeter with a volume constraint among all sets contained in K which satisfy the
constraint.

Proof. As C are isoperimetric regions inside K, we know that the boundary Σ = ∂C\∂K

satis�es [15, 16, 30, 13]:

1. There is a closed singular set Σs ⊂ Σ of Hausdor� dimension less than or equal to
N − 8 such that Σr = Σ\Σs is a smooth embedded hypersurface;

2. ∂C is of class C1 on a neighborhood of ∂K ∩ ∂C;
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3. At every point x ∈ Σs, there is a tangent minimal cone Cx di�erent from an
hyperplane. The square sum |σ|2 = k2

1 + · · ·+ k2
N−1 of the principal curvatures of

Σ tends to ∞ when we approach x from Σ;

4. Σr has constant mean curvature with respect to the inner normal.

But, in our case, as C is a convex set, the tangent minimal cone is included in an half-
space, but the only kind of such minimal cone is the hyperplane [27], so Σs = ∅, which
implies that Σ is a C∞ constant mean curvature surface.

In order to prove the strict convexity of Σ, by the result of [17, Theorem 3, p.297],
we know that a constant mean curvature hypersurface with non-negative sectional cur-
vatures follows a strong minimal principle for its Gaussian curvature K. When applied
to our case in Σε := {x ∈ Σ : dist(x, ∂K) ≥ ε}, we have

min
x∈Σε

KC(x) = min
x∈∂Σε

KC(x)

where KC has no interior minimum except if it is constant. So, if there exists a ∈ Σε

with KC(a) = 0, then KC(a) = 0 ∀a ∈ Σε, so Σε is a part of a cylinder. Thus, either
our statement is true or Σ is part of a cylinder. The last possibility cannot happen.
Indeed, let L be a maximal segment contained in Σ. Notice that its extrema points
x, y ∈ ∂C ∩ ∂K. Since νK(x) = νK(y), by Lemma 5.1 we deduce that L ⊂ ∂K and this
is a contradiction since L ⊂ ∂C \ ∂K. Hence, C is strictly convex in Σ.

6 Uniqueness of the Cheeger set inside a C1,1 convex body

In this section, we prove the following result, which (in view of Proposition 2.6) implies
Theorem 1.

Theorem 6. Let C a C1,1 convex body in IRN . Then we have a unique Cheeger set

inside C.

Let C be a convex body in IRN of class C1,1. By the results in [7] we know that there
exist two convex sets C∗ and C∗ which are the minimal and maximal (with respect to
inclusion) Cheeger sets of C. Both are solutions of minE⊆CP (E) − hC |E| [1, 7]. Thus,
for both of them we know that (N − 1)H ≤ hC with equality inside C (see Proposition
2.6). Since they are convex, we have that they are of class C1,1. The uniqueness of
Cheeger sets inside C is implied if we prove that C∗ = C∗. This was done in [7] when C

is of class C2 and uniformly convex. We are going to remove both assumptions.
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Thus, in the rest of this section, we suppose that C∗ 6= C∗, and write hC = P (C∗)
|C∗| =

P (C∗)
|C∗| the Cheeger constant.

Proposition 6.1. For any t ∈ [0, 1], Ct := (1− t)C∗ ⊕ tC∗ is a Cheeger set.

Proof: As C∗ and C∗ are C1,1 convex Cheeger sets with

ess sup
x∈∂C∗

HC∗(x) ≤ hC

N − 1
and ess sup

x∈∂C∗

HC∗(x) ≤ hC

N − 1
,

from Corollary 4.2, we obtain that Ct is C1,1 and

ess sup
x∈∂Ct

HCt(x) ≤ hC

N − 1
. (20)

Observe that hC ≤ P (Ct)
|Ct| , since Ct ⊂ C∗. With the inequality (20) and the characteri-

zation of calibrable sets proved in [1], this shows that Ct is calibrable. In other words,
Ct minimizes

min
E⊆Ct

P (E)− λCt |E| where λCt = P (Ct)
|Ct| .

But C∗ ⊂ Ct, and this implies that P (Ct)
|Ct| ≤ P (C∗)

|C∗| = hC . We conclude that Ct is a
Cheeger set.

Proposition 6.2. For any t ∈ [0, 1] the sets C∗ and Ct are equivalent by telescoping,

more precisely, ∃z ∈ IRN such as Ct is a translate of C∗ ⊕ [0, t]z.

Proof. In the context of this proof we assume that C∗ and C∗ are open sets. Since the
result is obviously true for t = 0 (take z = 0) and follows for t = 1 by passing to the
limit as t → 1−, we may assume that t ∈ (0, 1).

Step 1. Let Ω be a connected component of ∂C∗ \ ∂C∗ and let

Ωt := (νCt)−1 ◦ νC∗(Ω) ⊂ ∂Ct.

Then both Ω and Ωt ⊂ ∂Ct\∂C∗ are open, connected, C2, and strictly convex. Moreover
νC∗ and νCt are di�eomorphism from Ω, resp. Ωt, onto νC∗(Ω).

As ∂C∗\∂C∗ is an open set of ∂C∗, Ω is also an open set of ∂C∗. By Proposition 5.2
we know that Ω is C2 and strictly convex. This implies that νC∗ |Ω is a di�eomorphism
onto its image. Then, by de�nition of Ωt, we know that Ωt is an open set. Let us prove
that Ωt ∩ ∂C∗ = ∅. Indeed, if p ∈ Ωt ∩ ∂C∗, then there is x ∈ Ω such that νC∗(x) =
νCt(p) = νC∗

(p). Then, by Lemma 4.1, pt := (1− t)x + tp ∈ ∂Ct, νCt(pt) = νCt(p) and
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pt 6= p, a contradiction. Since Ωt ⊂ ∂Ct \ ∂C∗ and Ct is a Cheeger set, by Proposition
5.2, we know that Ωt is C2 and strictly convex. Then νCt is a di�eomorphism from Ωt

onto νC∗(Ω). In particular, Ωt is connected.
Observe that we may identify Ωt by a point xt in the following way. Let x ∈ Ω,

y ∈ ∂C∗ with νC∗(x) = νC∗
(y). As x ∈ C∗\∂C∗ = C∗, y ∈ ∂C∗, and C∗ is a convex

non-empty open set, it is straightforward to show that xt := (1− t)x + ty ∈ C∗ and, by
Lemma 4.1, xt ∈ ∂Ct, and νCt(xt) = νC∗(x). Thus xt ∈ Ωt.

Step 2. Let us prove that there exists z ∈ IRN , z 6= 0, such that Ωt = tz + Ω for all
t ∈ (0, 1), and

νC∗(Ω) = S+
z , where S+

z = {u ∈ SN−1, 〈u, z〉 > 0}. (21)

Thus, we conclude that νC∗ and νCt are di�eomorphisms from Ω and Ωt, respectively,
onto S+

z .
To prove the �rst assertion, we observe that by Step 1 we have that Ω and Ωt satisfy

HC∗ |Ω = HCt |Ωt = hC
N−1 together with the other assumptions of Theorem 5. Thus, Ωt

is a translation of Ω. By the observation previous to Step 2, we know that all xt ∈ Ωt

with the same normal are collinear. This implies that there exists z ∈ IRN , z 6= 0, with
Ωt = tz + Ω where z does not depend on t ∈ (0, 1).

To prove (21) we prove both that

〈νC∗(x), z〉 > 0 ∀x ∈ Ω, (22)

and
〈νC∗(x), z〉 = 0 ∀x ∈ ∂∂C∗Ω. (23)

To prove (22), observe that for any x ∈ Ω, writing xt := x + tz ∈ ∂Ct and knowing that
Ct is strictly convex near xt, we get

〈νC∗(x), z〉 = 〈νCt(xt), z〉 = 〈νCt(xt),
xt − x

t
〉 > 0 .

To prove (23), let x ∈ ∂∂C∗Ω. By approximating x by points inside Ω and using (22)
we have that 〈νC∗(x), z〉 ≥ 0. On the other hand, x ∈ ∂C∗ and, by letting t → 1− in
xt = x + tz ∈ ∂Ct, we also have that x + z ∈ ∂C∗. This implies that

〈νC∗(x), z〉 = 〈νC∗
(x), x + z − x〉 ≤ 0.

Now we observe that (22) and (23) can be written respectively as νC∗(Ω) ⊆ S+
z and

νC∗(∂∂C∗Ω) ⊆ S0
z := {u ∈ SN−1 : u⊥z}. On one hand, we know that νC∗(Ω) is open in
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S+
z . On the other hand, since νC∗(Ω) = νC∗(Ω), we also have that νC∗(Ω) is closed in

S+
z . Indeed

νC∗(Ω) ∩ S+
z = νC∗(Ω) ∩ S+

z =
(
νC∗(Ω) ∩ S+

z

)
∪
(
νC∗(∂∂C∗Ω) ∩ S+

z

)
= νC∗(Ω) ∩ S+

z .

Being nonempty, open and closed in S+
z , we have (21).

Step 3. Conclusion. If Ω is the only connected component of ∂C∗\∂C∗, then last equality
(21) implies that Ct = C∗⊕[0, 1]tz. In this case, we take z = z. If Ω′ is another connected
component of ∂C∗\∂C∗, by Step 2 we know that there exists z′ ∈ IRN , z′ 6= 0, such that
νC∗ and νCt are di�eomorphisms from Ω′ and Ω′

t := (νCt)−1(νC∗(Ω′)), respectively, onto
S+

z′ . Moreover Ω′
t = Ω′ + tz′. Notice that, since Ω ∩ Ω′ = ∅ and νC∗ is a di�eomorphism

restricted to Ω and Ω′, we have S+
z ∩ S+

z′ = ∅. This implies that there exists α > 0 with
z′ = −αz, and we deduce that Ct = C∗⊕ [0, t]z⊕ [0, t](−αz) = C∗⊕ [0, 1]t(1+α)z− tαz.
In this case, we take z = (1 + α)z.

Proposition 6.3. For all t ≥ 0, let Ct := C∗ ⊕ [0, t]z, z being the vector found in

Proposition 6.2, i.e., such that Ct is a translate of Ct for any t ∈ [0, 1]. Then Ct is C1,1

and calibrable with P (Ct)
|Ct| = hC .

Proof. As Ct = C∗ ⊕ [0, t]z, we know that P (Ct) and |Ct| are two linear functions of
t, i.e., there exists α, β > 0 such that P (Ct) = P (C∗) + αt and |Ct| = |C∗| + βt [26,
Theorem 6.7.1, p.379]. As P (Ct) = P (Ct) and |Ct| = |Ct| if t ∈ [0, 1], and P (Ct)

|Ct| = hC ,

this equality extends to all t ≥ 0, that is, P (Ct)
|Ct| = hC for all t ≥ 0.

As C∗ is C1,1 and (N − 1)ess sup
x∈∂C∗

HC∗(x) ≤ hC , it is straightforward to show that

Ct is C1,1 and

(N − 1)ess sup
x∈∂Ct

HCt(x) ≤ hC =
P (Ct)
|Ct|

.

Hence, by the results in [1], we have that Ct is calibrable.

Proposition 6.4. If D := Projz⊥(C∗) (the basis of the cylinder), which is a convex body

in IRN−1, then P (D)
|D| = hC .

Proof. Let t big enough to have an hyperplane Hz,α := {x ∈ IRN : 〈x, z〉 = α} such
that Hz,α ∩ Ct = D. Let t′ > t, then we have (t′ − t)P (D) = P (Ct′) − P (Ct) =
hC(|Ct′ | − |Ct|) = hC(t′ − t)|D|.

Let us choose t big enough and α such that Hz,α ∩ Ct = D, and C∗ ⊂ Ct ∩ H−
z,α,

where H−
z,α = {x ∈ IRN : 〈x, z〉 < α}. Let us consider the convex S = (Ct ∩ H−

z,α) ∪
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SymH0
z,α

(Ct ∩ H−
z,α) which is symmetrical and C1,1 (we denote by SymH0

z,α
(Ct ∩ H−

z,α)
the symmetrization with respect to Hz,α of Ct ∩H−

z,α).

Proposition 6.5. S is calibrable, with P (S)
|S| = hC .

Proof. As for t′ big enough, we can translate Ct′ to have S ⊂ Ct′ , we get that P (S)
|S| ≥ hC .

Since we have

(N − 1)ess sup
x∈∂S

HS(x) ≤ hC ≤ P (S)
|S|

,

by the results in [1] we obtain that S is calibrable. Since we have chosen t big enough
to have C∗ ⊂ S, then

P (S)
|S|

≤ P (C∗)
|C∗|

= hC .

Thus P (S)
|S| = hC .

Proof of Theorem 6. We suppose C∗ 6= C∗, and we take S as above. Observe that
there is a function u : D → IR such that we can write S as

S = {x + tu(x)z0, x ∈ D, t ∈ [−1, 1]}, where z0 = z
‖z‖ .

We have
|S|
2

=
∫

D
u,

and
P (S)

2
=
∫

D

√
1 + |Du|2 +

∫
∂D

u.

At the same time, u is solution of

−div
( Du√

1 + |Du|2
)

= hC (24)

and the graph of u is a C1,1 surface above D having zero contact angle with ∂D × IR,
i.e.

Du√
1 + |Du|2

· νD = −1. (25)

18



Then we compute

P (S)
2

= hC
|S|
2

= −
∫

D
div
( Du√

1 + |Du|2
)
u

=
∫

D

|Du|2√
1 + |Du|2

−
∫

∂D

(
Du√

1 + |Du|2
· νD

)
u

=
∫

D

|Du|2√
1 + |Du|2

+
∫

∂D
u

<

∫
D

√
1 + |Du|2 +

∫
∂D

u =
P (S)

2
,

and we obtain a contradiction. Our statement is proved.
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