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Abstract. The main purpose of this paper is to characterize the calibrability of bounded convex
sets in IRN by the mean curvature of its boundary, extending the known analogous result in
dimension 2. As a by-product of our analysis we prove that any bounded convex set C of class
C1,1 has a convex calibrable set K in its interior, and and for any volume V ∈ [|K|, |C|] the
solution of the perimeter minimizing problem with fixed volume V in the class of sets contained
in C is a convex set. As a consequence we describe the evolution of convex sets in IRN by the
minimizing total variation flow.

Mathematics Subject Classification (2000): 35J70, 49J40, 52A20, 35K65

1. Introduction

Let C ⊆ IRN be a bounded convex set whose boundary ∂C is of class C1,1. The
main purpose of this paper is to prove that the following conditions are equivalent:

(a) C is a solution of the problem

min
X⊆C

P (X) − λC |X| where λC = P(C)

|C| , (1)

and P(X), |X|, denote the perimeter and the N -dimensional volume of the
set X, respectively.

(b) We have

(N − 1) ess sup
x∈∂C

HC(x) ≤ λC , (2)

where HC(x) denotes the mean curvature of ∂C at the point x.
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(c) There is a vector field z ∈ L∞(C, IRN), ‖z‖∞ ≤ 1 such that

−div z = λC in C

z · νC = −1 a.e. in ∂C (3)

where νC(x) denotes the outer unit normal to ∂C at the point x ∈ ∂C.

Since the first variation of the perimeter (resp. the N -dimensional volume) in the
normal direction is (N − 1)HC (resp. the constant 1), if (a) holds, by taking inner
perturbations of the set C, we deduce the inequality (2). We shall prove that this
inequality is a sufficient condition for C to be a solution of (1). The equivalence
of (b) and (c) permits to relate geometric conditions on C with the existence of a
vector field satisfying the partial differential equation (3). In case that the convex
set C satisfies (c) we say that C is calibrable, and our result gives a geometric
characterization of C1,1 convex calibrable sets in IRN .

The above result has some implications in the study of the capillary problem in
absence of gravity and the Minimizing Total Variation flow. Indeed, if C ⊆ IRN is
a convex calibrable set, then the following capillary problem in absence of gravity

−div
( ∇u√

1 + |∇u|2
)

= λC in C

− ∇u√
1 + |∇u|2

· νC(x) = cos γ in ∂C (4)

has a solution for any contact angle γ ∈ (0, π
2 ] (even for γ = 0, [27]). Our result

proves that the geometric condition (2) guarantees (and is equivalent to) the cal-
ibrability of C. The corresponding result when N = 2 was proved by Giusti [27]
(see also [22]).

In a different context, as proved in [11] (for N = 2, but the proof is true in
general), if C ⊆ IRN is a convex calibrable set, then u = χ

C is a solution of the
eigenvalue problem

−div

(
Du

|Du|
)

= λCu in IRN. (5)

In this case, the solution of

∂u

∂t
= div

(
Du

|Du|
)

in QT := ]0, T [×IRN, (6)

with u(0, x) = χ
C(x) is explicitly given by

u(t, x) = (1 − λCt)+χ
C(x).

This shows that, in case of calibrable sets, the gradient descent flow associated
to the Total Variation tends to decrease the height of χ

C without distortion of
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its boundary. As we proved in [11], this kind of behavior is also exhibited by
the solution of the Total Variation approach to the denoising problem in image
processing

min
u∈BV (IRN )∩L2(IRN )

∫

IRN

|Du| + µ

2

∫

IRN

(u − f )2 dx (µ > 0) (7)

when f = χ
C . In this case, using (5), it is not difficult to prove that the explicit

solution of (7) is u = (1 − λC

µ
)+χ

C [11]. These results were proved in [11] when

N = 2, but being C calibrable, they also hold in IRN . What was missing in [11]
was the geometric characterization of calibrability stated above for N ≥ 3.

Let us mention that the calibrability of plane convex sets in the case of Finsler
metrics has been extensively studied by G. Bellettini, M. Novaga, and E. Paolini
[14] (see also [13]). In this case, the Euclidean distance in the plane is replaced
with some anisotropic distance φ(x−y), with φ a convex one-homogeneous norm,
whereas the isotropic perimeter P(C) is replaced with an anisotropic perimeter∫
∂C

φ◦(ν)dHN−1, φ◦ being the polar of φ. The crystalline case is the case where φ

and φ◦ have polygonal level sets. The problem of the calibrability of convex sets
is in connection with the problem of facet breaking of crystals which evolve under
anisotropic mean curvature flow [14], [13]. The development of facets in crystal
evolution has also been considered in [25], [26] using a variational approach.

The proof of the equivalence (a) ⇔ (c) is already contained in [11] (though
stated for N = 2) and is included in Proposition 2. To prove the equivalence
(a) ⇔ (b) we shall embed the variational problem (1) in a family of problems

min
X⊆C

P (X) − λ|X|, λ > 0, (8)

and we shall study the dependence of its solution on λ. In particular, we shall
prove that C is a solution of (8) if and only if λ ≥ max(λC, (N − 1)‖HC‖∞). The
solutions of (8) are related to the solution of the variational problem

min
u∈BV (IRN )∩L2(IRN )

∫

IRN

|Du| + µ

2

∫

IRN

(u − χ
C)2 dx (µ > 0). (9)

Indeed, it turns out that the level sets of the solution of (9) embed the solutions of
(8) for the values of λ ∈ [0, µ]. Since the solution u of (9) satisfies the equation

v − µ−1div

(
Dv

|Dv|
)

= 1 in C.

Dv

|Dv| · νC = −1 a.e. in ∂C (10)

(the meaning of Dv
|Dv| will be explained below) and the solutions of (10) can be

approximated by the solutions uε of
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v − µ−1div

(
Dv√

ε2 + |Dv|2

)
= 1 in C.

Dv√
ε2 + |Dv|2

· νC = −1 a.e. in ∂C (11)

as ε → 0, we may use the result of Korevaar [30] to conclude that u is concave in
C, hence also continuous there. Now, this implies the uniqueness and convexity
of solutions of (8). Thus, by studying the dependence on λ of solutions of (8), we
prove that if C satisfies the curvature estimate (2) but is not a minimum of (1),
then it can be approximated from inside by solutions Cλ of (8) with λ → µ and
µ > λC .As we shall prove in Proposition 5, this implies that (N−1)‖HC‖∞ > λC ,
a contradiction.

As an interesting by-product of our analysis we obtain that solutions of (8) are
convex sets. Since (8) can be considered as the functional obtained by applying
the Lagrange multiplier method to the area minimizing problem

min
X⊆C,|X|=V

P (X) (12)

where 0 < V < |C|, we shall obtain that, for some range of volumes, the solutions
of this isoperimetric problem with fixed volume V are convex sets. The range of
values of V for which the above result holds is [|K|, |C|] where K is a convex
calibrable set contained in C obtained as solution of (8) for a certain value of
λ (see Section 4). A similar result has been proved by E. Stredulinsky and W.P.
Ziemer [41] in the case of convex sets C containing a ball B such that ∂B∩∂C is a
large circle of B. There is also a proof of C. Rosales [36] when C is a rotationally
symmetric convex body.

Besides the explicit evolution of (characteristic functions of) convex calib-
rable sets in IRN by (6), our results permit us to describe the evolution of any
C1,1 convex set -more generally, of a union of convex sets which satisfy some
additional separation condition- in IRN . The analogous result when N = 2 was
proved in [1].

Let us describe the plan of the paper. In Section 2 we collect some preliminar-
ies about functions of bounded variation, Green’s formula, the subdifferential of
the total variation in IRN , calibrable sets, and the corresponding Dirichlet prob-
lem for total variation in a bounded domain in IRN . Section 3 is devoted to the
characterization of the calibrability of a convex set in terms of the mean curvature
of its boundary. For that we first study the basic properties of the minimizers of
problems (8) and (9). In Section 4 we prove the convexity of solutions of (12)
when V ∈ [|K|, |C|] where K is a certain convex calibrable set contained in
C. Section 5 is devoted to the description of the evolution of convex sets by the
minimizing TV flow (6). We also discuss the case of a finite union of convex sets.
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2. Preliminaries

2.1. BV functions and sets of finite perimeter

Let Q be an open subset of IRN . A function u ∈ L1(Q) whose gradient Du in the
sense of distributions is a (vector valued) Radon measure with finite total variation
in Q is called a function of bounded variation. The class of such functions will be
denoted by BV (Q). The total variation of Du on Q turns out to be

sup

{∫

Q

u divz dx : z ∈ C∞
0 (Q; IRN), ‖z‖L∞(Q) := ess sup

x∈Q

|z(x)| ≤ 1

}
, (13)

(where for a vector v = (v1, . . . , vN) ∈ IRN we set |v|2 := ∑N
i=1 v2

i ) and will
be denoted by |Du|(Q) or by

∫
Q

|Du|. It turns out that the map u → |Du|(Q)

is L1
loc(Q)-lower semicontinuous. BV (Q) is a Banach space when endowed with

the norm
∫
Q

|u| dx + |Du|(Q). We recall that BV (IRN) ⊆ LN/(N−1)(IRN). The
total variation of u on a Borel set B ⊆ Q is defined as inf{|Du|(A) : A open , B ⊆
A ⊆ Q}. We denote by BVloc(Q) the space of functions w ∈ L1

loc(Q) such that
wϕ ∈ BV (Q) for all ϕ ∈ C∞

0 (Q). For results and informations on functions of
bounded variation we refer to [4], [21].

A measurable set E ⊆ IRN is said to be of finite perimeter in Q if (13) is finite
when u is substituted with the characteristic function χ

E of E. The perimeter of E

in Q is defined as P(E, Q) := |Dχ
E|(Q), and P(E, Q) = P(IRN \ E, Q). We

shall use the notation P(E) := P(E, IRN). For sets of finite perimeter E one can
define the essential boundary ∂∗E, which is countably (N − 1) rectifiable with
finite HN−1 measure, and compute the outer unit normal νE(x) at HN−1 almost
all points x of ∂∗E, where HN−1 is the (N − 1) dimensional Hausdorff measure.
Moreover, |Dχ

E| coincides with the restriction of HN−1 to ∂∗E.
If µ is a (possibly vector valued) Radon measure and f is a Borel function,

the integration of f with respect to µ will be denoted by
∫

f dµ. When µ is the
Lebesgue measure, the symbol dx will be often omitted.

If E is a subset of IRN of class C1,1, we denote by HE the (HN−1-almost every-
where defined) mean curvature of ∂E, nonnegative for convex sets. As observed
in [12], the following result can be proved as in [35].

Proposition 1. Let µ ∈ IR, E be a set of class C1,1 and x ∈ ∂E. Assume that there
exists an open set A 
 x such that A ∩ ∂E is the graph of a C1,1 function, and

P(E, A) − µ|E ∩ A| ≤ P(E ∪ B, A) − µ|(E ∪ B) ∩ A|, (14)

for any bounded measurable set B with B ⊂ A. Then (N − 1)HE(x) ≥ µ for
HN−1-almost every x ∈ A ∩ ∂E. Similarly, if in place of (14) there holds the
inequality

P(E, A) − µ|E ∩ A| ≤ P(E \ B, A) − µ|(E \ B) ∩ A|,
then (N − 1)HE(x) ≤ µ for HN−1-almost every x ∈ A ∩ ∂E.
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2.2. A generalized Green’s formula

Let 
 be an open subset of IRN . Following [8], let

X2(
) := {z ∈ L∞(
; IRN) : div z ∈ L2(
)}.
If z ∈ X2(
) and w ∈ L2(
) ∩ BV (
) we define the functional (z, Dw) :
C∞

0 (
) → IR by the formula

< (z, Dw), ϕ >:= −
∫




w ϕ div z dx −
∫




w z · ∇ϕ dx ∀ϕ ∈ C∞
0 (
).

Then (z, Dw) is a Radon measure in 
,
∫




(z, Dw) =
∫




z · ∇w dx ∀w ∈ L2(
) ∩ W 1,1(
),

and∣∣∣∣
∫

B

(z, Dw)

∣∣∣∣ ≤
∫

B

|(z, Dw)| ≤ ‖z‖∞
∫

B

|Dw| ∀B Borel set ⊆ 
.

We denote by θ(z, Dw) ∈ L∞
|Dw|(
) the density of (z, Dw) with respect to |Dw|,

that is

(z, Dw)(B) =
∫

B

θ(z, Dw) d|Dw| ∀ Borel set B ⊆ 
. (15)

We recall the following result proved in [8].

Theorem 1. Let 
 ⊂ IRN be a bounded open set with Lipschitz boundary. Let
z ∈ L∞(
; IRN) with div z ∈ L2(
). Then there exists a function [z · ν
] ∈
L∞(∂
) satisfying ‖[z · ν
]‖L∞(∂
) ≤ ‖z‖L∞(
;IRN ), and such that for any u ∈
BV (
) ∩ L2(
) we have

∫




u divz dx +
∫




θ(z, Du) d|Du| =
∫

∂


[z · ν
]u dHN−1.

When 
 = IRN we have the following integration by parts formula [8], for
z ∈ X2(IR

N) and w ∈ L2(IRN) ∩ BV (IRN):
∫

IRN

w div z dx +
∫

IRN

(z, Dw) = 0. (16)

In particular, if z ∈ X2(IR
N) and Q is bounded and has finite perimeter in IRN ,

from (16) and (15) it follows
∫

Q

div z dx =
∫

IRN

(z, −Dχ
Q) =

∫

∂∗Q
θ(z, −Dχ

Q) dHN−1. (17)

If additionally,Q is a bounded open set with Lipschitz boundary, then θ(z, −Dχ
Q)

coincides with [z · νQ].
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Remark 1. Let 
 ⊂ IR2 be a bounded Lipschitz open set, and let zinn ∈L∞(
; IR2)

with divzinn ∈ L2(
), and zout ∈ L∞(IR2 \ 
; IR2) with divzout ∈ L2
loc(IR

2 \ 
).
Assume that

[zinn · ν
](x) = −[zout · νIR2\
](x) for HN−1 − a.e x ∈ ∂
.

Then if we define z := zinn on 
 and z := zout on IR2 \ 
, we have z ∈
L∞(IR2; IR2) and divz ∈ L2

loc(IR
2).

2.3. The subdifferential of the total variation. Calibrable sets

Consider the energy functional � : L2(IRN) → (−∞, +∞] defined by

�(u) :=



∫

IRN

|Du| ifu ∈ L2(IRN) ∩ BV (IRN)

+∞ ifu ∈ L2(IRN) \ BV (IRN).

(18)

Since the functional � is convex, lower semicontinuous and proper, then ∂� is a
maximal monotone operator with dense domain, generating a contraction semi-
group in L2(IRN) (see [15]). Next Lemma gives the characterization of ∂� (see
[5,11] for a proof).

Lemma 1. The following assertions are equivalent:

(a) v ∈ ∂�(u);
(b) u ∈ L2(IRN) ∩ BV (IRN), v ∈ L2(IRN), and there exists z ∈ X2(IR

N) with
‖z‖∞ ≤ 1, such that

v = −divz in D′(IRN),

and
∫

IRN

(z, Du) =
∫

IRN

|Du|. (19)

From now on we shall write v = div
(

Du
|Du|

)
instead of v ∈ ∂�(u).

Given a function g ∈ L2(IRN), we define

‖g‖∗ := sup

{∣∣∣∣
∫

IRN

g(x)u(x) dx

∣∣∣∣ : u ∈ L2(IRN) ∩ BV (IRN),

∫

IRN

|Du| ≤ 1

}
.

Note that ‖g‖∗ may be infinite. Let us recall the following Lemma ([11],[34]).
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Lemma 2. Let f ∈ L2(IRN) and λ > 0. The following assertions hold.

(a) the function u is the solution of

min
w∈L2(IRN )∩BV (IRN )

D(w), D(w) :=
∫

IRN

|Dw| + λ

2

∫

IRN

(w − f )2 dx

(20)

if and only if there exists z ∈ X2(IR
N) satisfying (19) with ‖z‖∞ ≤ 1 and

−λ−1divz = f − u.
(b) The function u ≡ 0 is the solution of (20) if and only if ‖f ‖∗ ≤ 1

λ
.

(c) We have ∂�(0) = {f ∈ L2(IRN) : ‖f ‖∗ ≤ 1}.
Obviously, part (a) follows from Lemma 1 since ∂�(u) + λ(u − f ) 
 0 is

the Euler-Lagrange equation for (20). Part (b) can be found in ([11],[34]), and it
is easily deduced from (a). Part (c) follows from (a) and (b), or as an immediate
consequence of duality.

Remark 2. We observe that if z ∈ X2(IR
N), u ∈ BV (IRN), and (z, Du) = |Du|

then |(z, Dχ {u≥t})| = |Dχ {u≥t}| as measures in IRN for almost any t ∈ IR. Indeed,
by [8, Proposition 2.7], we have

< (z, Du), ϕ >=
∫ ∞

−∞
< (z, Dχ {u≥t}), ϕ > dt, ϕ ∈ C∞

0 (
).

Since |Du|(ϕ) = ∫∞
−∞ |Dχ {u≥t}|(ϕ), we may write (z, Du) = |Du| as

∫ ∞

−∞
< (z, Dχ {u≥t}), ϕ > dt =

∫ ∞

−∞
|Dχ {u≥t}|(ϕ) dt, ϕ ∈ C∞

0 (IRN),

and this implies our claim.

Definition 1. Let E be a bounded set of finite perimeter in IRN . We say that E is
calibrable if there exists a vector field ξ ∈ L∞(IRN, IRN) with ‖ξ‖∞ ≤ 1 such
that (ξ, Dχ

E) = |Dχ
E| as measures in RN , and

−div ξ = λE
χ

E in D′(IRN), (21)

for some constant λE .

Notice that, a set of finite perimeter E is calibrable if and only if it exists λE ∈
IR such that λEχE ∈ ∂�(χE). Observe that if E is calibrable, then λE = P(E)

|E| .

Indeed, multiplying (21) by χ
E and integrating in IRN we obtain

λE|E| = −
∫

IRN

div ξ χ
E dx =

∫

IRN

(ξ, Dχ
E) =

∫

IRN

|Dχ
E| = P(E).

On the other hand, if E is convex, by the results in [12] (see Theorem 13), there is
always a vector field ξe ∈ L∞(IRN \E, IRN) with ‖ξe‖∞ ≤ 1 such that div ξe = 0
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in D′(IRN \ E) and [ξe · νE] = −1 a. e on ∂E. Then E is calibrable if and only if
there exists a vector field ξ ∈ L∞(E, IRN) with ‖ξ‖∞ ≤ 1 such that (21) holds in
E and [ξ · νE] = −1 a. e on ∂E. This is consistent with the concept of calibrable
set used in the introduction.

Let us recall the following result (see, for instance, [11]). We shall include its
proof for the sake of completeness.

Proposition 2. Let E be a bounded set of finite perimeter in IRN . Assume E to be
convex. The following assertions are equivalent

(i) E is calibrable
(ii) E minimizes the functional

P(X) − λE|X| (22)

on the sets of finite perimeter X ⊆ E.

Proof. (i) → (ii) Let X be a set of finite perimeter in IRN . We have

λE|E ∩ X| = −
∫

IRN

div ξ χ
X dx =

∫

IRN

(ξ, Dχ
X) ≤ P(X).

Hence P(X)−λE|X| ≥ 0 = P(E)−λE|E| for any set of finite perimeter X ⊆ E.

(ii) → (i) Let us prove that the function f := λE
χ

E satisfies ‖f ‖∗ ≤ 1. Indeed,
if w ∈ L2(IRN) ∩ BV (IRN) is nonnegative, we have∫

IRN

f (x)w(x) dx =
∫ ∞

0

∫

IRN

λE
χ

E
χ {w≥t} dx dt =

∫ ∞

0
λE|E ∩ {w ≥ t}| dt

≤
∫ ∞

0
P(E ∩ {w ≥ t}) dt ≤

∫ ∞

0
P({w ≥ t}) dt

=
∫

IRN

|Dw|

where we have used that for all t ≥ 0 for which {w ≥ t} is a set of finite perimeter
we have that

P(E ∩ {w ≥ t}) ≤ P({w ≥ t})
which is a consequence of the convexity of E (see, for instance, [3]). Splitting any
function ω ∈ L2(IRN) ∩ BV (IRN) into its positive and negative part, using the
above inequality one can prove that | ∫

IRN f (x)ω(x) dx| ≤ ∫
IRN |Dω|. It follows

that ‖f ‖∗ ≤ 1. Then, by Lemma 2, there is a vector field ξ ∈ L∞(IRN ; IRN) with
‖ ξ ‖∞≤ 1 such that

−div ξ = f = λE
χ

E. (23)

Now, multiplying (23) by χ
C and integrating by parts, we obtain
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∫

IRN

(ξ, Dχ
E) = λE

∫

IR2

χ
E dx = P(E) =

∫

IRN

|Dχ
E|,

hence χ
E is calibrable. ��

Proposition 3. Let B be a ball in IRN , and λ > 0. The solution of

u − λ−1div
( Du

|Du|
)

= χ
B (24)

is u = (1 − λB

λ
)+χ

B .

For a proof, we refer to [11], [5].

2.4. The minimizing TV flow

The following notion of strong solution is adapted from the notion of strong solu-
tion in semigroup sense [15] (see also [5], [11]).

Definition 2. A function u ∈ C([0, T ]; L2(IRN)) is called a strong solution of (6)
if

u ∈ W
1,2
loc (0, T ; L2(IRN)) ∩ L1

w(]0, T [; BV (IRN))

and there exists z ∈ L∞ (
]0, T [×IRN ; IRN

)
with ‖z‖∞ ≤ 1 such that

ut = div z in D′ (]0, T [×IRN
)

and
∫

IRN

(z(t), Du(t)) =
∫

IRN

|Du(t)| for a.e. t > 0 . (25)

Theorem 2. Let u0 ∈ L2(IRN). Then there exists a unique strong solution in the
semigroup sense u of (6) in [0, T ] for every T > 0, i.e., u ∈ C([0, T ]; L2(IRN))∩
W

1,2
loc (0, T ; L2(IRN)), u(t) ∈ D(∂�) a.e. in t ∈ [0, T ] and

−u′(t) ∈ ∂�(u(t)) a.e. in t ∈ [0, T ].

Moreover, any semigroup solution is a strong solution, and conversely. Finally,
if u and v are the strong solutions of (6) corresponding to the initial conditions
u0, v0 ∈ L2(
), then

‖u(t) − v(t)‖2 ≤ ‖u0 − v0‖2 for any t > 0. (26)
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2.5. The Dirichlet problem

Let 
 be an open bounded subset of IRN with Lipschitz boundary, and ϕ ∈ L1(
).
Let �ϕ : L2(
) → (−∞, +∞] be the functional defined by

�ϕ(u) :=



∫




|Du| +
∫

∂


|u − ϕ| if u ∈ L2(
) ∩ BV (
)

+∞ if u ∈ L2(
) \ BV (
).

(27)

The functional �ϕ is convex and lower semicontinuous in L2(
), hence ∂�ϕ is
a maximal monotone operator in L2(
).

Let us recall the characterization of ∂�ϕ given in [6].

Theorem 3. The following conditions are equivalent

(i) v ∈ ∂�ϕ(u)

(ii) u, v ∈ L2(
), u ∈ BV (
) and there exists z ∈ X(
) with ‖z‖∞ ≤ 1,
v = −div(z) in D′(
) such that

∫




(w − u)v ≤
∫




z · ∇w − ‖Du‖ +
∫

∂


|w − ϕ| −
∫

∂


|u − ϕ|,

∀w ∈ W 1,1(
) ∩ L∞(
).
(iii) u, v ∈ L2(
), u ∈ BV (
) and there exists z ∈ X(
) with ‖z‖∞ ≤ 1, v =

−div(z) in D′(
) such that (z, Du) = |Du| and [z ·ν
] ∈ sign(ϕ −u)HN−1

a.e. on ∂
.

The following result was proved in [6].

Theorem 4. Let fi ∈ L2(
), ϕi ∈ L1(∂
), i = 1, 2. Assume that f1 ≤ f2 and
ϕ1 ≤ ϕ2. Let ui , i = 1, 2, be the solution of

u + λ∂�ϕi
(u) 
 fi. (28)

then u1 ≤ u2.

Let ε > 0.

�ε
ϕ(u) :=





∫




√
ε2 + |Du| +

∫

∂


|u − ϕ| ifu ∈ L2(
) ∩ BV (
)

+∞ ifu ∈ L2(
) \ BV (
).

(29)

By the results in [32],[6], we know that ∂�ε
ϕ is a maximal monotone operator

which can be characterized in an analogous way as ∂�ϕ , and Theorem 4 also
holds for ∂�ε

ϕ . Moreover, as ε → 0, the solutions of

u + λ∂�ε
ϕ(u) 
 f,

where f ∈ L2(
) converge to the solution of u + λ∂�ϕ(u) 
 f .
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3. A characterization of convex calibrable sets

3.1. Properties of level sets of the solution of a Variational Problem

Proposition 4. Let C be a bounded convex subset of IRN . Let u ∈ BV (IRN) ∩
L2(IRN) be the (unique) solution of the variational problem

(Q)λ : min
u∈BV (IRN )∩L2(IRN )

{∫

IRN

|Du| + λ

2

∫

IRN

(u − χ
C)2 dx

}
. (30)

Then 0 ≤ u ≤ 1. Let Es := [u ≥ s], s ∈ (0, 1]. Then Es ⊆ C, and, for any
s ∈ (0, 1], we have

P(Es) − λ(1 − s)|Es | ≤ P(F) − λ(1 − s)|F | (31)

for any F ⊆ C.

Proof. Recall that u satisfies the following partial differential equation

u − λ−1div

(
Du

|Du|
)

= χ
C in IRN . (32)

Let u− = min(u, 0). Multiplying (32) by u− and integrating by parts, we deduce
that u− = 0. Similarly, multiplying (32) by (u − 1)+ we deduce that u ≤ 1.
Let us prove that u = 0 outside C. Let H be a half-plane containing C. Since
χ

C ≤ χ
H , and v = χ

H is the solution of (32) with right-hand side equal to v, by
the comparison principle proved in [11] we have that u ≤ χ

H . This implies that
u = 0 outside C. This implies that Es ⊆ C for all s ∈ (0, 1].

Let F ⊆ C be a set of finite perimeter. By Remark 2, we have that (z, Dχ
Es

) =
|Dχ

Es
| for almost all s ∈ (0, 1]. Hence, for such an s ∈ (0, 1], we have

−
∫

IRN

div z (χF − χ
Es

) dx =
∫

IRN

(z, Dχ
F ) −

∫

IRN

(z, Dχ
Es

)

=
∫

IRN

(z, Dχ
F ) − P(Es) ≤ P(F) − P(Es)

and we deduce

P(F) − P(Es) ≥ λ

∫

IRN

(χC − u)(χF − χ
Es

)

= λ

∫

IRN

((χC − s) + (s − u))(χF − χ
Es

).

Since (s − u)(χF − χ
Es

) ≥ 0 we have

P(F) − P(Es) ≥ λ

∫

IRN

(χC − s)(χF − χ
Es

) = λ(1 − s)(|F | − |Es |).
Since all sets Es are contained in C, the perimeter is lower semicontinuous, and
the area is continuous for increasing or decreasing families of sets contained in
C, we deduce that (31) holds for any s ∈ (0, 1]. ��
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Lemma 3. Let C be a bounded convex subset of IRN of positive measure. Let uλ

be the solution of (Q)λ, λ > 0.

(i) uλ �= χ
C for any λ > 0.

(ii) uλ → χ
C in L2(IRN) as λ → ∞.

(iii) Assume that C has bounded mean curvature. Let � := (N − 1)‖HC‖∞. For
any λ > 0, we have

uλ ≥ (1 − N
�

λ
)+χ

C.

(iv) uλ �= 0 if and only if λ > 1
‖χC‖∗

.
(v) Assume that C is not calibrable (i.e., it does not exist a vector field z ∈

L∞(IRN, IRN), ‖z‖∞ ≤ 1 such that −div z = λC
χ

C). For any λ > 1
‖χC‖∗

uλ cannot be a multiple of χ
C . Thus, for any such λ, there is some s ∈ [0, 1]

such that [uλ ≥ s] �= C.

Proof. (i) Suppose that there is λ > 0 such that uλ = χ
C . Then there is a vec-

tor field zλ ∈ L∞(IRN, IRN), ‖zλ‖∞ ≤ 1, such that (zλ, Dχ
C) = |Dχ

C |
and

div zλ = 0.

Multiplying this equation by χ
C and integrating in IRN , we obtain

0 = −
∫

IRN

div zλ
χ

C dx =
∫

IRN

(zλ, Dχ
C) =

∫

IRN

|Dχ
C | = P(C).

This contradiction proves that uλ �= χ
C .

(ii) Since
∫

IRN

|Duλ| + λ

2

∫

IRN

(uλ − χ
C)2 dx ≤

∫

IRN

|Dχ
C | = P(C)

we deduce that
∫

IRN

(uλ − χ
C)2 dx ≤ 2

λ
P (C)

i.e. uλ → χ
C in L2 as λ → ∞. Moreover, uλ is bounded in BV (IRN).

(iii) By definition of �, we have that each principal curvature of ∂C is ≤ �. Thus
there is a ball B of radius 1

�
which is osculating at each point of ∂C from

inside ([39], Corollary 3.2.10). Let p ∈ ∂C, let Bp be the corresponding
osculating ball. Let us compare uλ with the solution up of

u − λ−1div
( Du

|Du|
)

= χ
Bp

.
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Since χ
Bp

≤ χ
C , by the comparison principle [11] we deduce that up ≤ uλ.

The solution up is given explicitly by

up = (1 − λBp

λ
)+χ

Bp
.

But

λBp
= P(Bp)

|Bp| = N

1/�
= N�.

Hence

up = (1 − N
�

λ
)+χ

Bp
.

Since this is true for any p ∈ ∂C, and also for any p in the interior of C,
we deduce that

uλ ≥ (1 − N
�

λ
)+χ

C.

(iv) We know that uλ is characterized by the solution of

uλ − λ−1div zλ = χ
C

where zλ ∈ L∞(IRN, IRN), ‖zλ‖∞ ≤ 1, with (zλ, Duλ) = |Duλ|. Thus
uλ = 0 if and only if −div zλ = λχ

C , i.e., if and only if ‖λχ
C‖∗ ≤ 1.

Statement (iv) is proved.
(v) Suppose that for some λ > 1

‖χC‖∗
, we have uλ = cλ

χ
C for some constant

0 ≤ cλ ≤ 1. Observe that, by (i), cλ < 1, and, by (iv), cλ > 0. Then

−div zλ = λ(1 − cλ)χC

Since (zλ, Duλ) = |Duλ|, and cλ > 0, we have that (zλ, Dχ
C) = |Dχ

C | =
P(C). Multiplying the PDE by χ

C and integrating by parts we deduce that

λ(1 − cλ) = λC

Hence

−div zλ = λC
χ

C,

and therefore C is calibrable, a contradiction. The final assertion is a simple
consequence of the first.

��
Lemma 4. For any λ > 0, let us consider the problem

(P )λ : min
F⊆C

P (F ) − λ|F |. (33)

Then
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(i) Let Cλ, Cµ be minimizers of (P )λ, and (P )µ respectively. If λ < µ, then
Cλ ⊆ Cµ.

(ii) Let µ > λ. Assume that C is a solution of (P )λ. Then C is a solution of (P )µ.
(iii) Let λn ↑ λ. Then C∪

λ := ⋃
n Cλn

is a minimizer of (P )λ. Moreover P(Cλn
) →

P(C∪
λ ). Similarly, if λn ↓ λ, then C∩

λ := ⋂
n Cλn

is a minimizer of (P )λ, and
P(Cλn

) → P(C∩
λ ).

(iv) Assume that C has bounded mean curvature. Let � := (N −1)‖HC‖∞. Then
C is a solution of (P )λ for any λ ≥ N�.

Proof. (i) Observe that we have

P(Cλ) − λ|Cλ| ≤ P(Cλ ∩ Cµ) − λ|Cλ ∩ Cµ|
P(Cµ) − µ|Cµ| ≤ P(Cλ ∪ Cµ) − µ|Cλ ∪ Cµ|.

Adding both inequalities and using that for any two sets of finite perimeter
X, Y in IRN we have

P(X ∩ Y ) + P(X ∪ Y ) ≤ P(X) + P(Y ) (34)

we obtain that

λ(|Cλ ∩ Cµ| − |Cλ|) ≤ µ(|Cµ| − |Cλ ∪ Cµ|),
i.e.,

µ|Cλ \ Cµ| ≤ λ|Cλ \ Cµ|.
Since λ < µ, this implies that |Cλ \ Cµ| = 0, hence Cλ ⊆ Cµ.

(ii) It follows as a consequence of (i).
(iii) Let λn ↑ λ. For each n and each F ⊆ C, we have

P(Cλn
) − λn|Cλn

| ≤ P(F) − λn|F |
Using the lower semicontinuity of the perimeter we deduce that

P(C∪
λ ) − λ|C∪

λ | ≤ P(F) − λ|F |,
i.e, C∪

λ is a minimizer of (P )λ. Now, taking lim sup in

P(Cλn
) − λn|Cλn

| ≤ P(C∪
λ ) − λn|C∪

λ |
we have that

lim sup
n

P (Cλn
) ≤ P(C∪

λ ).

Using this, together with the lower semicontinuity of the perimeter, we
deduce that limn P (Cλn

) = P(C∪
λ ). The proof of the other assertion is

similar.
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(iv) By (ii), it suffices to prove that C is a solution of (P )N�. For that let
η > N�. Take 0 < sn < 1 − N �

η
such that η(1 − sn) ↓ N�. We observe

that, by Lemma 3.(iii), [uη ≥ sn] = C and, by Proposition 4, is a minimum
of

P(F) − η(1 − sn)|F |. (35)

Now, by assertion (iii) in the present Lemma, we deduce that C is also a
minimum of

P(F) − N�|F |. (36)

��
Remark 3. In Proposition 4 we have proved that for any s ∈ (0, 1], the level set
[uλ ≥ s] is a minimizer of (P )λ(1−s). Moreover, by Lemma 4, the sets [uλ ≥
s]∪ := ∪ε>0[uλ ≥ s + ε], s ∈ [0, 1), and [uλ ≥ s]∩ := ∩ε>0[uλ ≥ s − ε],
s ∈ (0, 1], are also minimizers of (P )λ(1−s) (obviously [uλ ≥ 1]∪ = ∅ is also
a minimizer of (P )0). Notice that, except on countably many values of s, they
coincide with [uλ ≥ s].

3.2. The concavity of solutions of (Q)λ

Our purpose is to prove the following result.

Theorem 5. Let C be a bounded convex domain in IRN of class C1,1 such that
(N − 1)HC ≤ 1

R
, R > 0. If λ ≥ 2N

R
, then the solution uλ of (Q)λ is concave in

C. In particular [uλ ≥ s] is convex for any s ∈ [0, 1].

Before going into the proof, we observe that, being concave in C, uλ is con-
tinuous in C. In particular [uλ ≥ s]∩ = [uλ ≥ s] and [uλ ≥ s]∪ = [uλ > s].
Moreover [uλ ≥ s] = [uλ > s] (modulo a null set) for any s ∈ (0, max(uλ)).

For that we recall two auxiliary results. The following theorem was proved by
Korevaar in [30]

Theorem 6. Let 
 be a C1, strictly convex bounded domain in IRN . Let b :
IR × IRN → IR be such that

∂b

∂u
> 0

∂2b

∂u2
≥ 0.

Assume that u ∈ C(
) ∩ C2(
) satisfies

div
( Du√

1 + |Du|2
)

= b(u, Du)
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and the graph of u is a C1 surface above 
 making zero contact angle with
∂
 × IR, i.e.,

Du√
1 + |Du|2

· ν
 = −1. (37)

Then u is a concave function.

The sense of the boundary condition (37) will be made precise during the proof
of Theorem 5. Let us recall the following result which was proved by Atkinson
and Peletier in [9].

Theorem 7. Let f : [γ0, γ ] → IR be a Lipschitz function such that f > 0 on
[γ0, γ ]. Let us consider the problem

div
( Du√

1 + |Du|2
)

+ f (u) = 0 in IRN, N ≥ 2. (38)

Let

fm = min
u∈[γ0,γ ]

f (u), fM = max
u∈[γ0,γ ]

f (u)

and let L = N−1
N

. Assume that

(γ − γ0)(fm − LfM) ≥ 1. (39)

Then there are numbers R̃ > 0 and U ∈ (γ0, γ ) and a radial solution of (38) such
that

0 > u′(r) > − ∞, γ0 < u(r) < γ for 0 < r < R̃, and

u′(r) → − ∞, u(r) → U as r → R̃−.

and satisfying the inequalities

1

fM − Lfm

≤ R̃ ≤ 1

fm − LfM

(40)

γ − 1

fm − LfM

≤ U ≤ γ − 1

fM − Lfm

(41)

We now prove the following result:

Theorem 8. Let C be a bounded convex domain in IRN of class C1,1. Assume that
(N − 1)HC ≤ 1

R
, R > 0. Let λ ≥ 2N

R
. Let us consider the following problem





u − λ−1div
( Du√

ε2 + |Du|2
)

= 1 in C

u = 0 on ∂C

(42)
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Then there is a unique solution uε of (42) such that 0 ≤ uε ≤ 1. Moreover
uε ≥ α > 0 in a neighborhood of ∂C for some α > 0. Hence, u satisfies

[ Duε

√
ε2 + |Duε|2

· νC
]

= sign(0 − uε) = −1 on ∂C. (43)

Proof. Existence and uniqueness of a solution uε of (42) satisfying the Dirichlet
boundary condition in the generalized sense follows by the results in [7],[32].
Multiplying (42) by test functions as in the proof of Proposition 4 and integrating
by parts we deduce that 0 ≤ uε ≤ 1.

Let us prove that uε ≥ α > 0 for some α > 0. For that we shall use Theorem
7. Since (N − 1)HC ≤ 1

R
, by [39] Corollary 3.2.10, we know that at each point

p ∈ ∂C, there is a ball Bp of radius R such that Bp ⊆ C and p ∈ ∂Bp.

Lemma 5. There is a radius R̃ ≤ R and radial solution uB̃ of



u − λ−1div
( Du√

ε2 + |Du|2
)

= 1 in B̃ = B(0, R̃)

u = 0 on ∂B̃

(44)

such that

0 > u′
B̃
(r) > −∞, U < uB̃(r) < γ for 0 < r < R̃, and

u′
B̃
(r) → −∞, uB̃(r) → U as r → R̃−.

for some values γ > 0, U > 0.

Proof. By rescaling vε

B̃
(x) := uB̃( x

ε
), we may look for a radial solution of





div
(

Dv√
1+|Dv|2

)
+ λ

ε
(1 − v) = 0 in εB̃

v = 0 on ∂(εB̃).

(45)

We shall obtain it as an application of Theorem 7. Let γ0 = 0, and 0 < γ < 1 to
be precised in a moment. In this case f (u) = λ

ε
(1 − u), hence

fm = λ

ε
(1 − γ ), fM = λ

ε

and assumption (39) amounts to write

γ
λ

ε
(1 − Nγ ) ≥ N. (46)



A characterization of convex calibrable sets in IRN 347

By Theorem 7 there exists a radius Rλ satisfying the statement of that Theorem.
The inequality (40) can be written as

N

1 + (N − 1)γ
≤ λRλ

ε
≤ N

1 − Nγ
. (47)

Let us fix γ = 1
2N

and we look for solutions v of (45) bounded by γ = 1
2N

.
Assumption (46) can be written as

λ ≥ 4N2ε, (48)

and inequality (47) as

2N2

3N − 1
≤ λRλ

ε
≤ 2N. (49)

We fix λ ≥ 4N2ε. Since we need that Rλ ≤ εR, by (49), this will be guaranteed
if

2Nε

λ
≤ εR

i.e. if λ ≥ 2N
R

. Finally, observe that (41) can be written as

1

2N
− 2Nε

λ
≤ U ≤ 1

2N
− 2N2ε

λ(3N − 1)
(50)

Hence, if we take

λ > 4N2ε, (51)

then U = min vε

B̃
> 0. Summarizing, if we take

ε <
1

2NR
and λ ≥ 2N

R
,

then (51) holds and, by Theorem 7, we have a solution vε

B̃
of the PDE in (45) on

εB̃, where B̃ = B(0, R̃) and R̃ = Rλ

ε
≤ R, such that vε

B̃
> 0 on ∂(εB̃), the graph

of vε

B̃
having zero contact angle with ∂(εB̃) × IR. Hence there is a solution uB̃ of

the PDE in (44) such that uB̃ ≥ α > 0 on ∂B̃, and this solution has zero contact
angle with ∂B̃ × IR.

Now, since uB̃ has a zero contact angle with ∂B̃ × IR, we have

DuB̃√
ε2 + |DuB̃ |2 · νB̃ = −1 = sign(0 − uB̃) on ∂B̃.

Since Theorem 3 in Subsection 2.5 also holds for ∂�ε
ϕ [7],[32], we deduce that

uB̃ represents a solution of (44) with Dirichlet boundary data on B̃. ��
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We come back to the proof of Theorem 8. By our remarks previous to the
proof of Lemma 5 we know that at each point p ∈ ∂C, there is a ball B̃p of radius
R̃ such that B̃p ⊆ C and p ∈ ∂B̃p. Since the solution uε of (42) in C satisfies
uε ≥ 0 in B̃p, by applying the comparison principle for the problem (44) in B̃p

instead of B̃ (see Subsection 2.5) we deduce that uε ≥ uB̃p
≥ α. Since this is true

for all balls B̃p, we deduce that uε ≥ α in a neighborhood of ∂C (in C). Finally,
by Theorem 3 in Subsection 2.5 we have (43). ��
Proof of Theorem 5. Assume first that C is a bounded strictly convex domain
in IRN of class C4. Let uε be the solution constructed in Theorem 8, and let
vε(x) = uε(x

ε
). We know that vε(x) is a solution of

div
( Dv√

1 + |Dv|2
)

+ λ

ε
(1 − v) = 0 in εC, (52)

satisfying
[ Dvε

√
1 + |Dvε|2

· νεC
]

= sign(0 − vε) = −1 on ∂(εC). (53)

Moreover, by the results of L. Simon and J. Spruck [40], since C is a bounded
convex domain of class C4, we have that vε ∈ C2(εC) ∩ C(εC). Let us clarify
this conclusion. By the result of L. Simon and J. Spruck [40], there is a solution
wε ∈ C2(εC) ∩ C(εC) of (52), the boundary condition being understood in the
following sense:

lim
η→0+

1

η

∫

W∩[d(x)<η]
|T wε · ∇d(x) + 1| dx = 0 (54)

for each W ⊆ εC, where d(x) = d(x, ∂(εC)), and

T wε := Dwε

√
1 + |Dwε|2

.

Let us prove that

[T wε · νεC] = −1 on ∂(εC). (55)

For that, let ϕ ∈ C1(εC), and let us multiply the PDE (52) by ϕ and integrate it
on (εC)δ := {x ∈ (εC) : d(x) ≥ δ} for δ > 0 small enough. After integrating by
parts, we obtain

∫

(εC)δ

f (wε)ϕ dx = −
∫

(εC)δ

div T wε ϕ dx

=
∫

(εC)δ

T wε · Dϕ dx −
∫

∂(εC)δ

(T wε · ν(εC)δ )ϕ dx (56)
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where f (wε) = λ
ε
(1 − wε). Let

G(x) = 1

η
χ [d<η]|T wε · ∇d(x) + 1|.

Now, we observe that (54) proves that G(x) → 0 in L1(W), hence also

G(x)ϕ(x) → 0 in L1(W). (57)

Take W = εC. If we write
∫

εC

G(x)ϕ(x) dx =
∫ η

0

∫

∂(εC)s

G(x)ϕ(x) dHN−1 ds,

using (57) we deduce that for some sequence δn → 0 we have
∫

∂(εC)δn

|T wε · ∇d(x) + 1|ϕ(x) dHN−1 → 0

as δn → 0. Now, we take δ = δn and pass to the limit as δ → 0 in (56) to obtain
∫

(εC)

f (wε)ϕ dx =
∫

(εC)

T wε · Dϕ dx −
∫

∂(εC)

(−1)ϕ dx

= −
∫

(εC)

div T wε ϕ dx +
∫

∂(εC)

[T wε · ν(εC)]ϕ dx −
∫

∂(εC)

(−1)ϕ dx.

Since div T wε = f (wε) the above equality implies that [T wε · ν(εC)] = −1 on
∂(εC). We conclude that wε is a solution of (52) and, both vε and wε satisfy
the same boundary condition given in (53) and (55). A uniqueness result for this
equation proves that wε = vε ([7],[32]). Hence vε ∈ C2(εC) ∩ C(εC).

Under these circumstances, by Korevaar’s Theorem [30], we deduce that vε is
concave. Hence, also uε is concave. Since, as ε → 0, uε converges to the solution
wλ of

u − λ−1div
( Du

|Du|
)

= 1 in C

u = 0 on ∂C

(58)

we deduce that wλ is also concave. Moreover we know that wλ ≥ β > 0 (com-
parison with balls), but we may also deduce this lower bound from Theorem 8
and Lemma 5 (a derivation based on inequality (41)). Thus the vector field ξλ,
‖ξλ‖∞ ≤ 1, satisfies (ξλ, Dwλ) = |Dwλ|, wλ − div ξλ = 1 on C, and [ξλ · νC] =
−1. Hence, if we define wλ = 0 outside C, we have that wλ is a solution of (32)
in IRN . Hence wλ = uλ. We conclude that uλ is concave in C. We have proved
Theorem 5 when C is strictly convex and of class C4.
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Let us consider now the general case where C is a bounded convex set of class
C1,1 with (N − 1)HC ≤ 1

R
. Let Cn be a sequence of bounded strictly convex sets

of class C4 such that C ⊆ Cn and C = ⋂
n Cn. Moreover we may assume that

(N − 1)HCn
≤ 1

Rn
with Rn → R. By the previous paragraph the solution un of

u − λ−1div
( Du

|Du|
)

= χ
Cn

in IRN

is concave in Cn. Since un converges to the solution of

u − λ−1div
( Du

|Du|
)

= χ
C in IRN

we deduce that uλ is concave in C. The Theorem is proved. ��

3.3. A characterization of calibrable sets by its mean curvature

Proposition 5. Let C be a bounded convex subset of IRN of class C1,1. Let µn →
µ. Let Cn be a minimizer of (P )µn

. Assume that the Cn are convex, converge to
C, and Cn �= C. Then µ ≤ (N − 1)‖HC‖∞.

Proof. Observe that our assumptions imply that C is a minimizer of (P )µ. We
recall that the integral of the mean curvature of a convex set K

B(K) =
∫

∂K

HK dHN−1,

being a multiple of a quermassintegral [39], is an additive, continuous, and mono-
tone functional. In particular, since Cn ⊆ C, we have that B(Cn) ≤ B(C).

Now, since Cn is convex, we know that HCn
is a positive measure supported on

∂Cn. On the other hand we know that HC ≤ HCn
on ∂C ∩∂Cn and (N −1)HCn

=
µn on ∂Cn \ ∂C. Hence

B(Cn) =
∫

(∂Cn∩∂C)

HCn
dHN−1 + µn

(N − 1)

∫

∂Cn\∂C

dHN−1

≥
∫

∂Cn∩∂C

HC dHN−1 + µn

(N − 1)

∫

∂Cn\∂C

dHN−1,

and we have

0 ≤ B(C) − B(Cn) ≤
∫

∂C\∂Cn

HC dHN−1 − µn

(N − 1)
HN−1(∂Cn \ ∂C)

≤ ‖HC‖∞HN−1(∂C \ ∂Cn) − µn

(N − 1)
HN−1(∂Cn \ ∂C),

which may be written as

µnHN−1(∂Cn \ ∂C) ≤ (N − 1)‖HC‖∞HN−1(∂C \ ∂Cn). (59)
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Assume first that HN−1(∂C \ ∂Cn) does not converge to 0 as n → ∞. Since
Cn ⊆ C and both sets are convex we have that P(Cn) ≤ P(C). Since

0 ≤ P(C) − P(Cn) = HN−1(∂C \ ∂Cn) − HN−1(∂Cn \ ∂C), (60)

and P(Cn) → P(C), dividing by HN−1(∂C\∂Cn), and letting n → ∞, we obtain

1 − HN−1(∂Cn \ ∂C)

HN−1(∂C \ ∂Cn)
= P(C) − P(Cn)

HN−1(∂C \ ∂Cn)
→ 0.

Assume now that HN−1(∂C \ ∂Cn) → 0. Since C minimizes (P )µ, we have

P(C) − µ|C| ≤ P(Cn) − µ|Cn|,
hence, using the isoperimetric inequality, we may write

0 ≤ P(C) − P(Cn) ≤ µ|C \ Cn| ≤ µP(C \ Cn)
N/(N−1)

≤ µ(HN−1(∂C \ ∂Cn) + HN−1(∂Cn \ ∂C))N/(N−1)

≤ 2N/(N−1)µHN−1(∂C \ ∂Cn)
N/(N−1),

where the last inequality follows from the convexity of Cn. Using (60) we may
write the above inequality as

0 ≤ HN−1(∂C \ ∂Cn) − HN−1(∂Cn \ ∂C)

≤ 2N/(N−1)µHN−1(∂C \ ∂Cn)
N/(N−1).

Dividing by HN−1(∂C \ ∂Cn), we obtain

0 ≤ 1 − HN−1(∂Cn \ ∂C)

HN−1(∂C \ ∂Cn)
≤ 2N/(N−1)µHN−1(∂C \ ∂Cn)

1/(N−1)

Letting n → ∞, we deduce that

HN−1(∂Cn \ ∂C)

HN−1(∂C \ ∂Cn)
→ 1 as n → ∞.

Thus, in any case, dividing (59) by HN−1(∂C \ ∂Cn) and letting n → ∞ we
obtain that

µ ≤ (N − 1)‖HC‖∞.

��
Theorem 9. Let C be a bounded convex subset of IRN of class C1,1. Let � :=
(N − 1)‖HC‖∞. Let Cµ be the solution of (P )µ, µ > 0. Then Cµ = C if and only
if µ ≥ max(λC, �).
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Proof. Assume that Cµ = C is a solution of (P )µ. Then (N −1)HC ≤ µ is a con-
sequence of Proposition 1. On the other hand, P(C)−µ|C| ≤ P(∅)−µ|∅| = 0,
i.e., µ ≥ λC .

Assume now that µ ≥ max(λC, �), but C is not a minimizer of (P )µ. In par-
ticular, by Proposition 2 and Lemma 4.(ii), C is not calibrable. We shall construct
a sequence of sets Eλ �= C each one being a solution of (P )µλ

for a certain value
of µλ such that µλ → β as λ → ∞, with β > µ. Let λ > max(N�, 1

‖χC‖∗
, µ).

By Lemma 3.(iii), we know that uλ ≥ (1 − N �
λ
)+χ

C . Let us define

βλ := inf{γ : uλ ≥ (1 − γ

λ
)+χ

C}.

Obviously, we have βλ ≤ N�, and

uλ ≥ (1 − βλ

λ
)+χ

C. (61)

Case. βλ ≤ µ. Take s = 1 − µ

λ
. Then, by Proposition 4, [uλ ≥ s] is a solution of

(P )λ(1−s) = (P )µ. Finally we observe that [uλ ≥ s] = C. Thus C is a solution of
(P )µ. Hence, we may assume that the following case holds for any choice of λ.

Case. µ < βλ ≤ N�. For each λ > max(N�, 1
‖χC‖∗

), take sλ ∈ (1 − βλ

λ
, 1 −

βλ

λ
+ ελ

λ
], ελ > 0 a sequence converging to 0. Then

βλ − ελ ≤ λ(1 − sλ) < βλ.

Let Eλ = [uλ ≥ sλ]. Since λ(1 − sλ) < βλ, and by Lemma 3.(v), we know that
uλ is not constant, by an appropriate choice of sλ we may assume that Eλ �= ∅,
Eλ �= C. By Lemma 3.(ii), choosing sλ sufficiently near 1 − βλ

λ
, i.e., ελ suffi-

ciently small, we have that Eλ → C as λ → ∞. Without loss of generality we
may assume that βλ → β where µ ≤ β ≤ N�. If β = µ, then λ(1 − sλ) → µ.
Since Eλ is a solution of (P )λ(1−sλ), then C would be a solution of (P )µ, and this
would conclude. Therefore we may assume that µ < β ≤ N�.

Summarizing, if µλ := λ(1 − sλ), then Eλ is a solution of (P )µλ
, µλ → β as

λ → ∞, µ < β ≤ N�, and Eλ → C, Eλ �= C.
Moreover, since Eλ is an upper level set of uλ, if we take λ ≥ 2N�, by Theo-

rem 5 we know that uλ is concave, hence Eλ is convex. By Proposition 5, sending
λ → ∞ we have that

β ≤ (N − 1)‖HC‖∞ = � ≤ µ,

and we obtain a contradiction. We have proved that C minimizes (P )µ. ��
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Corollary 1. Let C be a bounded convex subset of IRN of class C1,1. Then E = C

is a solution of

min
F⊆C

P (F ) − λC |F |. (62)

if and only if (N − 1)HC ≤ λC .

Remark 4. Corollary 1 extends to IRN the analogous result proved in [27] when
N = 2. From Corollary 1 and Theorem 1 in [22] (see also [19], [28]), if (N − 1)

HC ≤ λC we deduce that the capillary problem in absence of gravity can be solved
for any angle γ ∈ (0, π

2 ].

Remark 5. Observe that, if C is not calibrable, then N� ≥ 1
‖χC‖∗

. Otherwise,

‖N�χ
C‖∗ ≤ 1 and there would exist a vector field z ∈ L∞(IRN, IRN) with

‖z‖∞ ≤ 1 such that −div z = N�χ
C . Multiplying by χ

C and integrating in IRN

we obtain

N�|C| =
∫

IRN

(z, Dχ
C) ≤ P(C).

Hence � ≤ N� ≤ λC , and C would be calibrable, by Corollary 1. In particular,
in the proof of the second case of Theorem 9 it suffices to take λ > N�.

Remark 6. Taking into account the regularity results of Korevaar and Simon [31],
the above results can be extended, under some smoothness assumptions, to the
case of anisotropic perimeter, that is, when P(C) is replaced by

∫
∂C

φ◦(ν)dHN−1

with φ, φ◦ being smooth norms, φ◦ being the polar of φ. This will be considered
in a subsequent paper.

4. Convexity of the minima of the perimeter with fixed volume

We assume that C is a bounded convex set of class C1,1.

Proposition 6. Let α ≥ 2N
R

, λ > α(1 − ‖uα‖∞) where uα denotes the solution of
(Q)α. Then (P )λ has a unique solution. Moreover, the solution is convex.

Proof. Let F be a minimizer of (P )λ. Let us write λ = α(1 − s) for some
s ∈ (0, 1), s < ‖uα‖∞. Let sn ↑ s, tn ↓ s. Since α(1− sn) ↓ λ, and α(1− tn) ↑ λ,
by Lemma 4.(i), we have that

⋃
n

Cα(1−tn) ⊆ F ⊆
⋂
n

Cα(1−sn).

where Cα(1−tn) = [uα ≥ tn], Cα(1−sn) = [uα ≥ sn]. Finally, since uα is concave
and s < ‖uα‖∞, we have that

⋃
n

Cα(1−tn) =
⋂
n

Cα(1−sn) = [uα ≥ s] (modulo a null set).
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Hence F = [uα ≥ s] and the Proposition follows. Being a level set of uα, the
convexity of F follows from the concavity of uα. ��

From Proposition 6 and Lemma 4.(iii) we deduce the following consequence.

Proposition 7. Let α, β ≥ 2N
R

. Then α(1 − ‖uα‖∞) = β(1 − ‖uβ‖∞).

Proof. Assume that these two numbers are not equal. Without loss of generality,
we may assume that

α(1 − ‖uα‖∞) < β(1 − ‖uβ‖∞).

Let us take λ such that α(1 − ‖uα‖∞) < λ < β(1 − ‖uβ‖∞). Let us write
λ = α(1 − s) = β(1 − t) for some values s < ‖uα‖∞, and t > ‖uβ‖∞. Since
[uβ ≥ t] = ∅, and, by Proposition 6, the solution of (P )λ is unique, being [uα ≥ s]
a solution of (P )λ, we deduce that [uα ≥ s] = ∅, a contradiction. This proves our
proposition. ��

Let λ∗ be the unique value of α(1 − ‖uα‖∞), for α ≥ 2N
R

, determined by the
above proposition. Using Lemma 4.(iii), and Propositions 6 and 7 we obtain the
following result.

Corollary 2. If Cλ denotes the minimum of (P )λ, the functions λ → P(Cλ) and
λ → |Cλ| are continuous for λ ∈ (λ∗, ∞).

Proposition 8. Let α, β ≥ 2N
R

. Then [uα ≥ ‖uα‖∞] = [uβ ≥ ‖uβ‖∞], and

λ∗ = P([uα ≥ ‖uα‖∞])

|[uα ≥ ‖uα‖∞]| . (63)

As a consequence, we obtain that this set is calibrable.

Proof. Since [uα ≥ ‖uα‖∞ − 1
αn

], and [uβ ≥ ‖uβ‖∞ − 1
βn

] are both solutions of
(P )λ∗+ 1

n
, we have that

[uα ≥ ‖uα‖∞ − 1

αn
] = [uβ ≥ ‖uβ‖∞ − 1

βn
].

Since

[uα ≥ ‖uα‖∞] =
⋂
n

[uα ≥ ‖uα‖∞ − 1

αn
],

and

[uβ ≥ ‖uβ‖∞] =
⋂
n

[uβ ≥ ‖uβ‖∞ − 1

βn
]

we deduce that [uα ≥ ‖uα‖∞] = [uβ ≥ ‖uβ‖∞], and this set minimizes (P )λ∗ .
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Now, since [uα ≥ ‖uα‖∞ + ε] = ∅ is a solution of (P )λ∗−λε , for all ε > 0, by
Lemma 4.(iii), we have that ∅ is also a solution of (P )λ∗ . Then

P([uα ≥ ‖uα‖∞]) − λ∗|[uα ≥ ‖uα‖∞]| = P(∅) − λ∗|∅| = 0,

and (63) follows. Since [uα ≥ ‖uα‖∞] is a minimizer of (P )λ∗ we deduce that
this set is calibrable. ��

Collecting the above results, we have obtained the following Theorem.

Theorem 10. Let C be a bounded convex set of class C1,1. Then there is a convex
calibrable set K ⊆ C. Moreover K minimizes

min
F⊆C

P (F ) − λK |F |. (64)

For any λ > λK , there is a unique minimizer Cλ of (P )λ and the function λ → Cλ

is increasing and continuous. Moreover λ → P(Cλ) is also continuous.

Let us state without proof the following observation.

Lemma 6. Let C be a bounded convex subset of IRN . Let µ ≥ 0 and let E be a
solution of the variational problem

min
F⊆C

P (F ) − µ|F |. (65)

Let V = |E|. Then E is a solution of

min
F⊆C,|F |=V

P (F ). (66)

Theorem 11. Let C be a bounded convex set of class C1,1. For any V ∈ [|K|, |C|]
there is a unique convex solution of the constrained isoperimetric problem (66).

Proof. Any solution of (66) corresponding to a value V ∈ [|K|, |C|] coincides
with the solution obtained from the corresponding problem (P )λ for some λ ∈
[λK, ∞). Indeed, if V ∈ [|K|, |C|], there is a value of λ ∈ [λK, ∞) such that, if Cλ

is the minimum of (P )λ, then |Cλ| = V . By Lemma 6 we know that Cλ is a solu-
tion of (66). Now, let Q be another solution of (66). We have that P(Q) = P(Cλ),
and |Q| = |Cλ|. Hence

P(Q) − λ|Q| = P(Cλ) − λ|Cλ| ≤ P(F) − λ|F |
for any F ⊆ C. Thus, Q is a minimum of (P )λ, hence Q = Cλ. ��
Remark 7. By virtue of Lemma 6 and Proposition 4, the algorithm described in
[16], [17], permits to compute the solution of (66) for any V ∈ [|K|, |C|].
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5. Evolution of convex sets in IRN by the minimizing Total Variation flow

5.1. The evolution of a convex calibrable set

We are interested in computing the evolution of convex sets by the minimizing
Total Variation flow, i.e., the solution of the equation

∂u

∂t
= div

(
Du

|Du|
)

in QT := ]0, T [×IR2, (67)

coupled with the initial condition

u(0) = u0 ∈ L2(IR2), (68)

when u0 = χ
C , C being a bounded convex subset of IRN . Since we need the

results of Section 3 we shall assume that C is of class C1,1.
Let 
 be a set of finite perimeter in IRN . We shall say that the set 
 decreases

at constant speed λ if

u(t, x) := (1 − λt)+ χ

(x) (69)

is the strong solution of (67) and (68) corresponding to u0 = χ

. It can be easily

checked (see [11]) that 
 decreases at speed λ if and only if the function v := χ



satisfies the equation

−div

(
Dv

|Dv|
)

= λv, (70)

i.e., if and only if there exists a vector field ξ ∈ L∞(IRN ; IRN) such that ‖ξ‖∞ ≤ 1,

−div ξ = λv (71)

and
∫

IRN

(ξ, Dv) =
∫

IRN

|Dv|. (72)

In other words, the convex set decreases at constant speed if and only if it is calib-
rable. Now, using Theorem 9 we obtain a characterization of the bounded convex
sets of class C1,1 which decrease at constant speed.

Theorem 12. Let C be a bounded convex subset of IRN of class C1,1. The following
conditions are equivalent:

(i) C decreases at constant speed.
(ii) C is calibrable.

(iii) (N − 1) supp∈∂C HC(p) ≤ λC .
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5.2. The evolution of several convex calibrable sets with no interaction

LetC1, . . . , Cm be bounded convex subsets of IRN of classC1,1 such thatCi∩Cj =
∅ for any i �= j , and let F := IRN \⋃m

i=1 Ci . We are concerned with the existence
of a vector field z ∈ L∞(F, IRN) such that




− div z = 0 in D′(F ),

‖z‖∞ ≤ 1,

[z · νF ] = −1 HN−1–a.e. on ∂Ci, i ∈ {1, . . . k},
[z · νF ] = 1 HN−1–a.e. on ∂Cj , j ∈ {k + 1, . . . m}.

(73)

The following result was proved in [12] in IR2 but the proof extends to IRN ,
N ≥ 3.

Theorem 13. The following conditions are equivalent.

(i) Problem (73) has a solution.
(ii) let E1 be a solution of the variational problem

min


P(E) :

m⋃
j=k+1

Cj ⊆ E ⊆ IRN \
k⋃

i=1

Ci


 . (74)

Then we have

P(E1) =
m∑

j=k+1

P(Cj ). (75)

Let E2 be a solution of the variational problem

min



P(E) :

k⋃
i=1

Ci ⊆ E ⊆ IRN \
m⋃

j=k+1

Cj


 . (76)

Then we have

P(E2) =
k∑

i=1

P(Ci). (77)

Moreover, if k = 0, condition (ii) can be stated only for E1; if k = m, condition
(ii) can be stated only for E2.

Remark 8. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1 such
that Ci ∩ Cj = ∅ for any i �= j . The following conditions are equivalent:
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(i) The following problem admits a solution:

z ∈ L∞(F, IRN),




− div z = 0 in D′(F ),

‖z‖∞ ≤ 1,

[z · νF ] = 1 HN−1–a.e. on ∂Cj , j ∈ {1, . . . m}.
(78)

(ii) if E1 be a solution of the variational problem

min


P(E) :

m⋃
j=1

Cj ⊆ E


 , (79)

then we have

P(E1) =
m∑

j=1

P(Cj ). (80)

(iii) let 0 ≤ k ≤ m and let {i1, . . . , ik} ⊆ {1, . . . , m} be any k-uple of indices; if
we denote by Ei1,...,ik a solution of the variational problem

min


P(E) : E of finite perimeter ,

k⋃
j=1

Cij ⊆ E ⊆ IRN \
m⋃

j=k+1

Cij


 ,

(81)

we have

P(Ei1,...,ik ) =
k∑

j=1

P(Cij ). (82)

Indeed, by Theorem 13, (i) and (ii) are equivalent. Obviously, (iii) implies (ii).
Assume now that (ii) holds. Let Ei1,...,ik be a minimum of (81). Let E = Ei1,...,ik ∪⋃m

j=k+1 Cij . Then, we have

P(E) ≥
m∑

j=1

P(Cj ).

Since P(E) ≤ P(Ei1,...,ik ) +∑m
j=k+1 P(Cij ) we deduce that

P(Ei1,...,ik ) ≥
k∑

j=1

P(Cij ).

Now, since Ei1,...,ik is a minimum of (81), we also have that

P(Ei1,...,ik ) ≤
k∑

j=1

P(Cij )
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and we obtain (82). In particular, if one of the equivalent conditions (i), (ii),
or (iii) in this Remark holds, then condition (ii) of Theorem 13 also holds for
all values of k ∈ {0, . . . , m}. In other words, the solvability of (78) implies the
solvability of (73) for all values of k ∈ {0, . . . , m}.
Theorem 14. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1

such that Ci ∩Cj = ∅ for any i �= j . Let 
 = ∪m
i=1Ci . Then v := χ


 is a solution
of (70) if and only if

(i) the following inequalities hold:

ess sup
p∈∂Ci

HCi
(p) ≤ P(Ci)

|Ci | ∀i = 1, . . . , m;

(ii) P(Ci)

|Ci | = P(Cj )

|Cj | for any i, j ∈ {1, . . . , m};
(iii) If E1 is a solution of the variational problem

min


P(E) :

m⋃
j=1

Cj ⊆ E


 , (83)

then we have

P(E1) =
m∑

j=1

P(Cj ). (84)

Proof. Assume that χ

 is a solution of (70). Then each set Ci is calibrable. By

Theorem 9, condition (i) holds. Now, integrating (70) on each Ci we obtain

λ
 = λCi
∀i ∈ {1, . . . , m}.

Finally, we observe that, since χ

 is a solution of (70), then there is a solution of

(78). Thus, by Remark 8.(ii), we obtain that (iii) of the Theorem holds.
Conversely, assume that (i)−(iii) hold. Let us write λ
 = λCi

, i = 1, . . . , m.
Then, by Theorem 9, on each Ci there is a vector field ξi such that

−div ξi = λ
 on Ci

and [ξi · νCi ] = −1 on ∂Ci . By (iii), there exists a vector field ξ0 such that

−div ξ0 = 0

and [ξ0 · νCi ] = −1 on ∂Ci . We define

ξ :=
{

ξi on Ci, i ∈ {1, . . . , m}
ξ0 on IRN \ ∪m

i=1Ci

We have

−div ξ = λ

χ




and (ξ, Dχ

) = |Dχ


|. We deduce that χ

 is a solution of (70). ��
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Theorem 15. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1

such that Ci ∩ Cj = ∅ for any i �= j . Let bi > 0, i = 1, . . . , m, k ∈ {1, . . . , m}.
Then v := −∑k

i=1 bi
χ

Ci
+∑m

i=k+1 bi
χ

Ci
is a solution of

−div
( Dv

|Dv|
)

= v (85)

if and only if

(i) the following inequalities hold:

ess sup
p∈∂Ci

HCi
(p) ≤ P(Ci)

|Ci | ∀i = 1, . . . , m;

(ii) bi = P(Ci)

|Ci | for any i ∈ {1, . . . , m};
(iii) If E1 is a solution of the variational problem (74), then (75) holds. If E2 is a

solution of (76), then (77) holds.

Proof. Let us write 
 = ⋃m
i=1 Ci . Assume that v is a solution of (85). Let ξ ∈

L∞(IRN, IRN), ‖ξ‖∞ ≤ 1, be such that

−div ξ = v on IRN (86)

and (ξ, Dv) = |Dv|. For i ∈ {1, . . . , k}, we have

−div ξ = −bi on Ci (87)

and [ξ ·νCi ] = 1 on ∂Ci . Integrating the above equation in Ci we deduce that bi =
P(Ci)

|Ci | , and Ci is calibrable, i ∈ {1, . . . , k}. Similarly, since for i ∈ {k +1, . . . , m},
we have

−div ξ = bi on Ci (88)

and [ξ · νCi ] = −1 on ∂Ci , we also deduce that Ci are calibrable and bi = P(Ci)

|Ci | ,
i ∈ {k + 1, . . . , m}. Then (i) and (ii) hold. Finally, we observe that ξ |IRN\
 is a
solution of (73). Hence, by Theorem 13, (iii) holds.

Assume now that (i) − (iii) hold. By (i) and (ii), we know that there are
solutions ξi of (87) such that [ξ · νCi ] = 1 on ∂Ci , i ∈ {1, . . . , k}. Similarly, there
are solutions ξi of (88) such that [ξ · νCi ] = −1 on ∂Ci , i ∈ {k + 1, . . . , m}.
Now, by (iii), we know that there is a solution of (73). By pasting all these solu-
tions we find a vector field ξ ∈ L∞(IRN, IRN), ‖ξ‖∞ ≤ 1, satisfying (86) and
(ξ, Dv) = |Dv|. ��

As a consequence we obtain the following result.

Theorem 16. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1

such that Ci ∩ Cj = ∅ for any i �= j . Assume that Ci satisfy the assump-
tions (i) − (iii) of Theorem 15. Let u0 = ∑m

i=1 bi
χ

Ci
, bi ∈ IR. Then the solu-

tion u(t) of (67) corresponding to the initial condition u(0) = u0 is u(t) =∑m
i=1 sign(bi)(|bi | − λCi

t)+χ
Ci

.
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5.3. The evolution of a general convex set of class C1,1

In this Section we assume that C is a bounded convex set of class C1,1. Let K be
the calibrable set contained in C defined in Theorem 10. For each λ ∈ (0, ∞) let
Cλ be the solution of (P )λ. We take Cλ = ∅ for any λ < λK , and, by Theorem
9 we have that Cλ = C for any λ ≥ max(λC, �). Following the approach in
[10],[29], using the monotonicity of Cλ and |C \ ∪{Cλ : λ > 0}| = 0, we may
define

HC(x) =




− inf{λ : x ∈ Cλ} if x ∈ C

0 if IRN \ C.

(89)

Observe that HC(x) = −λK for any x ∈ K .

Definition 3. Let H ∈ L1(IRN). Let FH be the functional

FH(X) = P(X) +
∫

X

H(x) dx,

X being a set of finite perimeter in IRN . Let E be a set of finite perimeter in IRN .
We say that H is a variational mean curvature of E if

FH(E) ≤ FH(X) ∀X set of finite perimeter in IRN .

The following Proposition was proved in [10],[29].

Proposition 9. We have

(i) HC is a variational mean curvature of C. Moreover ‖HC‖L1(C) = P(C).
(ii) HC

χ
Cλ

is a variational mean curvature of Cλ and
∫
Cλ

HC(x) dx = −P(Cλ).

Lemma 7. We have ‖HC‖∗ = 1. In particular, there exists a vector field ξC ∈
L∞(IRN, IRN), ‖ξC‖∞ ≤ 1 such that div ξC = HC in IRN . Moreover

(ξC, Dχ
Cλ

) = |Dχ
Cλ

| for any λ > 0.

Proof. Since FH(C) = 0, we have that − ∫
X

HC(x) dx ≤ P(X) for any rectifi-
able set X ⊆ IRN . As in the proof of Lemma 2 this implies that ‖HC‖∗ ≤ 1. Since∫
C

HC(x) dx = −P(C) we deduce that ‖HC‖∗ = 1. Hence, by Lemma 2, there
exists a vector field ξC satisfying the properties of the statement of the Lemma.

Now, multiplying div ξC = HC by χ
Cλ

and integrating in IRN we deduce that

−
∫

IRN

(ξC, Dχ
Cλ

) =
∫

Cλ

HC(x) dx = −P(Cλ) = −
∫

IRN

|Dχ
Cλ

|.

Since ‖ξC‖∞ ≤ 1, we deduce that (ξC, Dχ
Cλ

) = |Dχ
Cλ

|. ��
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Theorem 17. Let C be a bounded convex subset of IRN of class C1,1. Let HC(x)

be the variational curvature of C constructed in Proposition 9. Then u(t, x) =
(1+HC(x)t)+χ

C(x) is the solution of (67) corresponding to the initial condition
u(0, x) = χ

C(x).

Proof. Let t > 0. We have ut(t, x) = sign+(1 + HC(x)t)HC(x). Now, observe
that sign+(1 + HC(x)t) = 1 if and only if t ≤ − 1

HC(x)
, i.e., if and only if

x ∈ C1/t . Otherwise sign+(1 + HC(x)t) = 0. In particular, we observe that for
t ≥ ‖ 1

HC
‖L∞(C) = 1

λK
we have ut = 0 and also u(t) = 0. Thus

ut(t, x) = HC(x)χC1/t
(x)χ [0,T )(t)

where T := 1
λK

. Let ξC be the vector field given by Lemma 7. In particular, we
have (ξC, Dχ

C1/s
) = |Dχ

C1/s
| for almost all s. In other words, we have

[ξC · νC1/s ] = −1 on ∂C1/s (90)

for almost all s. Observe that, since C1/t is a convex set, there is a vector field
ξ IRN\C1/t ∈ L∞(IRN \ C1/t ), ‖ ξ IRN\C1/t ‖∞≤ 1 such that

div ξ IRN\C1/t = 0 in IRN \ C1/t

[ξ IRN\C1/t · νIRN\C1/t ] = 1 on ∂C1/t .

When t ≤ 1
λK

, let

ξ(t, x) =
{

ξC(x) ifx ∈ C1/t

ξ IRN\C1/t (x) ifx ∈ IRN \ C1/t .

When t ≥ 1
λK

, let ξ(t, x) = 0. Let t ≤ 1
λK

. By Remark 1 we have that ξ(t) ∈
X2(IR

N). We have
∫

IRN

(ξ(t), Du(t)) =
∫

IRN

∫ ∞

0
(ξ(t), Dχ [u(t)≥λ]) dλ

=
∫ ∞

0

∫

IRN

(ξ(t), Dχ [u(t)≥λ]) dλ

=
∫ ‖u(t)‖∞

0

∫

IRN

(ξ(t), Dχ [u(t)≥λ]) dλ

= −
∫ ‖u(t)‖∞

0

∫

∂∗[u(t)≥λ]
[ξ(t) · ν[u(t)≥λ]] dλ,

= −
∫ ‖u(t)‖∞

0

∫

∂∗[u(t)≥λ]
[ξ(t) · νC(1−λ)/t ] dλ,
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= −
∫ ‖u(t)‖∞

0

∫

∂∗[u(t)≥λ]
[ξC(t) · νC(1−λ)/t ] dλ,

=
∫ ‖u(t)‖∞

0
P(∂∗[u(t) ≥ λ]) dλ (by (90))

=
∫

IRN

|Du(t)|.

Also, for t ≥ 1
λK

, we have (ξ(t), Du(t)) = |Du(t)|.
On the other hand, by construction of ξ(t, x) we have

div ξ(t) = HC(x)χC1/t
(x)

if t ≤ 1
λK

. If t > 1
λK

, we have div ξ(t) = 0. Thus we have that ut(t) = div ξ(t)

for almost all t ∈ (0, T ) (also in D′((0, T ) × IRN) for any T > 0). By the char-
acterization of ∂� given in Lemma 1 we have that u(t) is a strong solution in the
sense of semigroups of (67). Finally, by Theorem 2, u is also the strong solution
of (67) corresponding to the initial condition u(0, x) = χ

C(x). ��

5.4. Solutions constructed from convex sets

Theorem 18. Let C1, . . . , Cm be bounded convex subsets of IRN of class C1,1

such that Ci ∩ Cj = ∅ for any i �= j . Assume that Ci satisfy condition (ii)

in Remark 8. Let HCi
be the variational curvature of Ci defined in Subsection

5.3. Let bi ∈ IR, bi < 0, i = 1, . . . , k, bi > 0, i = k + 1, . . . , m. Then
u(t, x) = ∑m

i=1 sign(bi)(|bi | + HCi
(x)t)+χ

Ci
(x) is the solution of (67) corre-

sponding to the initial condition u(0, x) = ∑m
i=1 bi

χ
Ci

.

Proof. By Lemma 7, for each i = 1, . . . , m, there is a vector field ξCi
∈ L∞

(IRN, IRN), ‖ξCi
‖∞ ≤ 1, such that

div ξCi
= HCi

in IRN ,

and ∫

IRN

(ξCi
, Dχ

Ci,λ
) =

∫

IRN

|Dχ
Ci,λ

| for any λ > 0.

Observe that this equality implies that

[ξCi
· νCi ] = −1 HN−1–a.e. on ∂Ci . (91)

Now, since Ci satisfy condition (ii) in Remark 8, there is a vector field ξe ∈
L∞(IRN \ (C1 ∪ . . . Cm)) with ‖ξe‖∞ ≤ 1 such that




− div ξe = 0 in D′(IRN \
m⋃

i=1

Ci),

[ξe · νCi ] = −1 HN−1–a.e. on ∂Ci, i ∈ {1, . . . , m}.
(92)
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Let us put together all these vector fields, i.e., let

ξ(x) =
{

ξCi
(x) if x ∈ Ci

ξe(x) if x ∈ IRN \ (C1 ∪ · · · ∪ Cm).

Since [ξe · νCi ] = [ξCi
· νCi ] = −1HN−1–a.e. on ∂Ci , we have that

−div ξ = −
m∑

i=1

HCi
χCi

in IRN. (93)

Let F = −∑m
i=1 HCi

χCi
= ∑m

i=1 |HCi
|χCi

≥ 0. The inequality (93) says that
‖F‖∗ ≤ 1. We have that

0 ≤
m∑

i=1

|HCi
|χCi,1/s

≤
m∑

i=1

|HCi
|χCi

hence

‖
m∑

i=1

|HCi
|χCi,1/s

‖∗ ≤ ‖
m∑

i=1

|HCi
|χCi

‖∗ ≤ 1.

By Lemma 2, we conclude that there exists a vector field ξs ∈ L∞(IRN, IRN)

such that ‖ξs‖∞ ≤ 1 such that

−div ξs =
m∑

i=1

|HCi
|χCi,1/s

,

and this implies that

div ξs = 0 in IRN \ (C1,1/s ∪ · · · ∪ Cm,1/s),

and

[ξs · νCi,1/s ] = −1 HN−1–a.e. on ∂Ci,1/s, i ∈ {1, . . . , m}.
Let I+ := {i : bi ≥ 0}, I− := {i : bi < 0}. By Remark 8 we know that there is a
solution there is a vector field ξ ∗

s ∈ L∞(IRN, IRN), ‖ξ∗
s ‖∞ ≤ 1 satisfying



− div ξ ∗
s = 0 in D′(IRN \

m⋃
i=1

Ci,1/s),

[ξ ∗
s · νCi,1/s ] = −1 HN−1–a.e. on ∂Ci,1/s, i ∈ I+,

[ξ ∗
s · νCi,1/s ] = 1 HN−1–a.e. on ∂Cj,1/s, j ∈ I−.

(94)

Now we finish the proof as in Theorem 17, the vector field ξ∗
s playing the role of

the vector field ξ IRN\C1/t in the proof of that Theorem. ��
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