# Global controllability for Burgers equation 

Jean-Pierre Puel *

Work in collaboration with O.Yu. Imanuvilov

## Introduction

Case of Navier-Stokes Equations
$(\overline{\mathbf{y}}, \bar{p})$ : "ideal" solution of Navier-Stokes equations (for example a stationnary solution).

$$
\left\{\begin{array}{l}
\frac{\partial \overline{\mathbf{y}}}{\partial t}-\nu \Delta \overline{\mathbf{y}}+\overline{\mathbf{y}} \cdot \nabla \overline{\mathbf{y}}+\nabla \bar{p}=\mathbf{f} \text { in } \Omega \times(0, T)  \tag{1}\\
\operatorname{div} \overline{\mathbf{y}}=0 \text { in } \Omega \times(0, T) \\
\overline{\mathbf{y}}=0 \text { on } \Gamma \times(0, T) \\
\overline{\mathbf{y}}(0)=\overline{\mathbf{y}}_{0} \text { in } \Omega
\end{array}\right.
$$

Consider a solution of the controlled system, starting from a different initial value

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{y}}{\partial t}-\nu \Delta \mathbf{y}+\mathbf{y} \cdot \nabla \mathbf{y}+\nabla p=\mathbf{f}+\mathbf{v} \cdot \mathbf{1}_{\omega} \text { in } \Omega \times(0, T)  \tag{2}\\
\operatorname{div} \mathbf{y}=0 \text { in } \Omega \times(0, T) \\
\mathbf{y}=0 \text { on } \Gamma \times(0, T) \\
\mathbf{y}(0)=\mathrm{y}_{0} \text { in } \Omega
\end{array}\right.
$$

$\mathbb{I}_{\omega}$ : characteristic function of a (little) subset $\omega$ of $\Omega$.

Exact Controllability to Trajectories :

Can we find a control v such that

$$
\mathbf{y}(T)=\overline{\mathbf{y}}(T) ?
$$

i.e can we reach exactly in finite time the "ideal" trajectory $\overline{\mathbf{y}}$ ?

Local version : same result provided $\left\|y_{0}-\overline{\mathbf{y}}_{0}\right\|$ is small enough.

Last result (Fernandez-Cara, Guerrero, Imanuvilov, Puel, Journal de Math. Pures et Appl., 2004) (dimension 3) : Local exact controllability to trajectories.

$$
H=\left\{\mathbf{y} \in L^{2}(\Omega)^{3}, \operatorname{div} \mathbf{y}=0, \mathbf{y} \cdot \nu=0 \text { on } \Gamma\right\}
$$

Theorem 1 Let us assume that

$$
\overline{\mathbf{y}}_{0} \in H \cap L^{4}(\Omega)^{3}, \quad \overline{\mathbf{y}} \in L^{\infty}(\Omega \times(0, T))^{3}
$$

and

$$
\frac{\partial \overline{\mathbf{y}}}{\partial t} \in L^{2}\left(0, T ; L^{\sigma}(\Omega)\right)^{3}, \sigma>\frac{6}{5}
$$

then there exists $\eta>0$ such that for every $\mathrm{y}_{0} \in H \cap L^{4}(\Omega)^{3}$ such that $\left\|\mathbf{y}_{0}-\overline{\mathbf{y}}_{0}\right\|_{L^{4}(\Omega)^{3}} \leq \eta$, there exists a control $\mathbf{v} \in L^{2}\left(0, T ; L^{2}(\omega)\right)^{3}$ and a solution ( $\mathbf{y}, p$ ) of (2) such that

$$
\mathbf{y}(T)=\overline{\mathbf{y}}(T)
$$

Among open problems:

Can the result be global (at least to achieve 0)?

Open problem except for control on the whole boundary : combining results of Coron for approximate controllability and a local exact controllability result (Fursikov-Imanuvilov or result mentionned above).

Can we use a more "nonlinear" method ?

Case of Burgers Equations

For 1-d Burgers equation: counter-example due to Guerrero-Imanuvilov. Therefore no global exact controllability.

Global exact boundary controllability for the 2-d Burgers equation

$$
\begin{align*}
& \frac{\partial u}{\partial t}-\Delta u+\frac{\partial u^{2}}{\partial x_{1}}+\frac{\partial u^{2}}{\partial x_{2}}=f \quad \text { in } Q=(0, T) \times \Omega  \tag{3}\\
& \left.u\right|_{\Gamma_{0}}=0,\left.\quad u\right|_{\Gamma_{1}}=h  \tag{4}\\
& u(0, \cdot)=u_{0}  \tag{5}\\
& u(T, \cdot)=0 \tag{6}
\end{align*}
$$

Without loss of generality we may assume that $\Omega$ is included in the rectangle $0 \leq x_{2}-x_{1} \leq A, \quad-B \leq x_{1}+x_{2} \leq B$ with $A$ and $B$ two positive constants.

Theorem 2 Let us assume that

$$
\begin{equation*}
\Gamma_{0} \subset\left\{x \in \Gamma \mid x_{1}-x_{2}=0\right\} \tag{7}
\end{equation*}
$$

(or $\Gamma_{0}$ is empty which is allowed). Suppose that $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and that there exists $T_{0} \in(0, T)$ such that $f(t, x)=0, \forall t \geq T_{0}$. Then for every $u_{0} \in L^{2}(\Omega)$ there exists a solution $u \in L^{2}\left(0, T ; H_{\Gamma_{0}}^{1}(\Omega)\right) \cap$ $C\left([0, T] ; L^{2}(\Omega)\right)$ such that $t^{2} . u \in H^{1,2}(Q)=H^{1}\left(0, T ; L^{2}(\Omega)\right)$ $L^{2}\left(0, T ; H^{2}(\Omega) \cap H_{\Gamma_{0}}^{1}(\Omega)\right)$ to problem (3)-(5) satisfying (6) (and a corresponding control $h$ ).

Proof : related to the return method by Coron but different. Use of a special solution of Burgers equation that we can drive to zero whenever we want.

First of all some existence and regularity results for Burgers equations (good exercises !!)

Proposition 3 For every $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ and $u_{0} \in L^{2}(\Omega)$ there exists a unique solution $u$ to $2-D$ Burgers equation with $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \cap$ $C\left([0, T] ; L^{2}(\Omega)\right)$ and we have
$\|u\|_{L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)}+\|u\|_{C\left([0, T] ; L^{2}(\Omega)\right)} \leq C\left(\left|u_{0}\right|_{L^{2}(\Omega)}+\|f\|_{L^{2}\left(0, T ; H^{-1}(\Omega)\right)}\right)$.
If $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$ then $u \in H^{1,2}(Q)=H^{1}\left(0, T ; L^{2}(\Omega)\right) \cap$ $L^{2}\left(0, T ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right)$ and we have
$\|u\|_{H^{1,2}(Q)} \leq C\left(\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}+|f|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}+\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{5}+|f|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{5}\right)$.

Proposition 4 Let us assume that $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and that $u_{0} \in$ $L^{2}(\Omega)$. Then $t^{2} . u \in H^{1,2}(Q)$ which implies that for every $\eta>0, u \in$ $C\left([\eta, T] ; H_{0}^{1}(\Omega)\right) \cap L^{2}\left(\eta, T ; H^{2}(\Omega)\right)$ and $\frac{\partial u}{\partial t} \in L^{2}\left(\eta, T ; L^{2}(\Omega)\right)$. Moreover we have the following estimate

$$
\begin{align*}
&\left\|t^{2} \cdot u\right\|_{H^{1,2}(Q)} \leq C\left(\left|u_{0}\right|_{L^{2}(\Omega)}+|f|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}+\right.  \tag{8}\\
&\left.+\left|u_{0}\right|_{L^{2}(\Omega)}^{13}+|f|_{L^{2}\left(0, T ; L^{2}(\Omega)\right)}^{13}\right)
\end{align*}
$$

On the time interval $\left(0, T_{0}\right)$ set $h(t, x)=0$ and leave the system evolve without control. For every $\eta>0$, we have

$$
u \in C\left(\left[\eta, T_{0}\right] ; H_{0}^{1}(\Omega)\right) \cap L^{2}\left(\eta, T_{0} ; H^{2}(\Omega)\right), \frac{\partial u}{\partial t} \in L^{2}\left(\eta, T_{0} ; L^{2}(\Omega)\right)
$$

and we write

$$
u\left(T_{0}, \cdot\right)=u_{1} \in H_{0}^{1}(\Omega) \subset L^{p}(\Omega), \forall p, \quad 1 \leq p<+\infty
$$

Now we set

$$
\delta_{0}=\frac{T-T_{0}}{4}>0
$$

We will construct a solution $u$ in the interval ( $T_{0}, T_{0}+3 \delta_{0}$ ) (and a corresponding control) such that $u\left(T_{0}+3 \delta_{0}, \cdot\right)$ is as small as desired in the norm $H_{0}^{1}(\Omega)$.

First of all we construct a very specific solution $U$ of the 2-d Burgers equation.

Let $w(t, z)$ be a solution to the heat equation

$$
\begin{align*}
& \frac{\partial w}{\partial t}-2 \frac{\partial^{2} w}{\partial z^{2}}=0 \quad z \in(0, A), t>T_{0}  \tag{9}\\
& w(t, 0)=0, \quad w(t, A)=v(t)  \tag{10}\\
& w\left(T_{0}, \cdot\right)=0 \tag{11}
\end{align*}
$$

where $v(\cdot)$ is a boundary control which will be determined later on. This control will be chosen regular so that $w$ will also be regular.

We now set

$$
\begin{equation*}
U(t, x)=w\left(t, x_{2}-x_{1}\right) \tag{12}
\end{equation*}
$$

We have

$$
\frac{\partial U}{\partial x_{1}}+\frac{\partial U}{\partial x_{2}}=0, \frac{\partial U^{2}}{\partial x_{1}}+\frac{\partial U^{2}}{\partial x_{2}}=0
$$

so that for every $N>0, N . U$ is a regular solution of the $2-\mathrm{d}$ Burgers equation

$$
\begin{aligned}
& \frac{\partial(N \cdot U)}{\partial t}-\Delta(N \cdot U)+\frac{\partial(N \cdot U)^{2}}{\partial x_{1}}+\frac{\partial(N \cdot U)^{2}}{\partial x_{2}}=0 \quad \text { in }\left(T_{0}, T\right) \times \Omega \\
& \left.N \cdot U\right|_{\Gamma_{0}}=0 \\
& N \cdot U\left(T_{0}, \cdot\right)=0
\end{aligned}
$$

Notice that the value of $N . U$ on $\left(T_{0}, T\right) \times \Gamma_{1}$, which will be a boundary control $h$ and which depends on $v$, does not appear explicitely. If $\delta$ is any number such that $0<\delta \leq \delta_{0}$, from the controllability results for the heat equation, we can choose this control $h$ (and in fact $v$ ) on $\left(T_{0}+\delta, T_{0}+2 \delta_{0}\right)$ such that

$$
N \cdot U\left(T_{0}+2 \delta_{0}, \cdot\right)=0
$$

On the interval ( $T_{0}, T_{0}+2 \delta_{0}$ ) we look for $u$ in the form

$$
\begin{equation*}
u=y+N . U \tag{13}
\end{equation*}
$$

where $N$ is a large parameter to be determined later on and $y$ is chosen to vanish on the whole boundary $\Gamma$.

Therefore, $y$ must satisfy the following equation

$$
\begin{align*}
& \frac{\partial y}{\partial t}-\Delta y+2 N \cdot U\left(\frac{\partial y}{\partial x_{1}}+\frac{\partial y}{\partial x_{2}}\right)+\frac{\partial y^{2}}{\partial x_{1}}+\frac{\partial y^{2}}{\partial x_{2}}=0  \tag{14}\\
& \text { in }\left(T_{0}, T_{0}+2 \delta_{0}\right) \times \Omega, \\
& \left.y\right|_{\Gamma}=0,  \tag{15}\\
& y\left(T_{0}, \cdot\right)=u_{1} . \tag{16}
\end{align*}
$$

Lemma 5 There exists a unique solution $y$ to (14), (15), (16) with $y \in C\left(\left[T_{0}, T_{0}+2 \delta_{0}\right] ; H_{0}^{1}(\Omega)\right) \cap L^{2}\left(T_{0}, T_{0}+2 \delta_{0} ; H^{2}(\Omega)\right), \frac{\partial y}{\partial t} \in L^{2}\left(T_{0}, T_{0}+\right.$ $\left.2 \delta_{0} ; L^{2}(\Omega)\right)$ and for every $t_{0}, t_{1}$ with $T_{0} \leq t_{0} \leq t_{1} \leq T_{0}+2 \delta_{0}$ and every $p \geq 1$ we have

$$
\begin{equation*}
\left\|y\left(t_{1}, \cdot\right)\right\|_{L^{p}(\Omega)} \leq\left\|y\left(t_{0}, \cdot\right)\right\|_{L^{p}(\Omega)} \tag{17}
\end{equation*}
$$

## Proof.

Existence, uniqueness and regularity of $y$ is classical as (14) is essentially a Burgers equation. To show that the $L^{p}$-norm of $y$ is decreasing, multiply equation (14) by $|y|^{p-2} y$ with $p \geq 1$. We obtain

$$
\frac{1}{p} \frac{d}{d t} \int_{\Omega}|y|^{p} d x+(p-1) \int_{\Omega}|y|^{p-2}|\nabla y|^{2} d x=0
$$

since

$$
\int_{\Omega} U \cdot\left(\frac{\partial y}{\partial x_{1}}+\frac{\partial y}{\partial x_{2}}\right)|y|^{p-2} y d x=\frac{1}{p} \int_{\Omega} U \cdot\left(\frac{\partial|y|^{p}}{\partial x_{1}}+\frac{\partial|y|^{p}}{\partial x_{2}}\right) d x=0
$$

and

$$
\int_{\Omega}\left(\frac{\partial y^{2}}{\partial x_{1}}+\frac{\partial y^{2}}{\partial x_{2}}\right)|y|^{p-2} y d x=\frac{2}{p+1} \int_{\Omega}\left(\frac{\partial|y|^{p} y}{\partial x_{1}}+\frac{\partial|y|^{p} y}{\partial x_{2}}\right) d x=0
$$

Let us now define a function $\beta$ by

$$
\beta(x)=C_{0}-x_{1}-x_{2}
$$

where $C_{0}$ is chosen such that

$$
\exists \beta_{0}>0, \quad \forall x \in \Omega, \beta(x) \geq \beta_{0}
$$

We also write

$$
\beta_{1}=\max _{x \in \bar{\Omega}} \beta(x)
$$

Lemma 6 The solution $y$ of (14), (15), (16) satisfies the following differential inequality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \beta|y|^{2} d x+\int_{\Omega} \beta|\nabla y|^{2} d x+\frac{2}{\beta_{1}} \int_{\Omega}(N . U) \beta|y|^{2} d x \leq \frac{4}{3} \int_{\Omega}\left|u_{1}\right|^{3} d x \tag{18}
\end{equation*}
$$

## Proof.

Multiply equation (14) by $\beta y$. We obtain, as $\Delta \beta=0$ and $\frac{\partial \beta}{\partial x_{1}}+\frac{\partial \beta}{\partial x_{2}}=$ -2,

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \beta|y|^{2} d x+\int_{\Omega} \beta|\nabla y|^{2} d x+2 \int_{\Omega}(N . U)|y|^{2} d x+\frac{4}{3} \int_{\Omega}|y|^{2} y d x=0
$$

Using Lemma 5 with $p=3$ we obtain the desired result.

Notice that up to this point the control $v$ has not been chosen.

In the case when $\Gamma_{0}$ is empty which means that we can apply a control on the whole boundary, we don't have to take the boundary condition $w(t, 0)=0$ and we can take $w$ such that $\min _{x \in \Omega} U(t, x) \geq$ $\min _{z \in(0, A)} w(t, z) \geq \alpha(t)>0$ if $t>T_{0}$, which ensures that $U$ has a strictly positive minimum when $t>T_{0}$.

When $\Gamma_{0}$ is not empty, due to the boundary condition $w(t, 0)=0$ we cannot have a strictly positive minimum for $U$ over $\Omega$.

Let us now make a choice for $w$ and $v$. On the interval $\left(T_{0}, T_{0}+\delta\right)$, where $0<\delta \leq \delta_{0}$, we set

$$
\begin{equation*}
w(t, z)=\frac{1}{\sqrt{\left(t-T_{0}\right)}}\left(e^{-\frac{(z-5 A)^{2}}{8\left(t-T_{0}\right)}}-e^{-\frac{(z+5 A)^{2}}{8\left(t-T_{0}\right)}}\right) \tag{19}
\end{equation*}
$$

We can see that $w$ satisfies (9), (10) with a suitable control $v$ and (11).

For $0<a \leq z \leq A$ we have

$$
\begin{aligned}
w(t, z) \geq w(t, a) & =\frac{2}{\sqrt{\left(t-T_{0}\right)}} e^{-\frac{\left(a^{2}+25 A^{2}\right)}{8\left(t-T_{0}\right)}} \sinh \left(\frac{5 A a}{4\left(t-T_{0}\right)}\right) \\
& \geq \frac{5 A a}{2\left(t-T_{0}\right)^{\frac{3}{2}}} e^{-\frac{\left(a^{2}+25 A^{2}\right)}{8\left(t-T_{0}\right)}}
\end{aligned}
$$

At the same time we also have
$\exists C_{0}>0, \forall a \in(0, A), \forall t \in\left(T_{0}, T_{0}+\delta\right), \forall z, 0 \leq z \leq a, w(t, z) \leq w(t, a) \leq C_{0} a$.
We will write

$$
\Omega_{a}=\left\{x \in \Omega, 0 \leq x_{2}-x_{1} \leq a\right\}
$$

and we have

$$
\left|\Omega_{a}\right| \leq C a,
$$

and

$$
\min _{x \in \Omega \backslash \Omega_{a}} U(t, x) \geq w(t, a) \geq \frac{5 A a}{2\left(t-T_{0}\right)^{\frac{3}{2}}} e^{-\frac{\left(a^{2}+25 A^{2}\right)}{8\left(t-T_{0}\right)}} .
$$

Therefore, from (18), we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} \beta|y|^{2} d x+\int_{\Omega} \beta|\nabla y|^{2} d x+\frac{5 N A a}{\beta_{1}\left(t-T_{0}\right)^{\frac{3}{2}}} e^{-\frac{\left(a^{2}+25 A^{2}\right)}{8\left(t-T_{0}\right)}} \int_{\Omega} \beta|y|^{2} d x \\
& \leq \frac{4}{3} \int_{\Omega}\left|u_{1}\right|^{3} d x+2 N \int_{\Omega_{a}} w(t, a)|y|^{2} d x \\
& \leq \frac{4}{3} \int_{\Omega}\left|u_{1}\right|^{3} d x+2 N w(t, a)\left|\Omega_{a}\right|^{\frac{1}{3}}\left(\int_{\Omega}|y|^{3} d x\right)^{\frac{2}{3}} \\
& \leq \frac{4}{3} \int_{\Omega}\left|u_{1}\right|^{3} d x+C N a^{\frac{4}{3}}\left(\int_{\Omega}\left|u_{1}\right|^{3} d x\right)^{\frac{2}{3}}
\end{aligned}
$$

We now take

$$
a=\frac{1}{N^{\frac{3}{4}}}
$$

which implies the following differential inequality

$$
\frac{d}{d t} \int_{\Omega} \beta|y|^{2} d x \leq-\frac{10 N^{\frac{1}{4}} A}{\beta_{1}\left(t-T_{0}\right)^{\frac{3}{2}}} e^{-\frac{26 A^{2}}{8\left(t-T_{0}\right)}} \int_{\Omega} \beta|y|^{2} d x+C\left(\left\|u_{1}\right\|_{L^{3}(\Omega)}\right)
$$

Using Gronwall Lemma, integrating this inequality on $\left(T_{0}, T_{0}+\delta\right)$, we obtain

$$
\int_{\Omega} \beta\left|y\left(T_{0}+\delta, x\right)\right|^{2} d x \leq\left(\int_{\Omega} \beta\left|u_{1}\right|^{2} d x\right) e^{-N^{\frac{1}{4}} g(\delta)}+\delta C\left(\left\|u_{1}\right\|_{L^{3}(\Omega)}\right)
$$

where for $\delta$ small enough

$$
g(\delta)=\int_{T_{0}}^{T_{0}+\delta} \frac{10 A}{\beta_{1}\left(t-T_{0}\right)^{\frac{3}{2}}} e^{-\frac{26 A^{2}}{8\left(t-T_{0}\right)}} d t \geq C e^{-\frac{A^{2}}{\delta}}>0
$$

This implies

$$
\int_{\Omega}\left|y\left(T_{0}+\delta, x\right)\right|^{2} d x \leq \frac{\beta_{1}}{\beta_{0}}\left\|u_{1}\right\|_{L^{2}(\Omega)}^{2} e^{-N^{\frac{1}{4}} g(\delta)}+\frac{\delta}{\beta_{0}} C\left(\left\|u_{1}\right\|_{L^{3}(\Omega)}\right)
$$

and, choosing first $\delta$ sufficiently small then $N$ sufficiently large we have proved the following

Proposition 7 Given $u_{1}$ in $H_{0}^{1}(\Omega)$ (in fact $u_{1} \in L^{3}(\Omega)$ would be enough), for every $\delta_{0}>0$ and for every $\epsilon_{0}>0$, there exists $\delta$ with $0<\delta \leq \delta_{0}$ and there exists $N$ sufficiently large such that

$$
\left\|y\left(T_{0}+\delta, \cdot\right)\right\|_{L^{2}(\Omega)} \leq \epsilon_{0}
$$

Now we choose the control $v$ on the time interval $\left(T_{0}+\delta, T_{0}+2 \delta_{0}\right)$ in (10) such that $w$ satisfies

$$
w\left(T_{0}+2 \delta_{0}, \cdot\right)=0
$$

This is possible using classical results on null controllability for the heat equation. Then we also have

$$
U\left(T_{0}+2 \delta_{0}, \cdot\right)=0
$$

Therefore,
$\left\|u\left(T_{0}+2 \delta_{0}, \cdot\right)\right\|_{L^{2}(\Omega)}=\left\|y\left(T_{0}+2 \delta_{0}, \cdot\right)\right\|_{L^{2}(\Omega)} \leq\left\|y\left(T_{0}+\delta, \cdot\right)\right\|_{L^{2}(\Omega)} \leq \epsilon_{0}$. Notice that $\epsilon_{0}$ can be chosen as small as we wish. At this point we only know that the $L^{2}(\Omega)$-norm of $u\left(T_{0}+2 \delta_{0}, \cdot\right)$ is as small as we wish.

On the interval ( $T_{0}+2 \delta_{0}, T_{0}+3 \delta_{0}$ ) we let the system evolve freely and we take the boundary control equal zero. Then using the regularizing effect of Burgers equation we see that at time $T_{0}+3 \delta_{0}$ we have

$$
\left\|u\left(T_{0}+3 \delta_{0}, \cdot\right)\right\|_{H_{0}^{1}(\Omega)} \leq \epsilon_{1}
$$

where $\epsilon_{1}$ can be taken as small as we wish provided $\epsilon_{0}$ is small enough.

Therefore, on the time interval $\left(T_{0}+3 \delta_{0}, T\right)$ we can use a result of local exact controllability to trajectories for 2-d Burgers equations (not completely trivial !) to find a boundary control $h$ such that

$$
u(T, \cdot)=0
$$

A situation without global controllability

Theorem 2 was proved under the restrictive assumption (7) on the boundary $\Gamma_{0}$. The next result shows that without this assumption the global controllability property may fail.

Let us suppose that the geometrical situation is such that there exists a function $\rho(x) \in C^{2}(\bar{\Omega})$ such that

$$
\begin{equation*}
\left.\rho\right|_{\Gamma_{1}}=0, \quad \rho(x)>0 \text { in } \Omega, \quad \frac{\partial \rho}{\partial x_{1}}+\frac{\partial \rho}{\partial x_{2}}<0 \quad \forall x \in \bar{\Omega} . \tag{20}
\end{equation*}
$$

Of course this cannot occur in the situation considered in the previous section, but there are many cases where such a function $\rho$ exists, for example when $\Omega=\left\{\left(x_{1}, x_{2}\right), 0<x_{2}-x_{1}<1,-1<x_{1}+x_{2}<1\right\}$ and $\Gamma_{1}=\left\{\left(x_{1}, x_{2}\right), 0<x_{2}-x_{1}<1, x_{1}+x_{2}=1\right\}$.

For a function $v$ defined on $\Omega$ or $(0, T) \times \Omega$ we set

$$
v^{+}=\max (v, 0), v^{-}=(-v)^{+}
$$

Theorem 8 Suppose that condition (20) holds true. Let $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ and $u_{0} \in H_{0}^{1}(\Omega)$ such that $u_{0}^{-} \neq 0$. Then there exists a time $T_{0}\left(u_{0}^{-}, f\right)>$ 0 such that for each $T \leq T_{0}\left(u_{0}^{-}, f\right)$ there is no solution to problem (3)-(5) in the space $u \in H^{1,2}(Q)$ satisfying (6).

Proof. We argue by contradiction. Let $u_{0} \in H_{0}^{1}(\Omega)$ and $f \in L^{2}\left(0, T ; L^{2}(\Omega)\right)$ be given functions. Suppose that there exists a solution $u$ to (3)-(6). Then we consider the function $y(t, x)=u(t, x)-u_{0}(x)$ which satisfies the following system of equations

$$
\begin{aligned}
& \frac{\partial y}{\partial t}-\Delta y+\frac{\partial y^{2}}{\partial x_{1}}+\frac{\partial y^{2}}{\partial x_{2}}+2 \frac{\partial\left(y u_{0}\right)}{\partial x_{1}}+2 \frac{\partial\left(y u_{0}\right)}{\partial x_{2}}=q \quad \text { in }(0, T) \times \Omega, \\
& \left.y\right|_{\Gamma_{0}}=0,\left.\quad y\right|_{1}=h \quad y(0, \cdot)=0, \\
& y(T, \cdot)=-u_{0},
\end{aligned}
$$

where

$$
q=\Delta u_{0}-\frac{\partial u_{0}^{2}}{\partial x_{1}}-\frac{\partial u_{0}^{2}}{\partial x_{2}}+f .
$$

We set

$$
\rho_{1}(x)=\rho(x)^{4} .
$$

Multiplying the equation by $\rho_{1} y^{+}$and integrating by parts we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \rho_{1}\left|y^{+}\right|^{2} d x & +\int_{\Omega}\left(\rho_{1}\left|\nabla y^{+}\right|^{2}-\frac{\Delta \rho_{1}}{2}\left|y^{+}\right|^{2}-\frac{2}{3}\left(\frac{\partial \rho_{1}}{\partial x_{1}}+\frac{\partial \rho_{1}}{\partial x_{2}}\right)\left(y^{+}\right)^{3}\right) d x \\
+\int_{\Gamma_{0}} \frac{1}{2} \frac{\partial \rho_{1}}{\partial n}\left|y^{+}\right|^{2} d \sigma- & 2 \int_{\Omega}\left(\left(\frac{\partial y^{+}}{\partial x_{1}}+\frac{\partial y^{+}}{\partial x_{2}}\right) \rho_{1} u_{0} y^{+}-u_{0}\left(\frac{\partial \rho_{1}}{\partial x_{1}}+\frac{\partial \rho_{1}}{\partial x_{2}}\right)\left|y^{+}\right|^{2}\right) d x \\
= & \int_{\Omega} f \rho_{1} y^{+} d x-\int_{\Omega} \nabla u_{0} \cdot \nabla y^{+} \rho_{1} d x-\int_{\Omega} \nabla u_{0} \cdot \nabla \rho_{1} y^{+} d x \\
& +\int_{\Omega} u_{0}^{2} y^{+}\left(\frac{\partial \rho_{1}}{\partial x_{1}}+\frac{\partial \rho_{1}}{\partial x_{2}}\right) d x+\int_{\Omega} u_{0}^{2} \rho_{1}\left(\frac{\partial y^{+}}{\partial x_{1}}+\frac{\partial y^{+}}{\partial x_{2}}\right) d x \\
\leq & \int_{\Omega} f \rho_{1} y^{+} d x-\int_{\Omega} \nabla u_{0} \cdot \nabla y^{+} \rho_{1} d x-\int_{\Omega} \nabla u_{0} \cdot \nabla \rho_{1} y^{+} d x \\
& +\int_{\Omega} u_{0}^{2} \rho_{1}\left(\frac{\partial y^{+}}{\partial x_{1}}+\frac{\partial y^{+}}{\partial x_{2}}\right) d x
\end{aligned}
$$

By (20) we have $\int_{\Gamma_{0}} \frac{1}{2} \frac{\partial \rho_{1}}{\partial \vec{n}}\left|y^{+}\right|^{2} d \sigma=0$. Again using (20) we may assume that for some positive constant $M$ we have $-\frac{2}{3}\left(\frac{\partial \rho_{1}}{\partial x_{1}}+\frac{\partial \rho_{1}}{\partial x_{2}}\right)>M \rho_{1}^{\frac{3}{4}}$ for all $x \in \bar{\Omega}$. Then denoting by $C_{i}$ various constants independent of $y$ and $u_{0}$ we have

$$
\begin{aligned}
& \int_{\Omega}\left(-\frac{\Delta \rho_{1}}{2}\left|y^{+}\right|^{2}-\frac{2}{3}\left(\frac{\partial \rho_{1}}{\partial x_{1}}+\frac{\partial \rho_{1}}{\partial x_{2}}\right)\left(y^{+}\right)^{3}\right) d x \geq \int_{\Omega}\left(-C_{0} \rho_{1}^{\frac{1}{2}}\left|y^{+}\right|^{2}+M \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3}\right) d x \\
& \quad \geq-C_{1}\left(\int_{\Omega} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x\right)^{\frac{2}{3}}+M \int_{\Omega} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x \geq \frac{3 M}{4} \int_{\Omega} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x-C_{2} .
\end{aligned}
$$

Then we have

$$
\begin{gathered}
2 \int_{\Omega}\left(\frac{\partial y^{+}}{\partial x_{1}}+\frac{\partial y^{+}}{\partial x_{2}}\right) \rho_{1} u_{0} y^{+} d x \leq \frac{1}{4} \int_{\Omega} \rho_{1}\left|\nabla y^{+}\right|^{2} d x+C_{3} \int_{\Omega} u_{0}^{2} \rho_{1}\left|y^{+}\right|^{2} d x \\
\quad \leq \frac{1}{4} \int_{\Omega} \rho_{1}\left|\nabla y^{+}\right|^{2} d x+C_{4}\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2} \cdot\left(\int_{\Omega} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x\right)^{\frac{2}{3}} \\
\quad \leq \frac{1}{4} \int_{\Omega} \rho_{1}\left|\nabla y^{+}\right|^{2} d x+\frac{M}{4} \int_{\Omega} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x+C_{5}\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{6}
\end{gathered}
$$

Also

$$
\begin{aligned}
2 \int_{\Omega} u_{0}\left(\frac{\partial \rho_{1}}{\partial x_{1}}\right. & \left.+\frac{\partial \rho_{1}}{\partial x_{2}}\right)\left|y^{+}\right|^{2} d x \leq C_{6}\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)} \cdot\left(\int_{\Omega} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x\right)^{\frac{2}{3}} \\
& \leq \frac{M}{4} \int_{\Omega} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x+C_{7}\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{3}
\end{aligned}
$$

We also obtain

$$
\begin{array}{r}
\int_{\Omega} f \rho_{1} y^{+} d x-\int_{\Omega} \nabla u_{0} \cdot \nabla y^{+} \rho_{1} d x \\
-\int_{\Omega} \nabla u_{0} \cdot \nabla \rho_{1} y^{+} d x+\int_{\Omega} u_{0}^{2} \rho_{1}\left(\frac{\partial y^{+}}{\partial x_{1}}+\frac{\partial y^{+}}{\partial x_{2}}\right) d x \\
\leq C_{8}\left(\|f\|_{L^{2}(Q)}^{2}+\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{4}\right) \\
+\frac{1}{2} \int_{\Omega} \rho_{1}\left|y^{+}\right|^{2} d x+\frac{1}{4} \int_{\Omega} \rho_{1}\left|\nabla y^{+}\right|^{2} d x .
\end{array}
$$

Using all these inequalities we obtain

$$
\begin{array}{r}
\frac{d}{d t} \int_{\Omega} \rho_{1}\left|y^{+}\right|^{2} d x+\int_{\Omega} \rho_{1}\left|\nabla y^{+}\right|^{2} d x+\int_{\Omega} \frac{M}{2} \rho_{1}^{\frac{3}{4}}\left(y^{+}\right)^{3} d x \\
\leq C_{9}\left(1+\|f\|_{L^{2}(Q)}^{2}+\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{6}\right)+\int_{\Omega} \rho_{1}\left|y^{+}\right|^{2} d x
\end{array}
$$

Applying Gronwall's inequality we obtain, as $y^{+}(0, \cdot)=0$,

$$
\sup _{t \in(0, T)} \int_{\Omega} \rho_{1}\left|y^{+}\right|^{2} d x \leq C_{10}\left(1+\|f\|_{L^{2}(Q)}^{2}+\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|u_{0}\right\|_{H_{0}^{1}(\Omega)}^{6}\right) T e^{T}
$$

Since the right hand side goes to zero as $T$ goes to zero and $y^{+}(T)=$ $u_{0}^{-}$, we immediately arrive to a contradiction and the proof of Theorem 8 is complete.

