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Introduction



Case of Navier-Stokes Equations



(¥,p) : ‘“ideal” solution of Navier-Stokes equations (for example a
stationnary solution).

(B A+ §.VF+Vp=Tin Qx(0,T),

divy =0 in @ x (0,7), (1)
y=0onT x (0,7)

\ y(0) = yg in <.

Consider a solution of the controlled system, starting from a different
initial value

(B UAy+y.Vy+Vp=TF+v.IL in Qx (0,T),

divy =0 in 2 x (0,7, (2)
y=0 on [ x(0,7)

y(0) =yo in €2,

11, : characteristic function of a (little) subset w of .




Exact Controllability to Trajectories :

Can we find a control v such that

y(T) =5(T) 7

i.e can we reach exactly in finite time the “ideal” trajectory y?
Local version : same result provided ||yg — ¥ol| is small enough.

Last result (Fernandez-Cara, Guerrero, Imanuvilov, Puel, Journal de
Math. Pures et Appl., 2004) (dimension 3) : Local exact controlla-
bility to trajectories.



H={yeL?(Q)3 divy =0, yr=0on I}

Theorem 1 Let us assume that
o € HNLY(Q)3, §eL™®(Qx(0,7))3
and

57 6
—z € L2(0.T: L°(Q))3, o > .

then there exists n > 0 such that for every yg € HNL*(2)3 such that
1¥o — FollLa(q)s <, there exists a control v & L2(0,T; L?(w))3 and a
solution (y,p) of (2) such that

y(T) =y(T).



Among open problems :
Can the result be global (at least to achieve 0)7

Open problem except for control on the whole boundary : combining
results of Coron for approximate controllability and a local exact con-
trollability result (Fursikov-Imanuvilov or result mentionned above).

Can we use a more “nonlinear’ method 7



Case of Burgers Equations



For 1-d Burgers equation : counter-example due to Guerrero-Imanuvilov.
T herefore no global exact controllability.

10



Global exact boundary controllability for the 2-d Burgers equation

ou ou?  Ou? .

E—Au+a—m+a—@—f in Q= (0,T) x Q, (3)
ulrg =0, ulr, =h, (4)
u(0, ) = up, (5)
w(T,-) = 0. (6)

Without loss of generality we may assume that 2 is included in the
rectangle 0 < xzo — 21 < A, —B < x1+ 2> < B with A and B two
positive constants.
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Theorem 2 Let us assume that
|_0C{ZIJE|_|$1—$2:O} (7)

(or [y is empty which is allowed). Suppose that f € L2(0,T; L?(2))
and that there exists Tg € (0,T) such that f(t,z) = 0,Vt > Tj.
Then for every ug € L2(QQ) there exists a solutionu € L?(0,T: H%O(Q))ﬂ

C([0,T]; L?(2)) such that t?w € HL2(Q) = H(0,T;L3(Q)) N
L2(0,T; H2(Q) n H}O(Q)) to problem (3)-(5) satisfying (6) (and a
corresponding control h).
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Proof : related to the return method by Coron but different. Use
of a special solution of Burgers equation that we can drive to zero
whenever we want.
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First of all some existence and regularity results for Burgers equations
(good exercises 1)

Proposition 3 For every f € L2(0,T; H-1(Q)) and up € L2(2) there
exists a unique solution u to 2-D Burgers equation with u € L2(0,T; H&(Q))ﬂ
C([0,T]; L?(2)) and we have

lull 20,7 12 (@) Tl1ulleom L2y = Cluol 2@y Tl 20,0 m-1(02)))-

Iff € L?(0,T; L?(2)) and ug € H3(2) thenu € HY2(Q) = H(0,T; L2(R2))N
L?(0,T; H2(Q2) N HA(R)) and we have

lull r2(qy = Cllvoll gy + /1200, 12(02)) T ||U0||Zé(9) T |f|22(07T;L2(Q)))'
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Proposition 4 Let us assume that f € L2(0,T; L?(S2)) and that ug €
L2(QQ). Then t?.u € H12(Q) which imp/ies that for every n > 0, u €
C([n, T); H(2))NL2(n, T; H2(2)) and %% € L?(n, T; L(2)). Moreover
we have the following estimate

||t2.u\|H1,2(Q) < C(|u0|L2(Q) + |f|L2(O T:L2(2)) + (8)

‘uO|L2(Q) + mLQ(O T12(22)))
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On the time interval (0,1p) set h(t,xz) = 0 and leave the system evolve
without control. For every n > 0, we have

u € C(In, Tol: HY () 1 L2001, To; HA(Q)), ' € L2(n,To; L2())

and we write

w(Tp, ") = ug € HG(2) C LP(Q), Vp, 1 < p < +oo.

Now we set
T — T
0 = 0 > 0.
4
We will construct a solution u in the interval (1p,To + 3dpg) (and a
corresponding control) such that u(1py 4+ 3dg,-) is as small as desired

in the norm H(S2).
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First of all we construct a very specific solution U of the 2-d Burgers
equation.

Let w(t,z) be a solution to the heat equation

a_w_282w_o z€(0,4), t> T (9)
ot 022 T 0

w(t,0) =0, w(t,A) =v(t), (10)
’U)(To, ) — Oa (11)

where v(-) is a boundary control which will be determined later on.
This control will be chosen regular so that w will also be regular.

We now set
U(ta CE) — w(ta Lo — CEl)' (12)
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We have

oU  dU U2 9U?
+-— =0, +—=0
8x1 8x2 axl 8x2
so that for every N > 0, N.U is a regular solution of the 2-d Burgers

equation

N. N.U)? N.U)?
ONU) _ Anuy 4+ 27 L ONUT 5 o 1y x @,
ot ox1 0xo
]VI”rO::O,

N.U(Ty,-) = 0.
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Notice that the value of N.U on (Tp,T) x I"'1, which will be a boundary
control h and which depends on v, does not appear explicitely. If § is
any number such that 0 < ¢ < 9dg, from the controllability results for
the heat equation, we can choose this control A (and in fact v) on

(To + 6, 1o + 25g) such that
N.U(Ty + 26p,-) = 0.
On the interval (T, Tp + 20g) we look for uw in the form
u=1y-+ N.U, (13)
where N is a large parameter to be determined later on and y is

chosen to vanish on the whole boundary [.
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Therefore, y must satisfy the following equation

Oy oy Oy .  Oy>  0y?

— — A 2N.U — —— =0 14

ot YT (8$1 T 8$2) T 8:61 T 8%2 ( )
in (To, To + 260) x €2,

y||_ — 07 (15)

y(To, ) = ug. (16)

Lemma 5 There exists a unique solution y to (14), (15), (16) with
y € C([To, To+200]; HY(92))NL2(To, To+200; H2(2)), G € L2(To, To+
260: L2(QQ)) and for every tg,t1 with Ty < tg < t1 < To+ 260 and every

p > 1 we have

ly(t1, Mlirecq) < lly(to, lrr(q)- (17)
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Proof.

Existence, uniqueness and regularity of y is classical as (14) is essen-
tially a Burgers equation. To show that the LP-norm of y is decreasing,
multiply equation (14) by |y[P~2y with p > 1. We obtain

1d
—— [ lylPd —1/ P=2|Vy|?dz = 0
dt/QIyl x+ (p )Qlyl Vy|“dx

since
0Iy|p Oly[P
U. P2y _—/ U. dz =
[, UG+ 5Dl 2yde oo T )i
and
2 dly|Py  Oly|P
Yy y Yy
OV O 2o = 2 [ O Ol
Q Ox 1 —|—1 oxr1 x>
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Let us now define a function 3 by

B(x) = Co — x1 — x2,

where Cg is chosen such that

6o > 0, Vx € 2, B(x) > Bo.

We also write

B1 = max G(x).
xel?
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Lemma 6 The solution y of (14), (15), (16) satisfies the following
differential inequality

2dt/ Blul*d "3+/ BIVy|Pdw+ 2 /(NU)ﬁ|y|2d:fc< /|u1|3d:c (18)

Proof.

Multiply equation (14) by By. We obtain, as A3 =0 and gf + (%2
2

S5 Blyldr+ [ pIvyPde+2 [ (NP + 7 [ JyPydz =0

Using Lemma 5 with p = 3 we obtain the desired result.
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Notice that up to this point the control v has not been chosen.

In the case when [ is empty which means that we can apply a
control on the whole boundary, we don't have to take the boundary
condition w(t,0) = 0 and we can take w such that ming o U(t,z) >
Min ¢ ayw(t, z) > a(t) > 0 if ¢ > Ty, which ensures that U has a
strictly positive minimum when t > Tj.

When [ is not empty, due to the boundary condition w(¢t,0) = 0 we
cannot have a strictly positive minimum for U over (2.
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Let us now make a choice for w and v. On the interval (Tp, Ty + 9),
where 0 < 9§ < §p, we set

1 _ (2-54)° _ (2454)?
\/ (6 8(t—1Tp) — ¢ 8(t—1p) ) (19)
(t —Tp)

We can see that w satisfies (9), (10) with a suitable control v and

(11).

For 0 <a< z<A we have

w(t, z) =

2 2
2 _ (a®+254~) 5A
w(t, z) > w(t,a) = e 8(=To) sinh( a )
\/(t —Tp) 4(t —Tp)
_ (a?42542)
> 5Aa . S(—To)
2(t —1p)2
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At the same time we also have

3Cy > 0, Va € (0,A), Vt € (Tp,Tp+95), Vz, 0 < z<a, w(t,z) <w(t,a) < Cpa.
We will write
Qou={xe€Q, 0< 2z —21 <a}
and we have
24| < Ca,

and

_ (a®+2542)
5Aa B0 T)

min U(t,x) > w(t,a) >
e\ 2(t _ TO)%
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Therefore, from (18), we obtain

24t

5N Ag _ (a%42542)
/B|y|2 a:—l—/ B|Vy|2dz + o )§€ 8(t—Tp) /ﬁ|y|2d$
1(t —1p)2

4
<3 J e+ 2N [ w(t.a)lyde
4
5/ \u1|3daz—|—2Nw(t a)|§2a|3(/ \y|3dg;)3

<—/ 3d CN?/ 342)5.
=3 Q|’u1| r + a(Q\U1| )
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We now take

1

a = —=x

N4

which implies the following differential inequality

1 2

d 10N3A 2647

£/9ﬁ|y|2da: == 3¢ 5(t=1o) /me|2dﬂ’j + O(||u1||L3(Q)).
B]_(t — T0)2

Using Gronwall Lemma, integrating this inequality on (T, T+ 6), we
obtain

1
| Blu(To + 8,2)Pde < ([ BlurPda)e™ N9 4 5C(furl 2(s)
where for ¢ small enough

To+s 104 2642 A2
9(9) = [

se 80-To)dt > Ce™ 5 >0

To B(t—Tp)2
28



This implies

o, B o _NEges) . S
Jo lo(To + 62) P <A [Faggye o) + -

and, choosing first 6 sufficiently small then N sufficiently large we
have proved the following

Clutll pagen)

Proposition 7 Given uy in H3(2) (in fact w1 € L3(2) would be
enough), for every 6o > 0 and for every eg > 0, there exists § with
0 <6 < g and there exists N sufficiently large such that

||y(TO + o, ')HL2(Q) < €p.
Now we choose the control v on the time interval (Tg + 6,7 + 2dg)
in (10) such that w satisfies
w(Ty + 268p,-) = O.
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This is possible using classical results on null controllability for the
heat equation. Then we also have

U(TO + 2507 ) = 0.
Therefore,

lu(To + 260, )l r2¢ay = Ily(To + 260, Il z2¢y < I9(To + 8, Il z2(e) < <o

Notice that ¢g can be chosen as small as we wish. At this point we
only know that the L2(Q)-norm of w(Ty + 268p,-) is as small as we
wish.
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On the interval (To+ 260,10+ 30g) we let the system evolve freely and
we take the boundary control equal zero. Then using the regularizing
effect of Burgers equation we see that at time Ty 4 3dg we have

||u(To + 3dp, ')||H5(Q) <leq,

where €1 can be taken as small as we wish provided ¢g is small enough.

Therefore, on the time interval (1Tp 4+ 36g,7) we can use a result of
local exact controllability to trajectories for 2-d Burgers equations
(not completely trivial ) to find a boundary control A such that

uw(T, ) = 0.
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A situation without global controllability
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Theorem 2 was proved under the restrictive assumption (7) on the
boundary ['g. The next result shows that without this assumption the
global controllability property may fail.

Let us suppose that the geometrical situation is such that there exists
a function p(z) € C2(2) such that
op op

plry =0, p(x)>0in2, —+_—<0 Vo € Q. (20)
or1  Oxo

Of course this cannot occur in the situation considered in the previous
section, but there are many cases where such a function p exists, for
example when 2 = {(5131,332), O<xo—21<1, —1<x1+22< 1} and
[ = {(5131,332), O<zo—21<1, x21 20 = 1}.

For a function v defined on €2 or (0,7) x 2 we set

v = max(v,0), v~ = (—v)T.
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Theorem 8 Suppose that condition (20) holds true. Let f € L2(0,T; L%(2))
andug € H(%(Q) such thatug # 0. Then there exists a time Tp(ug, f) >

O such that for each T < To(ug, f) there is no solution to problem
(3)-(5) in the space v € H:2(Q) satisfying (6).

Proof. We argue by contradiction. Letug € H3(2) and f € L?(0,T; L?(S2))
be given functions. Suppose that there exists a solution u to (3)-(6).
Then we consider the function y(t,x2) = u(t,x) — ug(x) which satisfies

the following system of equations
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2 2
W _ay+ % + g—zQ + 28%;10) + 28%0) —q in(0,T)x Q.
Ylro =0, ylr;, =h y(0,:) =0,
y(T,-) = —up,
where
2 2
1= dug— 804
We set

p1(z) = p(z)*.

Multiplying the equation by p1y+ and integrating by parts we obtain
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A 2 0 0
+124 / u T2 P1 +2 _£9P1 /01 +13V4
th/pllyl z+ | (p1lVyT|* = ——ly |7 - 361 )(y))w
3-|—

0 8
+124 2/ + P1 PINLF12)d
— |y |7do — Q((aml + a@)pluoy uo(am1 +am2)|y ) da

=/Q fp1y+da:—/ Vuo.Vy+p1daf;—/ VuO.Vp1y+da:
8y+

0 0
2 4+ ,0p1 Py / d
i /Quoy (s + )i + uopl( = T 5 )0

10p1

_I_ |_028’I’L

< /Q fp1y+d:1:—/Q Vuo.Vy+p1d:1:—/ VuO.Vp1y+da:

Oyt
0x»o

+ uopl( + )da.
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By (20) we have [ %%|y+|2da = 0. Again using (20) we may assume
3

that for some positive constant M we have —3(8“ + gpl) > Mp7 for
all z € Q. Then denoting by C; various constants mdependent of y

and upg we have

A 2.0 0
[BP P2 2P 90 )3han > [ (~Copilyt P ()
Q 3 0xq 8:1:2

3M

3
4y TY3dx — Co.
4 Qpl(y) r — Co

—er([ AW an)d + [ phryPar > 2
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Then we have

1
2/ +4 <—/ vyt 2d 0/2 +124,
Q(ax1+ xz)muoy z < Q01| y " |“dx + C3 QUop1|y |
< 2 [ oIVt P+ CalluolZy gy (. A3

< 2 Loyt Pz + 20 [ )% + Osllucli§
Also

dp1 301 3
2 [ uo G2 + Sl Rd < Colluoll gy e o 7)2a0)3

M 3
o 40,13 3
< 2 /Qpl(y ) diU‘l‘CTHUOHHé(Q)-
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We also obtain

/ fp1yTde — / Vuo.Vy+p1dx

_|_
—/ Vug. Vp1y+dw—l-/ uopl(—+—)dw
8%1 8%2
< C8(||f||L2(Q) + ||uo||H5(Q) + ||uo||Hé(Q))
1 1
- +24 —/ vyt [2dz.
+2/Qp1|y | z+ Qpll y"|“dx
Using all these inequalities we obtain
d M 3
@ +124 / o124 / M 30,3y
dt/Qplly “dx + Qp1| Yy |“dx + 92,01(?/ )~ dx
< Co(L + 111122y + uol 21 gy + lluoll% o)) + [ p1ly T Pd.
— L=(Q) H3(S2) Hy(2) O
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Applying Gronwall’s inequality we obtain, as y1(0,-) = 0,

+ 2 2 2 §) T
Sup o Py I7dr < Cro(1+ [IFlI72(g) + lluollg o) + ol 1 o)) e

Since the right hand side goes to zero as T goes to zero and yT(T) =
ug, We immediately arrive to a contradiction and the proof of Theorem
8 is complete.
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